Browse Topic: Noise, Vibration, and Harshness (NVH)
Powertrain is the most prominent source of Noise and Vibration in the vehicle. Improvement in Powertrain Noise and Vibration is a multifaceted topic due to the complex architecture of the powertrain and the critical role of calibration in defining combustion inputs. Hence, a method to clearly distinguish these aspects is required in order to address the exact problem and decide on course of actions to improve NVH performance of powertrains. This paper discusses a post-processing technique through which experimentally acquired ICE Powertrain Noise can be further segregated in order to identify and address the root source. The segregation methodology requires as input - noise, vibration and cylinder pressure values at various torque conditions across multiple operating points. A MATLAB based code developed by the authors is used to generate correlation between the Cylinder Pressure, Torque and Noise Parameters. The transfer coefficient at every frequency point is calculated using
In pursuit of a distinct sporty interior sound character, the present study explores an innovative strategy for designing intake systems in passenger vehicles. While most existing literature primarily emphasizes exhaust system tuning for enhancing vehicle sound quality, the current work shifts the focus toward the intake system’s critical role in shaping the perceived acoustic signature within the vehicle cabin. In this research work, target cascading and settings were derived through a combination of benchmark and structured subjective evaluation study and aligning with literature review. Quantitative targets for intake orifice noise was defined to achieve the desired sporty character inside cabin. Intake orifice targets were engineered based on signature and sound quality parameter required at cabin. Systems were designed by using advanced NVH techniques, Specific identified acoustic orders were enhanced in the intake system to reinforce the required signature in acceleration as well
This paper focuses on the cabin sound quality refinement and the tactile vibration reduction during horn application in the electric vehicle. A loud cracking sound inside the cabin and higher accelerator pedal vibration are perceived while operating the horn. Sound diagnosis is carried out to find out the frequencies causing the cracking noise. Transfer path analysis is conducted to identify the nature of noise and the predominant path through which forces transfer. Based on finding from TPA, various recommendations are evaluated which reduced the noise to a certain extent. Operational Deflection Shape (ODS) is conducted on the horn mounting bracket and on the body to identify the component having higher deflection at the identified frequencies. Recommendations like DPDS improvement on the horn bracket and the body is assessed and the effect of each outcome is discussed. With all the recommendations proposed, the cabin noise levels are reduced by ~ 8 dB (A) and the accelerator pedal
Higher road noise is perceived in the cabin when the test vehicle encounters road irregularities like bump or pothole in the public roads. The transfer of transient road inputs inside the body caused objectionable cabin noise. Measurements are conducted at different road surfaces to identify the patch where the objective data well correlated with the noise measured at the public road. Wavelet analysis is carried out to identify the frequency zones since the events are transient in nature. TPA is carried out in time domain to identify the nature of the noise and the dominant path through which the transient road forces are transferring inside the body. Based on the outcome of TPA, various countermeasures like reduction of dynamic stiffness of suspension bushes, TMDs on the path are proposed to reduce the structure borne noise. Criteria which need to be considered for reduction of cabin noise due to transient road inputs is also discussed.
Unlike internal combustion engine (IC Engine) vehicles, the rapidly growing electric vehicle (EV) market demands tyres with superior yet often conflicting performance characteristics. The increased weight of EVs, due to their heavy batteries, necessitates robust tyres with reinforcement and higher inflation pressure. Conversely, increased wear due to higher initial torque and the need for lower rolling resistance to extend range, combined with the requirement for better grip for improved handling, call for advanced compound and tread pattern designs. EV tyres need to be stiffer, lighter, and low hysteresis, making it very hard to reduce low-frequency (20-200 Hz) interior noise that was previously masked by engine noise. This study investigates the low-frequency (20-200 Hz) structural-borne interior noise performance of EV tyres using both experimental and simulation tools. By wisely tuning the tyre's stiffness, mass, and damping properties, the necessary noise targets can be achieved
Vehicle interior noise is a crucial assessment criterion for automotive NVH. It has a significant effect on customer opinions about the quality of a vehicle. Articulation Index (AI) is one of the key sound metrics used to describe speech intelligibility and quantifies the middle and high frequency spectra associated to the internal noise of vehicle. In reality, Vehicle operating under dynamic condition experiences various air-borne noise sources such as tire rolling noise, powertrain noise, intake-exhaust noise & wind noise along with structure borne excitations such as powertrain vibrations, suspension vibrations. It is very challenging to predict cumulative effect of all these excitations to interior noise level and Articulation Index (AI) of vehicle over complete frequency range. The statistical energy analysis (SEA) is a well-known methodology being used to simulate & predict mid & high frequency noise. Objective of this paper is to present the process of development of a SEA
Tire noise reduction is important for improving ride comfort, especially in electric vehicle due to lack of engine noise and majority of the noise generated in-cabin is from tire-road interaction. Therefore, the tire tread pattern contribution is one of the important criteria for NVH performance apart from other structurally generated noise and vibration. In this work a GUI-based pitch sequence optimization tool is developed to support tire design engineers in generating acoustically optimized tread sequences. The tool operates in two modes: without constraints, where the pitch sequence is optimized freely to reduce tonal noise levels; and with constraints, where specific design rules are applied to preserve pattern consistency and manufacturability. The key point to be considered in this pitch sequence is that it should be reducing the tonal sound and equally spread i.e., the same pitch cannot be concentrated on one side which may lead to non-uniformity. So, the restriction is that
In the absence of engine noise, road-induced noise has become a major concern specifically for Battery Electric Vehicles (BEVs), impacting Sound Pressure Level (SPL) for both drivers and passengers. Under the influence of random road load inputs, structural vibrations which transfer from road and tire to suspension to vehicle body, the cabin interior noise, particularly at lower frequencies, is significantly affected. To improve the road-induced low-frequency structure-borne noise behaviour, which frequently perceptible as ‘booming noises’, a study was carried out to assess predominant noise sources present in vehicle and to suggest refinements in reducing the noise levels. By considering random excitations of road profile through tire patch using CD-Tire model, vehicle interior noise was computed. Subsequently, to get insight of dynamic behaviour of vehicle, various diagnostic assessments to understand the influence from structure and paths were deployed. Major contributors from body
Items per page:
50
1 – 50 of 9681