Browse Topic: Noise, Vibration, and Harshness (NVH)
In the current world of automobiles, the air-conditioning system plays a crucial role in passenger comfort. Thermal comfort for the passengers, which was earlier a luxury, has now become a basic necessity. This thermal comfort, coupled with ventilation, brings along with it the symbiotic association of flow-induced noise. The subjective prominence of airborne noise from air-conditioning systems increases with higher refinement or masking of structure-borne noise and/or engine noise sources. These systems for commercial vehicles are higher in capacity, complex, and generally placed directly above the passenger seats. Flow-induced noise refinement for such systems is generally difficult and involves multiple physical trials. In the current work presented for a commercial van, the airflow delivery of the air-conditioning system was in line with the requirement. The location of the system, however, resulted in higher noise levels at the passenger ear location. To address this issue, an
This SAE Recommended Practice establishes the method to determine Sound Level of a snowmobile under typical trail operating conditions. Snowmobiles have different engine power levels that depends on the model
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
Researchers have been testing ways to continuously and more comfortably detect these tiny fluctuations in pressure. A prototype smart contact lens measures eye pressure accurately, regardless of temperature. The contact lens wirelessly transmits real-time signals about eye pressure across a wide range of temperatures
ABSTRACT Curtiss-Wright has developed an acoustic based sensor technology for measuring friction, shock, and dynamic load transfer between moving parts in machinery. This technology provides a means of detecting and analyzing machine structure borne ultrasonic frequency sounds caused by friction and shock events between the moving parts of the machine. Electrical signals from the sensors are amplified and filtered to remove unwanted low frequency vibration energy. The resulting data is analyzed as a computed stress wave energy value that considers the amplitude, shape, duration and rates of all friction and shock events that occur during a reference time interval. The ability to separate stress waves from the lower frequency operational noise makes this technology capable of detecting damaged gears/bearings and changes in lubrication in equipment earlier than other techniques, and before failure progression increases cost of repair. Already TRL9 in adjacent industries, this technology
ABSTRACT Under the sponsorship of TARDEC, UTRC is developing 5–10 kW Solid Oxide Fuel Cell (SOFC) Auxiliary Power Units (APU) that will be capable of operating on JP-8 with a sulfur concentration of up to the specification’s upper limit of 3000 ppmw. These APUs will be sized to fit within the relatively tight space available on U.S. Army vehicles such as the Abrams, Bradley and Stryker. The objective of the base development program that commenced in August 2010 is a 1000 hour TRL-5 demonstration of an APU in an Abrams configuration by mid-2013. This SOFC system is expected to provide power to the 28 VDC vehicle bus at a net efficiency ≥35%. In addition, the noise level is anticipated to be far below that generated by combustion engine-based APU concepts. UTRC has completed the Preliminary Design of the system and has finalized the overall system configuration and the requirements for each of the components. During the Preliminary Design phase, evaluations of the performance of sub
ABSTRACT When we assess compliance of crew exposure to vibration within a military tracked vehicle we use international standards, these are ISO 2631 and BS 6841. Within these standards, weighting factors based on research carried out 40 years ago are applied to the measured vibration. These weighing filters attenuate and remove vibration above 80Hz. After conducting tests for over 30 years, it is the author’s intention to prove that these filters are no longer fit for purpose and the standards need revisiting
ABSTRACT A methodology based on a combination of commercial software tools is developed for rendering complex acoustic scenes in real time. The methodology aims to bridge the gap between real time acoustic rendering algorithms which lack important physics for the exterior urban environment and more rigorous but computationally expensive geometric or wave-based acoustics software by incorporating pre-computed results into a real time framework. The methodology is developed by surveying the best in class commercial software, outlining a general means for accommodating results from each, and identifying areas where supplemental capability is required. This approach yields a real time solution with improved accuracy. Strengths and limitations in current commercial technologies are identified and summarized
WHY DO WE NEED SIMULATIONS? This paper is intended to provide a broad presentation of the simulation techniques focusing on transmission testing touching a bit on power train testing. Often, we do not have the engine or vehicle to run live proving ground tests on the transmission. By simulating the vehicle and engine, we reduce the overall development time of a new transmission design. For HEV transmissions, the battery may not be available. However, the customer may want to run durability tests on the HEV motor and/or the electronic control module for the HEV motor. What-if scenarios that were created using software simulators can be verified on the test stand using the real transmission. NVH applications may prefer to use an electric motor for engine simulation to reduce the engine noise level in the test cell so transmission noise is more easily discernable
ABSTRACT Awareness of the surroundings is strongly influenced by acoustic cues. This is of relevance for the implementation of safety strategies on board of electric and hybrid vehicles and for the development of acoustic camouflage of military vehicles. These two areas of research have clearly opposite goals, in that developers of electric vehicles aim at adding the minimum amount of exterior noise that will make the EV acoustically noticeable by a blind or distracted pedestrian, while the developers of military vehicles desire to implement hardware configurations with minimum likelihood of acoustic detectability. The common theme is the understanding of what makes a vehicle noticeable based the noise it generates and the environment in which it is immersed. Traditional approaches based on differences of overall level and/or one-third octave based spectra are too simplistic to represent complex scenarios such as urban scenes with multiple sources in the soundscape and significant
The Korea Research Institute of Standards and Science (KRISS) has developed a metamaterial that traps and amplifies micro-vibrations in small areas. This innovation is expected to increase the power output of energy harvesting, which converts wasted vibration energy into electricity, and accelerate its commercialization
Over the past twenty years, the automotive sector has increasingly prioritized lightweight and eco-friendly products. Specifically, in the realm of tyres, achieving reduced weight and lower rolling resistance is crucial for improving fuel efficiency. However, these goals introduce significant challenges in managing Noise, Vibration, and Harshness (NVH), particularly regarding mid-frequency noise inside the vehicle. This study focuses on analyzing the interior noise of a passenger car within the 250 to 500 Hz frequency range. It examines how tyre tread stiffness and carcass stiffness affect this noise through structural borne noise test on a rough road drum and modal analysis, employing both experimental and computational approaches. Findings reveal that mid-frequency interior noise is significantly affected by factors such as the tension in the cap ply, the stiffness of the belt, and the properties of the tyre sidewall
Items per page:
50
1 – 50 of 9457