Browse Topic: Noise, Vibration, and Harshness (NVH)

Items (9,497)
The sound generated by electric propulsion systems differs compared to the prevalent sound generated by combustion engines. By exposing listeners to various sound situations, the manufacturer can start understanding which direction to take to achieve compelling battery electric vehicle trucks from a sound perspective. The main objective of this study is to understand what underlying aspects decide the experience and perception of heavy vehicle–related sounds in the context of electrified propulsion. Using a thematic analysis of data collected at a listening experiment conducted in 2020, factors affecting the perception of novel sounds generated by a first-generation electric truck are investigated. A hypothesis is that the experience of driving or being a passenger in electric trucks will affect the rating and response differently compared to listeners not yet experienced with this sound. The results show that the combination of individual preference and experience, hearing function
Nyman, BirgittaFagerlönn, JohanNykänen, Arne
Automotive powertrains are being refined to give good comfort to the occupants. With the refinement of the internal combustion engine, the NVH is improved, and other vehicle noises are surfacing in the vehicle cabin. One such noise is the synchronizer ring rattle noise from the gearbox. The synchronizer rings are assembled freely between the gear and the hub in the gearbox. The manufacturing variations in the gearbox shafts, bearing, and housing bore cause misalignment to the synchronizer ring assembly. This excites the synchronizer rings to rattle. The rattle noise increases when the synchronizer ring is positioned between two different shafts. This rattling reduces the life of the synchronizer. And the rattling noise causes discomfort to the occupants. This research work discusses the different dampening strategies for the synchronizer ring rattle. Higher rattle reduction can be achieved with the wave spring between the input and output shaft. However, the wave spring changes the
K, Barathi RajaSenthil Raja, TKumar, AneeshR, ManikandanOstwal, Amit
Customers are expecting higher level of refinement in electric vehicle. Since the background noise is less in electric vehicle in comparison with ICE, it is challenging for NVH engineers to address even minor noise concerns without cost and mass addition. Higher boom noise is perceived in the test vehicle when driven on the coarse road at a speed of 50 kmph. The test vehicle is rear wheel driven vehicle powered by electric motor. Multi reference Transfer Path Analysis (TPA) is conducted on the vehicle to identify the path through which maximum forces are entering the body. Based on the findings from TPA, solutions like reduction in the dynamic stiffness of the suspension bushes are optimized which resulted in reduction of noise. To reduce the noise further, Operational Deflection Shape (ODS) analysis is conducted on the entire vehicle to identify the deflection shapes of all the suspension components and all the body panels like floor, roof, tailgate, dash panel, quarter panel and
S, Nataraja MoorthyRao, Manchi VenkateswaraRaghavendran, PrasathSelvam, Ebinezer
Due to stringent emission norms, all OEMs are shifting focus from Internal combustion engine (ICE) to Electric vehicle (EV). NVH refinement of EVs is challenging due to less background noise in EVs in comparison with ICE vehicles. Motor whine noise is perceived inside cabin till the speed of 20 kmph. Vehicle is powered by electric powertrain (EPT). Electric powertrain is connected to the subframe with the help of three powertrain mounts. Subframe is connected to the body with the help of four mounts. With the help of Transfer Path Analysis (TPA), it is identified that the noise is structure borne and the dominant path is identified. By optimizing the stiffness of the EPT mounts, the structure borne noise levels are reduced. But reducing the stiffness of EPT mount deteriorated the road noise levels. The reason behind deterioration of road noise is investigated. The performance of double isolation of EPT is compared with single isolation of EPT with respect to both road and motor noise
S, Nataraja MoorthyRao, Manchi VenkateswaraRaghavendran, PrasathSelvam, Ebinezer
Noise, Vibration, and Harshness (NVH) simulations of vehicle bodies are crucial for assessing performance during the design phase. However, these simulations typically require detailed computer-aided design (CAD) models and are time-consuming. In the early stages of vehicle development, when only high-level vehicle sections are available, designing the body-in-white (BIW) structure to meet target values for bending and torsional stiffness is challenging and often requires multiple iterations. To address these challenges, this study deploys a reduced-order beam modelling approach. This method involves identifying the beam-like sections and major joints within the BIW and calculating their sectional properties (area, area moments of inertia along the plane’s independent axes, and torsion constant). These components form a simplified skeleton model of the BIW. Load and boundary conditions are applied to the suspension mount locations at the front and rear of the vehicle, and torsional and
Khan, Mohd Zishan AliThanapati, AlokDeshmukh, Chandrakant
Disc brakes play a vital role in automotive braking systems, offering a dependable and effective means of decelerating or halting a vehicle. The disc brake assembly functions by converting the vehicle's kinetic energy into thermal energy through friction. The performances of the brake assembly and user experience are significantly impacted by squeal noise and wear behaviour. This paper delves into the fundamental mechanisms behind squeal noise and assesses the wear performance of the disc brake assembly. Functionally graded materials (FGMs) are an innovative type of composite material, characterized by gradual variations in composition and structure throughout their volume, leading to changes in properties such as mechanical strength, thermal conductivity, and corrosion resistance. FGMs have emerged as a groundbreaking solution in the design and manufacturing of brake rotors, addressing significant challenges related to thermal stress, wear resistance, and overall performance. These
C V, PrasshanthS, GurumoorthyBhaskara Rao, LokavarapuS, SridharS, Badri NarayananKumar, AjayBiswas, Sayan
In this work, the large-angle rotational movement and vibration suppression of a flexible spacecraft are carried out based on an adjustable system. First the spacecraft model is transformed into a canonical affine control form, then two fuzzy systems are used: The first (of Takagi–Sugeno type) estimates the feedback linearization control law as a whole, while the second (of Mamdani type) adjusts and stabilizes the control parameters using the gradient descent technique and based on the minimization of the control error rather than the tracking error. Stability results are presented in terms of Lyapunov’s theory, and simulation tests illustrate the significant transient robustness of the closed-loop system against perturbations, the accurate trajectory control, and vibration suppression of the flexible spacecraft. Consequently, as will be shown later, the error will stay confined and converges quickly to zero, confirming the smoothing property of the proposed method using fuzzy logic
Bahita, Mohamed
This paper presents a strategy to reduce exhaust noise in fuel cell vehicles. It focuses on optimizing the exhaust system. The innovation is an integrated muffler device. It combines a vapor separator and an absorptive-reactive muffler. The vapor separator removes moisture from exhaust gases. This prevents damage to sound-absorbing materials. It keeps mufflers functional for longer. Fuel cell vehicles produce noise across a wide frequency range. This makes noise reduction challenging. The absorptive-reactive muffler improves noise attenuation. It works across the full frequency spectrum. The combination of the separator and muffler enhances noise reduction. Simulations show high transmission loss. They also confirm acceptable back pressure. Real-vehicle testing supports these results. The optimized system reduces idle noise by 22.1 dB(A). This is a 32.4% reduction. Blowdown noise is reduced by 46.3 dB(A), or 40.1%. Full-throttle noise drops by over 20 dB(A), a 17.2% decrease. The
Zhou, JiawangJiang, XiaokunQiu, YongjinChen, JiyuanFeng, PengfeiXie, QiguangXie, XiaopingTan, Ligang
Due to the vibration of the vehicle, the performance of the vehicle carbon canisters will be changed, which will affect its control effect on the fuel evaporation emission. In this study, a vibration test platform capable of simulating vehicle vibration characteristics was used to simulate the possible vibration effects of the vehicle carbon canisters, and to analyze the absorption and desorption performance of the carbon canisters before and after long-term operation and its influence on vehicle evaporation emissions. The results show that the carbon canisters will precipitate the carbon powder after the continuous action of the forward and backward vibration of the vehicle. As a result, the ultimate adsorption and desorption amount of fuel vapor decreased, and the adsorption amount decreased more obviously. In the 48-hour Diurnal Breathing Loss (DBL) test, fuel vapor diffusion is more difficult due to the increased flow resistance of the carbon canisters after vibration, and fuel
Yu, XiaohongLiu, YiyaoFeng, YifangZheng, YushuoChen, TaoZhao, Hua
In the context of global energy shortages and increasing environmental pollution, improving energy efficiency in automobiles has become a key area of research. Traditional internal combustion engines exhibit low energy conversion efficiency, with a significant portion of fuel energy wasted as exhaust heat. To address this issue, this paper proposes an integrated thermoelectric generation, catalytic conversion, and noise suppression system (ITGCMS) aimed at recovering waste heat from vehicle exhaust, while optimizing emissions and noise reduction through the combination of a catalytic converter and a muffler. A three-dimensional model was established using COMSOL software to thoroughly analyze the system's thermoelectric generation, catalytic conversion, and acoustic performance. The study found that Model B demonstrated the best thermoelectric performance, with an average surface temperature of 300.2°C and a more uniform temperature distribution across the thermoelectric modules
Wu, Ji-XinSu, Chu-QiWang, Yi-PingYuan, Xiao-HongLiu, Xun
The durability of fuel cell vehicle (FCV) has always been one of the key factors affecting its large-scale application. However, the durability test methods of FCV and its key components, fuel cell stack (FCS), are incomplete all over the world, especially the lack of vibration test method on FCV. Focused on the FCS, this paper collects the road load spectrum of different vehicle models in their typical working conditions, so as to obtain the power spectral density of FCS of different vehicle models, which is used as the input signal of durability test. Through the FCS testing and analysis of fuel cell passenger car, bus, tractor and cargo van, the results show that the vibration intensity in three directions of FCS of different models is basically less than that of power battery, and only the FCS of fuel cell bus is greater than that of power battery in the direction of vehicle travel.
Wang, GuozhuoWu, ZhenGuo, TingWu, ShiyuLiang, RongliangNie, Zhenyu
The purpose of the paper is to study the impact of dither on how to improve the pressure control capability in common rail system. The dither is directly operating to the inlet metering valve and making the metering flow accuracy. The correlation between rail pressure and metering flow was analyzed. Optimizing the inlet metering valve control is to improve the pressure control. To overcome the hysteresis problem of the inlet metering valve and improve its stability and rapidity on the pressure control. The PID control strategy based on the pressure control were applied in the common rail system and many papers have introduced the logical. But the dither application was seldom introduced in the common rail system. The dither was specified for the inlet metering valve. With the proper dither signal, the stick-slip motion of the metering valve spool converted to a steady one and the dynamic performance was optimized. To verify the theoretical and calibrated the proper dither signal, the
Kuang, PengdaChen, HuiqingZhang, JingRan, Ye
Hydropneumatic Struts (HPS) are widely implemented in automobile, aerospace, and construction industries, mainly for the purpose of vibration and shock absorption. The HPS design with integrated gas–oil chamber is relatively more compact and robust, while mixing gas and oil inside the HPS generates gas–oil emulsion and more nonlinearities. This study formulated a nonlinear analytical model of the compact HPS with gas–oil emulsion, considering the real gas law and pressure-dependent LuGre friction model. The polytropic version of the van der Waals (vdW) method for real gas is applied to represent the thermodynamic behavior of nitrogen. The experimental data were collected at a near temperature of 30°C with three charging pressures under excitations in the frequency range of 0.5–6 Hz, considering two flow connection configurations between chambers as one- and two-bleed orifice. The nonlinear behavior of the gas volume fraction of the emulsion was identified based on peak strut velocity
Seifi, AbolfazlYao, YumengYin, YumingMoore, MasihRakheja, Subhash
In the current world of automobiles, the air-conditioning system plays a crucial role in passenger comfort. Thermal comfort for the passengers, which was earlier a luxury, has now become a basic necessity. This thermal comfort, coupled with ventilation, brings along with it the symbiotic association of flow-induced noise. The subjective prominence of airborne noise from air-conditioning systems increases with higher refinement or masking of structure-borne noise and/or engine noise sources. These systems for commercial vehicles are higher in capacity, complex, and generally placed directly above the passenger seats. Flow-induced noise refinement for such systems is generally difficult and involves multiple physical trials. In the current work presented for a commercial van, the airflow delivery of the air-conditioning system was in line with the requirement. The location of the system, however, resulted in higher noise levels at the passenger ear location. To address this issue, an
Nomani, MustafaKandekar, AmbadasLatane, SantoshManoji, AkashTadigadapa, Suresh
This study presents a method for identifying the reliability state of diesel engines by utilizing artificial neural networks (ANNs). The Sulzer 6AL20/24 marine diesel engine was selected as the test subject for this research. Vibration signals were collected during tests conducted on a laboratory test stand under normal operating conditions and during simulations of six different engine faults. Next, the recorded signals were analyzed and transformed into labeled samples for supervised learning. In this phase, the time histories of the vibration signals were divided into segments and augmented, with several key features calculated for each segment. Highly correlated signals were excluded from further analysis based on the Pearson correlation coefficient. The processed samples were then used to train and fine-tune the ANN. The trained ANN was subsequently used to identify the engine’s reliability state and classify the present fault type. To evaluate the effectiveness of the proposed
Pająk, MichałKluczyk, MarcinMuślewski, ŁukaszLisjak, Dragutin
The aim of the article is to evaluate the effect of the cooling system on the NVH behavior of traction permanent magnets synchronous motors (PMSMs). An effective numerical method is proposed for modeling the fluid–structure interaction in the cooling system of PMSMs. A simplified physical prototype of a cooling jacket of a PMSM is realized by welding two concentric tubes with an internal cavity filled by coolant. A finite element model of the structure is realized. The coolant is modeled as an acoustic domain to account for the fluid–structure interaction in the cavity and a coupled acoustic–structural dynamic problem is solved. The model is validated by experimental modal tests conducted on the prototype of the cooling jacket both with and without the presence of coolant. The validated model is employed to quantify the effect of the cooling system on a real PMSM. The structure of a 10-poles, 12-slots electric machine is modeled by means of finite element method. The model includes the
Barri, DarioSoresini, FedericoBallo, FedericoLucà, FrancescantonioManzoni, StefanoGobbi, MassimilianoMastinu, Giampiero
This document describes analytical methods for calculating the attenuation of the level of the sound propagating from an airplane to locations on the ground and to the side of the flight path of an airplane during ground roll, climbout after liftoff, and landing operations. Both level and non-level ground scenarios may be modeled using these methods, however application is only directly applicable to terrain without significant undulations, which may cause multiple reflections and/or multiple shielding effects. This attenuation is termed lateral attenuation and is in excess of the attenuation from wave divergence and atmospheric absorption. The methods for calculating the lateral attenuation of the sound apply to: turbofan-powered transport-category airplanes with engines mounted at the rear of the fuselage (on the sides of the fuselage or in the center of the fuselage as well as on the sides) or under the wings propeller-driven transport-category or general-aviation airplanes
A-21 Aircraft Noise Measurement Aviation Emission Modeling
Throughout the years, the legislations which drive the vehicle development have experimented constant evolutions. Especially when it comes about pollutant emissions and NVH ( Noise, Vibration & Harshness). However, it is complex to understand which calibration strategy promotes the best balance about lowest levels of emissions, vibrations, and noise if considered the number of inputs to be explored, becoming the searching for the optimum calibration a huge challenge for the development engineering team. This work proposes a methodology development in which complex problems can be solved by model based solutions regarding the best balance finding of emissions reduction and noise attenuation. The methodology is based in machine learning approach which provides a virtual behavior of engine phenomena making possible a wider comprehension of the problem and hence the opportunity to explore enhanced solutions. The study case scenario used to apply the method was a 6.4 liters engine which
Ruiz, Rodrigo Peralta MoraesSantos, Lucas ResendeNascif, Gabriel Nobre AlvesOliveira Ribeiro, DouglasPereira, Willyan
This SAE Recommended Practice is derived from common methods used within the industry and is not intended to validate a given design or configuration. This SAE Recommended Practice applies to vehicles below 4540 kg of gross vehicle weight rating.
Brake NVH Standards Committee
This SAE Recommended Practice establishes the method to determine Sound Level of a snowmobile under typical trail operating conditions. Snowmobiles have different engine power levels that depends on the model.
Snowmobile Technical Committee
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
Titave, Uttam VasantZalaki, NitinNaidu, Sudhakara
In this paper, a comprehensive analysis of NVH in electric powertrains due to electromagnetic sources is presented. The spatial harmonics model of the traction motor, which is dependent on the motor design structure, rotor poles, stator teeth, and slots, is used for the analysis of the electromagnetic forces from the motor in the electric powertrain. The time harmonics model of the injected current of the motor dependent on the drive electrical circuit and control strategy is also considered for the electromagnetic force calculation. A complete workflow of this electromagnetic NVH analysis for electric powertrain covering the spatial harmonics and time harmonics model is presented. The spatial harmonics model result is presented as flux linkage with respect to dq-axes current and rotor position. The time harmonics are also presented by the injected current of the motor. In addition, a set of operating points on the torque-speed boundary of the traction motor is selected and results are
Joshi, NakulKumar, VinitTsoulfaidis, AntoniosHuang, ZhenhuaSchmaedicke, MarcelFialek, GregoryZhang, DapuWimmer, Joe
This study meticulously examines the ignition coil (IG), a pivotal component in engine operation, which transforms the low voltage from the battery into the high voltage necessary for spark plug electrode flashover, initiating the combustion cycle. Considering the importance of IG coils in engine operation which has a direct impact on the engine performance. Any failure in the IG coils is judged as a critical failure and encompasses severe repercussions. The paper details an investigation into the issue of ‘White Deposition’ on IG coils. White deposit was observed in IG Coils during new model development in bench level durability test. A comprehensive failure analysis was conducted, employing vibration analysis, thermal analysis, and chemical analysis of the white deposits to ascertain the root cause. Subsequent to identifying the root cause, the study elaborated on hardware design enhancements as a solution. These design changes were rigorously tested on engine benches, confirmed for
Patel, Hardik ManubhaiGupta, VineetChand, SubhashKumar, Nitish
The stiffness and positioning of engine mounts are crucial in determining the powertrain rigid body modes and kinetic energy distribution. Therefore, optimizing these mounts is essential in the automotive industry to separate the torque roll axis (TRA) and minimize vibration. This study aims to enhance mount locations by isolating the engine rigid body modes and predicting the inter-component force (ICF) and transfer function of the vehicle. The individual ICFs for engine mountings are calculated by applying a unit force at the bearing location. Critical frequencies are identified where the amplification exceeds the unit force at the mounting interface between the engine and the frame. The transfer function approach is utilized to assess the vibration at the handlebar. Both ICF and transfer functions analyze the source and path characteristics linked to critical response frequencies. This understanding aids in enhancing mounting positions to minimize vibration levels, thereby enhancing
Jha, Niraj KumarYeezaku, Antony NeominVictor, Priyanka EstherKrishnamurthy, Govindasamy
Electric vehicles are transforming the future of transportation for the world while achieving the goal of sustainable development. While the concept and use of battery-powered vehicles has also penetrated the logistics and supply chain industry, it has also brought upon new challenges during its development. As OEMs strive to develop BEVs with extended range, the components within the propulsion and drivetrain system tend to demand a higher power output from the energy storage systems. This results in BEVs generating higher levels of thermal heat energy, which must be dissipated / rejected for optimal performance and safety. Consequently, to reject this heat, BEVs must utilize thermal management systems with higher capacities. This increase in size is accompanied by the inclusion of many parts that generate noise and contribute to increased noise levels in BEVS. In today’s market, optimization of noise levels is a significant factor when ensuring passenger comfort, while also showing
Shedge, Atharva VikasShalgar, SandeepSrivastava, SarveshNagarhalli, Prasanna V
Noise induced by the Heating, Ventilation and Air conditioning (HVAC) system inside a vehicle cabin can cause significant discomfort to passengers and, in turn, affect the brand image in a competitive automotive market. HVAC acoustic performance has become more prominent with the ongoing transformation from Internal Combustion (IC) to Electric Vehicle (EV) segments. For this reason, acoustic quality is increasingly prioritized as a key design issue throughout the entire development process of the HVAC system. This paper covers the design synthesis considering air handling unit-induced airborne and structure-borne noise of a dashboard-mounted HVAC system to achieve better NVH refinement inside vehicle while maintaining thermal performance. This study began by analysing HVAC-induced blower motor, impeller, air ducts, vents, and recirculation suction noise from the vehicle level to subsystem level and eventually at the component level. At the subsystem level, major noise source
Titave, Uttam VasantNaidu, SudhakaraKalsule, Shrikant
Researchers have been testing ways to continuously and more comfortably detect these tiny fluctuations in pressure. A prototype smart contact lens measures eye pressure accurately, regardless of temperature. The contact lens wirelessly transmits real-time signals about eye pressure across a wide range of temperatures.
As a novel passive control method, the acoustic black hole (ABH) structure demonstrates achieve energy aggregation efficiently and has the characteristics of lightweight and wide-band noise reduction. This study applies ABH theory to aircraft ducts by incorporating an additional ABH structure into the inner wall design. The spiral structure is specifically engineered to increase the characteristic length of the black hole and lower the cutoff frequency. To validate the effectiveness of this ABH structural design, finite element analysis was conducted to investigate structural frequency response, acoustic energy concentration characteristics, as well as damping and energy dissipation effects. Simulation results indicate significant energy accumulation on the inner wall with ABH structure in frequencies above 800Hz. Additionally, through acoustic-structure coupling analysis, far-field acoustic radiation characteristics were determined for this structural design followed by a
Guo, YaningLv, PengLiu, PengfeiNing, Donghong
With the rapid advancement in unmanned aerial vehicle (UAV) technology, the demand for stable and high-precision electro-optical (EO) pods, such as cameras, lidar sensors, and infrared imaging systems, has significantly increased. However, the inherent vibrations generated by the UAV’s propulsion system and aerodynamic disturbances pose significant challenges to the stability and accuracy of these payloads. To address this issue, this paper presents a study on the application of high-static low-dynamic stiffness (HSLDS) vibration isolation devices in EO payloads mounted on UAVs. The HSLDS system is designed to effectively isolate low-frequency and high-amplitude vibrations while maintaining high static stiffness, ensuring both stability during hovering and precise pointing capabilities. A nonlinear dynamic system model with two degrees of freedom is formulated for an EO pod supported by HSLDS isolators at both ends. The model’s natural frequencies are determined, and approximate
Tian, YishenGuo, GaofengWang, GuangzhaoWei, WanBao, LingcongDong, GuanLi, Liujie
Integrated electric drive systems are characterized by high power density, reliability, and controllability, making them increasingly prevalent in the realm of electric commercial vehicles. However, the direct coupling between the motor shaft and the transmission system has introduced a series of undesirable torsional vibration phenomena. To investigate the dynamic characteristics of electric drive systems in operation for electric commercial vehicles, a comprehensive modeling approach is employed. This modeling framework takes into account key factors such as gear backlash, structural flexibility, and electromagnetic spatiotemporal excitations. Based on this model, the influence of the electrical system on time-varying gear mesh stiffness, gear transmission error, bearing forces, and other factors is investigated. Building upon this foundation, the article proposes an approach for active harmonic voltage injection. This method effectively reduces torque fluctuations, decreases the
Xi, XinChen, XiaoliZhao, HongyangZhao, XuanWei, JingLiu, Yonggang
Torsional vibration generated during operation of commercial vehicles can negatively affect the life of driveline components, including the transmission, driveshafts, and rear axle. Undesirable vibrations typically stem from off-specification parts, or excitation at one or more system resonant frequencies. The solution for the former involves getting the system components within specification. As for the latter, the solution involves avoiding excitation at resonance, or modifying the parameters to move the system’s resonant frequencies outside the range of operation through component changes that modify one, or more, component inertia, stiffness, or damping characteristics. One goal of the effort described in this article is to propose, and experimentally demonstrate, a physics-based gear-shifting algorithm that prevents excitation of the system’s resonant frequency if it lies in the vehicle’s range of operation. To guide that effort, analysis was conducted with a numerical simulation
Dhamankar, ShvetaAli, JunaidParshall, EvanShaver, GregoryEvans, JohnBajaj, Anil K.
The Korea Research Institute of Standards and Science (KRISS) has developed a metamaterial that traps and amplifies micro-vibrations in small areas. This innovation is expected to increase the power output of energy harvesting, which converts wasted vibration energy into electricity, and accelerate its commercialization.
Over the past twenty years, the automotive sector has increasingly prioritized lightweight and eco-friendly products. Specifically, in the realm of tyres, achieving reduced weight and lower rolling resistance is crucial for improving fuel efficiency. However, these goals introduce significant challenges in managing Noise, Vibration, and Harshness (NVH), particularly regarding mid-frequency noise inside the vehicle. This study focuses on analyzing the interior noise of a passenger car within the 250 to 500 Hz frequency range. It examines how tyre tread stiffness and carcass stiffness affect this noise through structural borne noise test on a rough road drum and modal analysis, employing both experimental and computational approaches. Findings reveal that mid-frequency interior noise is significantly affected by factors such as the tension in the cap ply, the stiffness of the belt, and the properties of the tyre sidewall.
Subbian, JaiganeshM, Saravanan
This article addresses the essential task of understanding vibrations produced by vehicles to enhance the design of authentic laboratory tests. The article focuses on two primary sources of vibrations: those arising from vehicle–road surface interaction, which is largely random, and those emanating from the drivetrain, characterized as a summation of harmonics with a time-varying fundamental frequency. The method involves the application of the extended Kalman filter (EKF) paired with robust nonlinear least-squares (NLS) initialization to isolate the harmonic components effectively. Through a comprehensive analysis involving mean-square-error (MSE) evaluation via Monte Carlo simulation, considering additive white Gaussian noise (AWGN) and a two-degrees-of-freedom quarter-car model’s simulation response to the road, the research demonstrates the EKF’s proficiency. The results indicate the EKF’s capability to accommodate AWGN with a signal-to-noise ratio (SNR) up to 0 dB and road-induced
Sierra-Alonso, Edgar F.Rouillard, VincentLamb, Matthew
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
AC-9 Aircraft Environmental Systems Committee
Three dynamic models of a passenger car including the one-dimensional dynamic model, two-dimensional dynamic model, and three-dimensional dynamic model are built to evaluate the ride quality of the passenger car as well as the isolating performance of the SNS (structure of negative stiffness). The decrease of the root-mean-square (RMS) accelerations in the seat and car’s body shaking is the research goal. The investigation results indicate that under all working conditions including the various excitations of the road surface and various velocities of the passenger car, the seat’s acceleration with SNS is strongly ameliorated in comparison without SNS in all three models of the passenger car. Particularly, the RMS seat acceleration with SNS in one-, two-, and three-dimensional models is strongly reduced in comparison without SNS by 76.87%, 66.15%, and 70.59%, respectively. Thus, the seat’s SNS has a good effect in isolating the vertical vibration of the passenger car’s seat. However
Zhang, LeiLi, TaoYang, Guixing
Bemis Manufacturing and BASF collaborated to develop a lighter-weight and lower-cost hydraulic tank for compact excavators that was recognized with a lightweighting award traditionally reserved for automotive innovations. Receiving an honorable mention in the Enabling Technology category of this year's Altair Enlighten Awards, the development team leveraged a combination of injection molding and vibration welding techniques to lower costs by approximately 20% and reduce mass by about 5% compared to the traditional roto-molding process. The solution also is more eco-efficient, delivering both environmental savings (reductions in lifecycle CO2 emissions) and reducing lifecycle costs.
Gehm, Ryan
Items per page:
1 – 50 of 9497