Browse Topic: Noise, Vibration, and Harshness (NVH)
According to a problem of the vibration and noise suppression of an engineering vehicle cab, a dynamical model of the engine-frame-cab system was established to describe the vibration transmission path. The method of calculation of the vibratory power flow, which is transmitted from the vibration source engine to the cab through the frame and isolators, was deduced. And then an optimization strategy for the frame structure and the corresponding analysis algorithm process were proposed based on the objective function of power flow. The method proposed was validated through an application to a practical example, which would have practical value in the field of vehicle vibration reductions and optimization design of frame structures.
The effective measurement and verification of dimensional stability indicators for large size and highly stable structures in service environments is the key to the development of high-precision spacecraft technology. Spatial carrier speckle interferometry technology has been widely used for high-precision measurements in recent years due to its advantages of fast speed, high accuracy, and simple operation. However, the existing technical research only focuses on the measurement under normal temperature and pressure environments, and there is little research on the application under complex operating conditions in space. There is currently no relevant research on the impact of system ambient vibration and noise on measurement stability disturbances. In response to the above issues, a high-precision deformation measurement system suitable for complex environments of high and low temperatures in a vacuum was designed based on spatial carrier measurement technology. A system measurement
The activation of the fuel injector affects both engine performance and pollutant emissions. However, the automotive industry restricts access to information regarding the circuits and control strategies used in its vehicles. One way to optimize fuel injections is using piezoelectric injectors. These injectors utilize crystals that expand or contract when subjected to an electric current, moving the injector needle. They offer a response time up to four times faster than solenoid-type injectors and allow for multiple injections per combustion cycle. These characteristics result in higher combustion efficiency, reduced emissions, and lower noise levels, making piezoelectric injectors widely used in next-generation engines, where stricter emission and efficiency standards are required. This study aims to design a drive circuit for piezoelectric injectors in a common rail system, intended for use in a diesel injector test bench. Experimental measurement of voltage was obtained from an
Items per page:
50
1 – 50 of 9648