Browse Topic: Diesel particulate filters
The legislation of CEV Stage V emission norms has necessitated advanced Diesel Particulate Filter calibration strategies to ensure optimal performance across diverse construction equipment applications in the Indian market. Considering the various duty cycles of cranes, backhoe loaders, forklifts, compactors, graders, and other equipment, different load conditions and operational environments require a comprehensive strategy to enhance DPF efficiency, minimize regeneration frequency, and maintain compliance with emission standards. The DPF, as an after-treatment system in the exhaust layout, is essential for meeting emission standards, as it effectively traps particulate matter. Regeneration occurs periodically to burn the soot particles trapped inside the DPF through ECU management. Therefore, understanding soot loading and in-brick DPF temperature behavior across various applications is key. This paper explores the challenges in DPF calibration for CEV Stage V and provides a
The current and upcoming Internal Combustion Engine (ICE) emission norms are very stringent. It is difficult to meet emission standards with just combustion optimization techniques. As a result, post-treatment is required for Engine-out emissions. Otherwise, these hazardous gases impact the ecosystem of living beings. Many technologies are implemented at the exhaust for reducing the emissions. Diesel Particulate Filter (DPF) is one such technique to achieve lower Particulate Matter (PM) and Particulate Number (PN) emission goals. In order to achieve such emission reduction, the DPF undergoes periodic cleaning called regeneration. During regeneration, the exhaust systems including DPF are maintained at elevated temperatures to achieve proper cleaning. When the vehicle is in regeneration, sudden braking or accelerator pedal release leads to engine Drop to Idle speeds (DTI), which sharply increases the temperature gradient inside the DPF which may result in physical damage like cracks
Diesel Particulate Filters (DPFs) have been used extensively worldwide as a Particle Mass (PM) / Particle Number (PN) reduction technology for various diesel applications. Based on CARB’s latest Tier 5 regulation workshop, PM emission targets are expected to become a lot more stringent; from 0.02 g/kWh to 0.005 g/kWh (75% reduction compared to Tier 4 Final (Tier 4f)). Also, CO2 emission targets are expected to be introduced for Tier 5. In parallel, EU Stage VI emission regulation standards and implementation timing could be announced sometime in late 2024. It is expected that PN emission standards will be tightened such as extending measurement range of PN from 23 nm to 10 nm. With Tier 5 and EU Stage VI regulations approaching, several OEMs are considering implementing a common aftertreatment system that can meet emission targets for both regions. High filtration efficiency and low backpressure DPFs will be required to meet PM/PN and CO2 emission standards. NGK has developed several
The automobile industry is going through one of the most challenging times, with increased competition in the market which is enforcing competitive prices of the products along with meeting the stringent emission norms. One such requirement for BS6 phase 2 emission norms is monitoring for partial failure of the component if the tailpipe emissions are higher than the OBD limits. Recently PM (soot) sensor is employed for partial failure monitoring of DPF in diesel passenger cars.. PM sensor detects soot leakage in case of DPF substrate failure. There is a cost factor along with extensive calibration efforts which are needed to ensure sensor works flawlessly. This paper deals with the development of an algorithm with which robust detection of DPF substrate failure is achieved without addition of any sensor in the aftertreatment system. In order to achieve this, a thermodynamic model of DPF substate was created using empirical relations between parameters like exhaust flow rate, exhaust
Recent legislations require very low soot emissions downstream of the particulate filter in diesel vehicles. It will be difficult to meet the new more stringent OBD requirements with standard diagnostic methods based on differential sensors. The use of inexpensive and reliable soot sensors has become the focus of several academic and industrial works over the past decade. In this context, several diagnostic strategies have been developed to detect DPF malfunction based on the soot sensor loading time. This work proposes an advanced online diagnostic method based on soot sensor signal projection. The proposed method is model-free and exclusively uses soot sensor signal without the need for subsystem models or to estimate engine-out soot emissions. It provides a comprehensive and efficient filter monitoring scheme with light calibration efforts. The proposed diagnostic algorithm has been tested on an experimentally validated simulation platform. 2D signatures are generated from soot
To meet stringent emission norms and commercial vehicle customer demands, the selection of an after-treatment system (ATS) plays a considerable role. Therefore, the selected ATS should substantially reduce nitrogen oxide emission by proper decomposition of ammonia and particulate matter without significantly increasing the thermal stress on DPF. Though the BS-VI after-treatment architecture is derived from EURO-VI, only a certain level of technology for the vehicle operating conditions in India can be implemented. However, numerous vehicle operating condition challenges in the Indian market must be explicated. Correspondingly, it should be addressed with a robust durability validation methodology to enhance the ATS product performance in challenging environments. This paper discusses SCR catalysts emission performance and ammonia decomposition durability validation methodology for commercial vehicles. In addition, during various vehicle duty cycle conditions, the effectiveness of DPF
Major share of Small Commercial Vehicles (SCV) applications is operated in city conditions with frequent stops and short driving distance. Drivers will often operate these SCV with loads that exceed their rated specifications. Such driving profiles are particularly observed in food, e-commerce delivery, garbage collection vehicles which are driven inside the city. During Diesel Particulate Filter (DPF) regeneration events in these conditions, it is a challenge to maintain light-off temperature of oxidation catalyst. This may lead to prolonged regeneration durations with multiple regeneration interrupts and poor regeneration efficiency. Frequent engine start operations and lower passive regeneration result in a low regeneration interval. The extended DPF regeneration duration in combination with a low regeneration interval will result in high oil dilution. The study focuses on identifying such driving profiles and defining counter measures to improve the regeneration performance. This
Items per page:
50
1 – 50 of 1245