Browse Topic: Noise
The operator station or “cab” in off Highway equipment plays a critical role to provide a comfortable workspace for the operator. The cab interfaces with several elements of the off-highway equipment which can create gaps and openings. These openings have the potential for acoustic energy leakage, ultimately increasing sound within the cab. During machine operation, noise generated around the cab conducts inside through these leakages resulting in increased sound levels. Acoustic leakages are among the key noise transfer paths responsible for noise inside the cab. Therefore, before considering noise control treatments it is best to first identify and minimize any leakages from joints, corners, and pass-throughs to achieve the required cab noise reduction. In this effort the sound intensity technique is used to detect the acoustic leakages in cab. The commercial test system is used for measuring the sound intensity field over objects. For the cab, an acoustic source is used inside the
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
An important characteristic of battery electric vehicles (BEVs) is their noise signature. Besides tire and wind noise, noise from auxiliaries as pumps, the electric drive unit (EDU) is one of the major contributors. The dynamic and acoustic behavior of EDUs can be significantly affected by production tolerances. The effects that lead to these scatter bands must be understood to be able to control them better and thus guarantee a consistently high quality of the products and a silent and pleasant drive. The paper discusses a simulation driven approach to investigate production tolerances and their effect on the NVH behavior of the EDU, using high precision transient multi-body dynamic analysis. This approach considers the main effects, influences, and the interaction from elastic structures of electric motor and transmission with accurate gear contact models in a fully coupled way. It serves as virtual end of line test, applicable in all steps of a new EDU development, by increasing
This paper presents a comprehensive methodology for replicating and quantifying the clicking-noise phenomenon occurring between Generation 3-wheel hub bearings and Constant Velocity Joints (CVJ), particularly in electric vehicles (EVs) where quiet operation makes this noise more noticeable. The study focuses on characterizing the system through contact pressure and distribution measurements, alternating torque tests, and advanced NVH (Noise, Vibration, and Harshness) data processing. The methodology includes detailed descriptions of the physical phenomena, driving conditions generating the noise, and the specific test setup used to simulate real-world conditions. The NVH analysis make use of high-pass filtering techniques to isolate clicking-noise events from background noise, ensuring accurate identification and quantification. Candidate solutions are assessed based on their ability to mitigate clicking noise through the utilization of inherent system components. The results
A research team led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a new fabrication technique that could improve noise robustness in superconducting qubits, a key technology for enabling large-scale quantum computers.
This SAE Recommended Practice establishes the procedure for determining if recreational motorboats have effective exhaust muffling means when operating in the stationary mode. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
This SAE Recommended Practice establishes the procedure for measuring the sound level of recreational motorboats in the vicinity of a shore bordering any recreational boating area during which time a boat is operating under conditions other than stationary mode operation. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
This SAE Standard is equivalent to ISO 362-1:2015 and specifies an engineering method for measuring the noise emitted by road vehicles of categories M and N under typical urban traffic conditions. It excludes vehicles of category L1, L2, L3, L4, and L5. The specifications are intended to reproduce the level of noise generated by the principal noise sources during normal driving in urban traffic. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustical environment that is obtained only in an extensive open space. Such conditions are usually provided for during: Measurements of vehicles for regulatory certification and/or type approval Measurements at the manufacturing stage Measurements at official testing stations Annex A provides background information on the use of this standard consistent with the intent.
This SAE Recommended Practice establishes the procedure for measuring the maximum exterior sound level of recreational motorboats while being operated under a variety of operating conditions. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
This research addresses the issue of noise, vibration, and harshness (NVH) in electric buses, which can hinder their widespread adoption despite their environmental benefits. With the absence of traditional engines, NVH control in electric vehicles focuses on auxiliary components like the air compressor. In this study, the air compressor was identified as a major source of vibration, causing harsh contact between its oil sumps and mounting bracket. Analyzing the vibrations revealed that the sump and bracket were not moving freely, increasing noise. Modifying the bracket design to allow more movement between the components successfully reduced both noise and vibration. The paper details the experimental process, findings, and structural damping methods to mitigate NVH in electric buses.
This ARP provides two methods for measuring the aircraft noise level reduction of building façades. Airports and their consultants can use either of the methods presented in this ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
Over the past 30 years concerns about noise & vibration have become more critical in the design and manufacture of the automobile. Tools, both in physical testing and computer aided engineering have and continue to develop permitting more refined designs. Today’s customer can be very discerning when it comes to vehicle noises and vibrations. However, this is not a new concern for automotive customers or manufactures. This paper highlights the drive from automotive manufacturers to promote quiet, smooth and vibrationless operation of their products as well as some of the advances in vehicle component design over the past 100+ years. This is not an exhaustive study, but rather the intent is to bring to light the long history of noise and vibration in the automotive industry and its importance to the customers even in the infancy of the auto industry.
A good Noise, Vibration, and Harshness (NVH) environment in a vehicle plays an important role in attracting a large customer base in the automotive market. Hence, NVH has been given significant priority while considering automotive design. NVH performance is monitored using simulations early during the design phase and testing in later prototype stages in the automotive industry. Meeting NVH performance targets possesses a greater risk related to design modifications in addition to the cost and time associated with the development process. Hence, a more enhanced and matured design process involves Design Point Analysis (DPA), which is essentially a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are used to develop a product model that better fulfills the predefined requirement. This paper shows the systematic approach of conducting a Design Point Analysis-level NVH study to evaluate the acoustic
Wind noise is one of the largest sources to interior noise of modern vehicles. This noise is encountered when driving on roads and freeways from medium speed and generates considerable fatigue for passengers on long journeys. Aero-acoustic noise is the result of turbulent and acoustic pressure fluctuations created within the flow. They are transmitted to the passenger compartment via the vibro-acoustic excitation of vehicle surfaces and underbody cavities. Generally, this is the dominant flow-induced source at low frequencies. The transmission mechanism through the vehicle floor and underbody is a complex phenomenon as the paths to the cavity can be both airborne and structure-borne. This study is focused on the simulation of the floor contribution to wind noise of two types of vehicles (SUV and Sports car), whose underbody structure are largely different. Aero-Vibro-acoustic simulations are performed to identify the transmission mechanism of the underbody wind noise and contribution
Mechanical light detection and ranging (LiDAR) units utilize spinning lasers to scan surrounding areas to enable limited autonomous driving. The motors within the LiDAR modules create vibration that can propagate through the vehicle frame and become unwanted noise in the cabin of a vehicle. Decoupling the module from the body of the vehicle with highly damped elastomers can reduce the acoustic noise in the cabin and improve the driving experience. Damped elastomers work by absorbing the vibrational energy and dispelling it as low-grade heat. By creating a unique test method to model the behavior of the elastomers, a predictable pattern of the damping ratio yielded insight into the performance of the elastomer throughout the operating temperature range of the LiDAR module. The test method also provides an objective analysis of elastomer durability when exposed to extreme temperatures and loading conditions for extended periods of time. Confidence in elastomer behavior and life span was
As the adoption of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV) continues to rise, more individuals are encountering these quieter vehicles in their daily lives. While topics such as propulsion sound via Active Sound Design (ASD) and bystander safety through Acoustic Vehicle Alerting Systems (AVAS) have been extensively discussed, charging noise remains relatively unexplored. Most EV/PHEV owners charge their vehicles at home, typically overnight, leading to a lack of awareness about charging noise. However, those who have charged their cars overnight often report a variety of sounds emanating from the vehicle and the electric vehicle supply equipment (EVSE). This paper presents data from several production EVs measured during their normal charging cycles. Binaural recordings made inside and outside the vehicles are analyzed using psychoacoustic metrics to identify sounds that may concern EV/PHEV owners or their neighbors.
Items per page:
50
1 – 50 of 5987