Browse Topic: Noise

Items (5,987)
The operator station or “cab” in off Highway equipment plays a critical role to provide a comfortable workspace for the operator. The cab interfaces with several elements of the off-highway equipment which can create gaps and openings. These openings have the potential for acoustic energy leakage, ultimately increasing sound within the cab. During machine operation, noise generated around the cab conducts inside through these leakages resulting in increased sound levels. Acoustic leakages are among the key noise transfer paths responsible for noise inside the cab. Therefore, before considering noise control treatments it is best to first identify and minimize any leakages from joints, corners, and pass-throughs to achieve the required cab noise reduction. In this effort the sound intensity technique is used to detect the acoustic leakages in cab. The commercial test system is used for measuring the sound intensity field over objects. For the cab, an acoustic source is used inside the
Pawar, Sachin M.Mandke, DevendraFapal, AnandCone, Kerry
Traditionally, off-highway vehicles like tractors and construction machinery have relied on hydraulic, viscous, or fixed fans to meet the cooling demands of diesel engines. These fans draw power from the engine, impacting fuel consumption and contributing to noise levels that affect operator comfort. Recently, the adoption of electric fans in off-highway applications has increased due to their energy efficiency, lower noise, and flexible design. Electric fans can cool various components, such as radiators and condensers, and can be positioned for optimal performance. They are easily selected from established supplier catalogs based on application requirements like machine voltage, fan size, and type. This study explores various fan arrangements, including pusher and puller types, and multiple electrical fan banking based on cooler zones to improve cooling system performance without changing cooler size or specifications. A mathematical flow model was developed for both setups: the
Durairaj, RenganathanDewangan, NitinAnand, KetanBhujbale, Sagar
The new Stage 5 emission regulation requires several changes on engines as well as design and development of new auxiliary systems. These changes affected the engine dynamics and NVH characteristics. These changes are validated for various operating conditions on engine test cell in a controlled environment where engine is mounted on test cell with dyno. Further, this engine will be used by other machine forms, hence NVH performance needs to be evaluated for all the applications. Isolation of three-cylinder engines is challenging since it has to deal with inherent imbalance forces while providing the isolation to meet the durability requirements of heavy applications from off highway machines. This paper covers the methods used for verification of engine isolation performance. NVH tests are conducted for integration of three-cylinder engine with roadbuilding machine. An analytical model is developed to identify rigid body modes and mount transmissibility. Results from this analytical
Pawar, Sachin M.Mandke, Devendra LaxmikantKASABE, SANDEEPJadhav, Vijay
Noise pollution from automotive vehicles is a significant concern in urban areas, emphasizing the need for improved vehicle engineering of automotive vehicles to reduce noise levels. The necessity for automotive vehicles to have a low acoustic signature may further be emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). In addition to this the external noise may propagate inside the cabin affecting the overall wellbeing of the driver. To address the issue vehicles are observed to measure noise levels at various locations, including inside and outside the cabin. These testing facilitate noise source identification and categorization of noise into structure-borne noise and air-borne noise. The air-borne noise, which can be either broadband or tonal in nature, is particularly discomforting and may require mitigation. To analyse these complex aero-acoustic behaviour of the vehicle, CFD can be
Sharma, ShantanuPawar, Sourabhsingh, RamanandKalamdani, Sreenath
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
Pawar, SourabhSharma, ShantanuSingh, Ramanand
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
Trivedi, ArpitaKumar, RaviMadaan, AshishShrivastava, Pawan
This study demonstrates the application of the T-Matrix, a Total Quality Management (TQM) tool to improve thermal comfort in automotive climate control systems. Focusing on the commonly reported customer issue of insufficient cabin cooling, particularly relevant in hot and congested Indian driving conditions, the research systematically investigates 36 failure modes identified across the product lifecycle, from early design through production and post-sale customer usage. Root causes are first categorized using an Ishikawa diagram and then mapped using the T-Matrix across three critical stages: problem creation, expected detection, and actual detection. This integrated approach reveals process blind spots where existing validation and inspection systems fail to catch known risks, particularly in rear-seat airflow performance and component variability from suppliers. By applying this TQM methodology, the study identifies targeted improvement actions such as improved thermal targets
Jaiswara, PrashantKulkarni, ShridharDeshmukh, GaneshNayakawadi, UttamJoshi, GauravShah, GeetJaybhay, Sambhaji
The current automotive development cycle is becoming shorter and shorter, therefore research is needed to improve the efficiency of wind noise transient calculation. This article summarizes 14 internal and external factors that affect the efficiency and accuracy of transient analysis of wind noise, and uses the ULH algorithm to design DOE for these 14 factors. A total of 200 efficiency improvement schemes are generated, and transient analysis is conducted on each of the 200 schemes. The simulation results and calculation time of wind noise inside the vehicle are statistically analyzed. And aerodynamic acoustic wind tunnel tests were conducted to verify this, with the optimization objectives of simulation values approaching 86.1 AI% (experimental values) and shortened calculation time. NSGA-II algorithm was used to optimize and obtain five sets of efficiency combination schemes that meet the requirements. Develop five appearance feature schemes for areas such as A-pillar and rearview
Li, XiangliangZhang, XiangdongLiu, XuelongWang, HaiyangHuang, Zhongyuan
With the escalating rate of urbanization in China, the urban construction sector is encountering numerous challenges, including issues such as traffic congestion and environmental pollution. To enhance traffic efficiency and offer planning guidance for urban development, this study focuses on the fully or partial opening of community entrances. VISSIM is utilized to examine the community opening and simulate the internal road network, while also employing the SPSS data analysis tool for supplementary analysis. The objective of this method is to compare and analyze the traffic conditions and environmental impact of the community before and after its opening with different automobiles. Through the establishment of a comprehensive evaluation system, the study calculates and analyzes the average vehicle speed, noise levels, energy consumption, and carbon dioxide emissions before and after the opening of the community. Finally, several recommendations are proposed to enhance community
Li, MengyuanZhuo, ChenxuXiong, SiminXu, Lihao
In recent years, traffic issues in China have been emerging continuously, and the traffic congestion problem in Beijing is particularly prominent. We have explored the relationships between factors such as driving duration, road length, weather conditions in Beijing and traffic congestion. By using the Logistic Regression Model to analyze the relationships among driving duration, road length and traffic congestion, we found that both driving duration and road length are negatively correlated with traffic congestion. The model shows high accuracy and recall rate, demonstrating excellent performance. We also employed the Weighted Average Correlation Model to study the relationship between weather conditions and traffic congestion. The results indicate that traffic congestion is more severe in rain, snow, and foggy weather, while it is less serious in sunny and cloudy weather. Subsequently, through the noise level verification, the stability of the model was confirmed. At the same time
Feng, JiaruiHan, Xiran
An important characteristic of battery electric vehicles (BEVs) is their noise signature. Besides tire and wind noise, noise from auxiliaries as pumps, the electric drive unit (EDU) is one of the major contributors. The dynamic and acoustic behavior of EDUs can be significantly affected by production tolerances. The effects that lead to these scatter bands must be understood to be able to control them better and thus guarantee a consistently high quality of the products and a silent and pleasant drive. The paper discusses a simulation driven approach to investigate production tolerances and their effect on the NVH behavior of the EDU, using high precision transient multi-body dynamic analysis. This approach considers the main effects, influences, and the interaction from elastic structures of electric motor and transmission with accurate gear contact models in a fully coupled way. It serves as virtual end of line test, applicable in all steps of a new EDU development, by increasing
Klarin, BorislavSchweiger, ChristophResch, Thomas
Brake caliper rattle noise is difficult to simulate due to its non-stationary, random, and broadband frequency characteristics. Many CAE engineers have adopted rattle vibration as an alternative metric to quantitative noise levels. Previous rattle noise simulations primarily presented relative displacement results derived from normal mode analysis or vibration dB levels rather than actual noise dB levels. However, rattle noise consists of continuous impact noise, which must account for reflections, diffractions, and refractions caused by transient nonlinear contacts and localized vibrations—especially during extremely short contact events. To accurately simulate impact noise, vibration and acoustic characteristics should be analyzed using a simplified structure, given the numerous mechanisms influencing impact noise generation. The rattle noise can be effectively modeled using LS-Dyna, which incorporates both explicit and BEM solvers. The correlation between test results and CAE
Park, Joosang
This paper presents a comprehensive methodology for replicating and quantifying the clicking-noise phenomenon occurring between Generation 3-wheel hub bearings and Constant Velocity Joints (CVJ), particularly in electric vehicles (EVs) where quiet operation makes this noise more noticeable. The study focuses on characterizing the system through contact pressure and distribution measurements, alternating torque tests, and advanced NVH (Noise, Vibration, and Harshness) data processing. The methodology includes detailed descriptions of the physical phenomena, driving conditions generating the noise, and the specific test setup used to simulate real-world conditions. The NVH analysis make use of high-pass filtering techniques to isolate clicking-noise events from background noise, ensuring accurate identification and quantification. Candidate solutions are assessed based on their ability to mitigate clicking noise through the utilization of inherent system components. The results
Nardicchia, RiccardoMauro, Ivan
A research team led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a new fabrication technique that could improve noise robustness in superconducting qubits, a key technology for enabling large-scale quantum computers.
The transportation and mobility industry trend toward electrification is rapidly evolving and in this specific scenario, wind noise aeroacoustics becomes one of the major concerns for OEMs, as new propulsion systems are notably quieter than traditional ones. There is, however, very limited references available in the literature regarding validation of computational fluid dynamics (CFD) simulations applied to the prediction of aeroacoustics contribution to the noise generated by large commercial trucks. Thus, in this work, high-fidelity CFD simulations are performed using lattice Boltzmann method (LBM), which uses very large eddy simulation (VLES) turbulence model and compared to on-road physical tests of a heavy-duty truck to validate the approach. Furthermore, the effect of realistic wind conditions is also analyzed. Two different truck configurations are considered: one with side mirror (Case A) and the other without (Case B) side mirrors. The main focus of this work is to assess the
Guleria, AbhishekNovacek, JustinIhi, RafaelFougere, NicolasDasarathan, Devaraj
The diversity of excitation sources and operating modes in hybrid electric vehicles (HEVs) exacerbates the torsional vibration issues, presenting significant challenges to the vehicle’s overall noise, vibration, and harshness performance. To address the complex torsional vibration challenges of the HEVs, this study proposed an active–passive collaborative vibration suppression approach. In terms of passive suppression, a multi-condition parameter optimization scheme for the torsional vibration dampers is designed. In terms of active suppression, a fuzzy control–based electronically controlled damper is proposed, and a hybrid feedforward–feedback motor torque compensation strategy is developed. Simulation results demonstrated that the proposed method reduces the root mean square value of the angular acceleration by over 65% under acceleration and idle conditions and the maximum transient vibration value by 55% during the engine starting condition.
Yan, ZhengfengLiu, ShaofeiHuang, TianyuZhong, BiqingBai, XianxuHuang, Yin
In this article, a three-dimensional transient CFD simulation method is used to simulate the wind noise of a vehicle model’s external flow field. The transient noise excitation of external noise sources outside each window glass are analyzed, and the statistical energy analysis method is used to calculate the articulation index of the front and rear passenger inside the vehicle. Then, the variation range of the thickness of each window glass is set, and the side window glass is also divided into two types: single-layer glass and laminated glass. After the design parameters are defined, the design space is established. The articulation index of the front and rear passengers and the total weight of the glass are the three design objectives for multi-objective optimization simulation, based on the results of optimization simulation, the change trend of each design parameter and design objective is analyzed; the sensitivity of the design objective to each design parameter is studied; the
Xiong, ZhenfengZhang, XiaoLiu, PingLi, BoYuan, QingpengChen, ShiwenTo, Chi Hin
This SAE Recommended Practice establishes the procedure for determining if recreational motorboats have effective exhaust muffling means when operating in the stationary mode. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
This SAE Recommended Practice establishes the procedure for measuring the sound level of recreational motorboats in the vicinity of a shore bordering any recreational boating area during which time a boat is operating under conditions other than stationary mode operation. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
In this article the transition of a laminar boundary layer (BL) over a flat plate is characterized using an acoustic technique with a pitot probe linked to a microphone unit. The probe was traversed along a BL plate at a fixed wind tunnel flow velocity of 5.5 m/s. A spectral analysis of the acoustic fluctuations showed that this setup can estimate the streamwise location and length of the BL transition region, as well as the BL thickness, by using the intermittency similitude approach. Further work is required to quantify the uncertainty caused by signal attenuation within the data acquisition system.
Lawson, Nicholas JohnZachos, Pavlos K.
This paper presents an optimisation approach for rotor skewing in a Yokeless and Segmented Armature (YASA) design Axial Flux Machine (AFM) for electric vehicle applications. Torque ripple amplitudes are a critical factor influencing the noise, vibration and harshness (NVH) behaviour of electric motors. The focus of this paper is to reduce the torque ripple amplitudes of the dominant harmonics over the entire torque-speed characteristic of the AFM. The principle of the proposed approach is a segmented permanent magnet configuration of the AFM, where individual magnet segments can be circumferentially shifted to achieve optimal skewing configurations. Initial optimisations are performed using 2D finite element (FE) simulations, modelled as linear motors with multiple slices and different numbers of magnet segmentation. However, the accuracy of the 2D FE results is limited due to the lack of interaction between the individual segments and the insufficient representation of three
Müller, KarstenMaisch, HannesDe Gersem, HerbertBurkhardt, Yves
This SAE Standard is equivalent to ISO 362-1:2015 and specifies an engineering method for measuring the noise emitted by road vehicles of categories M and N under typical urban traffic conditions. It excludes vehicles of category L1, L2, L3, L4, and L5. The specifications are intended to reproduce the level of noise generated by the principal noise sources during normal driving in urban traffic. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustical environment that is obtained only in an extensive open space. Such conditions are usually provided for during: Measurements of vehicles for regulatory certification and/or type approval Measurements at the manufacturing stage Measurements at official testing stations Annex A provides background information on the use of this standard consistent with the intent.
Light Vehicle Exterior Sound Level Standards Committee
An electric motor exhibits structural dynamic excitation at high frequency, making it particularly prone to noise, vibration, and harshness (NVH) problems. To mitigate this effect, this article discusses a novel countermeasure technique to improve NVH performances of electric machines. A viscoelastic rubber layer is applied on the outer surface of a permanent magnet synchronous motor (PMSM) as vibration damping treatment. The goal is to assess the countermeasure effectiveness in reducing acoustic emissions at different temperatures, through a combination of numerical modeling and experimental validation. A finite element model of the structure is realized, considering a viscoelastic material model for the rubber material, with frequency-dependent loss factor and storage modulus. The numerical model is validated by means of experimental modal tests performed on a house-built cylindrical structure, designed to mimic the geometry of a typical cooling jacket of a PMSM for automotive
Soresini, FedericoBarri, DarioBallo, FedericoManzoni, StefanoGobbi, MassimilianoMastinu, Giampiero
This SAE Recommended Practice establishes the procedure for measuring the maximum exterior sound level of recreational motorboats while being operated under a variety of operating conditions. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
The chassis bushing is one of the key components affecting the vibration isolation efficiency of a vehicle, and a comprehensive optimization method combining the experimental process and transmission path analysis (TPA) is proposed to reduce the low- and medium-frequency road noise response in the passenger compartment of a battery electric vehicle (BEV). First, the noise signals were obtained in the vehicle road noise test under two working conditions of 40 and 60 km/h at uniform speeds on rough road surfaces. Then, the excitation transmission path was analyzed based on the structural noise transmission model, and the chassis bushing parts with more considerable vibration isolation contribution were screened out. By matching the stiffness values of the chassis bushings in the optimization problem through experimental methods, the optimization scheme reduces the stiffness of the front swing arm bushing and the rear longitudinal arm bushing by 30%. Additionally, a flexible connection is
Liu, KeLiao, YinghuaWang, HongruiZhou, Junchao
TOC
Tobolski, Sue
This research addresses the issue of noise, vibration, and harshness (NVH) in electric buses, which can hinder their widespread adoption despite their environmental benefits. With the absence of traditional engines, NVH control in electric vehicles focuses on auxiliary components like the air compressor. In this study, the air compressor was identified as a major source of vibration, causing harsh contact between its oil sumps and mounting bracket. Analyzing the vibrations revealed that the sump and bracket were not moving freely, increasing noise. Modifying the bracket design to allow more movement between the components successfully reduced both noise and vibration. The paper details the experimental process, findings, and structural damping methods to mitigate NVH in electric buses.
Paroche, SonuPatel, ShubhanshiPatidar, Ashok Kumar
Engine and powertrain mounts are vital for isolating vibrations and reducing the transmission of Noise, Vibration, and Harshness (NVH) from the engine to the vehicle structure. Despite technological advancements, addressing NVH issues related to tribological factors continues to pose significant challenges in automotive engineering. This study aims to systematically identify and optimize design parameters of engine/powertrain mounts to minimize NVH levels using CAE tools and parametric optimization techniques in Abaqus and Isight, respectively. The purpose of this research is to investigate the correlation between various design parameters of powertrain mounts and their impact on NVH characteristics. Specific attention is focused on noises such as clunking, banging, or thumping that emerge from the engine bay under dynamic conditions like acceleration, braking, or turning. These sounds often occur as the engine moves excessively due to worn mounts, making unintended contact with other
Ganesan, KarthikeyanSeok, Sang Ho
This paper proposes an uneven pitch control for electric oil pumps. For the noise reduction of vane pumps, mechanical arrangements of uneven pitch vain angle are widely used. However, the tooth angle of gear-type pumps should be even mechanically. The proposed uneven pitch control provides similar effects of the mechanical uneven pitch arrangement by instantaneous motor torque controls of the electric oil pump which cannot have uneven pitch mechanically. The magnitude of motor torque for each pump tooth is determined by an uneven pitch formula which is widely used for mechanical vane pumps in previous study and patents. A formula for the shape of motor torque is proposed by analyzing pressure fluctuations of pump as a combination of trigonometric and exponential functions. The calibration factors for the magnitude and shape are adjusted by characteristics of pumps. The experimental results showed that noise reduction and dispersion effects of the proposed method.
Choi, ChinchulKim, Jongbeom
In order to improve the comfort and perceptive quality of vehicle on the climate conditions worldwide, the temperature effect on rattle and squeak of instrument panel and console is studied under temperatures of −30°C, 23°C, and 60°C. First, the modal accuracy of finite element model is certificated by real vehicle test. The first global mode shapes are reciprocating rotation and reciprocating translation for instrument panel and console, respectively, corresponding to frequencies of 36.6 Hz and 29.6 Hz, which attain about 91% and 92.5% relative to the experiment values. Second, on basis of the “3σ” threshold of 0.27%, an assembly clearance in left instrument panel has non-negligible rattle risk under all temperatures. Another three clearances have no rattle risk but get rattle increase under temperatures of −30°C and 60°C. In addition, the rattle risk is increased around console end clearances at the temperature of 60°C. In other cases, the rattle risk is 0% or can be neglected. Third
Yang, XiaoyuMu, Yongtao
This ARP provides two methods for measuring the aircraft noise level reduction of building façades. Airports and their consultants can use either of the methods presented in this ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
A-21 Aircraft Noise Measurement Aviation Emission Modeling
As the automotive industry moves towards greater intelligence, electric tailgate systems have seen widespread adoption, featuring remote control, obstacle detection, and intelligent opening functions that significantly enhance the user experience. The electric telescopic rod, as a key actuator, has drawn attention for its structural and transmission design. However, studies have shown that during actual operation, various noise issues arise with electric telescopic rods, affecting the sound quality and smoothness of the tailgate's opening and closing. This paper presents a noise detection and analysis study based on a dedicated testbench platform specifically developed for electric telescopic rods. The platform was designed to simulate the real-world opening and closing process of automotive tailgates, enabling a controlled environment for capturing and analyzing noise characteristics effectively. Using a microphone to capture noise signals, three main types of noise were identified
Fan, SibeiWang, SilingZhu, ZhehuiLi, LeiQin, JiadeZhang, LijunMeng, DejianPei, Kaikun
Analyzing acoustic performance in large and complex assemblies, such as vehicle cabins, can be a time-intensive process, especially when considering the impact of seat location variations on noise levels. This paper explores the use of Ansys simulation and AI tools to streamline this process by predicting the effects of different speaker locations and seat configurations on cabin noise, particularly at the driver’s ear level. The study begins by establishing a baseline simulation of cabin noise and generating training data for various seat location scenarios. This data is then used to train an AI model capable of predicting the noise impact of different design adjustments. These predictions are validated through detailed simulations. The paper discusses the accuracy of these predictions, the challenges encountered and provides insights into the effective use of AI models in acoustic analysis for cabin noise, with a specific emphasis on seat location as a key variable.
Kottalgi, SantoshHe, JunyanBanerjee, Bhaskar
Over the past 30 years concerns about noise & vibration have become more critical in the design and manufacture of the automobile. Tools, both in physical testing and computer aided engineering have and continue to develop permitting more refined designs. Today’s customer can be very discerning when it comes to vehicle noises and vibrations. However, this is not a new concern for automotive customers or manufactures. This paper highlights the drive from automotive manufacturers to promote quiet, smooth and vibrationless operation of their products as well as some of the advances in vehicle component design over the past 100+ years. This is not an exhaustive study, but rather the intent is to bring to light the long history of noise and vibration in the automotive industry and its importance to the customers even in the infancy of the auto industry.
Kach, RaymondThompson, James
A good Noise, Vibration, and Harshness (NVH) environment in a vehicle plays an important role in attracting a large customer base in the automotive market. Hence, NVH has been given significant priority while considering automotive design. NVH performance is monitored using simulations early during the design phase and testing in later prototype stages in the automotive industry. Meeting NVH performance targets possesses a greater risk related to design modifications in addition to the cost and time associated with the development process. Hence, a more enhanced and matured design process involves Design Point Analysis (DPA), which is essentially a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are used to develop a product model that better fulfills the predefined requirement. This paper shows the systematic approach of conducting a Design Point Analysis-level NVH study to evaluate the acoustic
Ranade, Amod A.Shirode, Satish V.Miskin, AtulMahamuni, Ketan J.Shinde, RahulChowdhury, AshokGhan, Pravin
The trend towards electrification propulsion in the automotive industry is highly in demand due to zero-emission and becoming more significant across the world. Battery electric vehicles have lower overall noise as compared to conventional I.C Engine counterparts due to the absence of engine combustion and mechanical noise. However, other narrowband and tonal noises are becoming dominant and are strongly perceived inside the cabin. With the ongoing push towards electrification, there is likely to be increased focus on the noise impact of gearing required for the transmission of power from the electric motor to the road. Direct coupling of E-motors with Axle has resulted in severe tonal noises from the driveline due to instant e-motor torque ramp up from 0 rpm and reverse torque on driving axle during regenerative braking. The tonal noises from the rear axle during vehicle running become very critical for customer perception. For automotive NVH engineers, it has become a challenge to
Doshi, SohinKalsule, DhanajiSawangikar, PradeepSuresh, VineethSharma, Manish
To predict the sound field produced by a vehicle horn requires a good source representation of it in the full vehicle model. This paper investigates the characterization of a physical vehicle horn by an inverse method called pellicular analysis. To implement this method, firstly an acoustic testing is performed to measure the sound pressure radiated from the horn at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual horn, the locations of each microphone and measured sound pressure data, pellicular analysis is adopted to recover a set of vibration pattern of the virtual horn. The virtual horn and the recovered vibration information are then incorporated in a full vehicle numerical model to simulate its exterior sound field. The validity of this approach is confirmed by comparing the prediction for a horn in a production vehicle to the corresponding physical test which is required to meet the Brazilian regulation CONTRAN 764/2018.
Yang, WenlongMelo, Andre
Rattling noise from electrical sound systems is becoming one of the prominent issues for automakers as it directly affects the perception of customers about vehicle quality. Recently, quality sound system is prerequisite for automotive passenger vehicles. And, in the whole systems subwoofer forms dominant part of sound output. However, subwoofer rattle noise problems sometimes occur in small and midsize Sports Utility Vehicles (SUV). Mainly rattle is noise resulting from physical contact of two parts due to vibrations when relative displacement is bigger than gap of two parts, it occurred certain frequency (Between F1~F2), which is main excitation range of subwoofer. In this study, we analyze the subwoofer structural vibration analysis for five sample vehicles based on the test and correlation. However, the present subwoofer system model has limitation in determining the level of this rattle noise. Therefore, this paper discusses how to correlate subwoofer model, frequency
Thota, JagadeeshChoi, SeungchanPark, Jong-Suh
Exterior noise (EN) regulations for earth-moving machines (EMMs) require original equipment manufacturers (OEMs) to develop noise mitigation solutions early in the design process. Predicting the effectiveness of these solutions at this stage, however, is challenging. Excavators differ from other EMMs due to their rotating upper frame, which operates atop a fixed lower frame. Regulations such as ISO 6395 and EC/2000/14 mandate specific operating maneuvers, where noise sources dynamically change their position, directivity, and speed throughout the operating cycle. This complexity makes noise contribution analysis more difficult, as it must account for variations in angular position and operating conditions. While previous studies successfully applied Acoustic Source Quantification (ASQ) and contribution analysis to linearly moving EMMs, the angular motion of an excavator’s cab with respect to fixed target microphones introduces additional data processing challenges. This study addresses
Vesikar, Prasad BalkrishnaChaduvula, PrasannaAquino Arriaga, Adrian AntonioHaynes, TimothyDrabison II, John
Wind noise is one of the largest sources to interior noise of modern vehicles. This noise is encountered when driving on roads and freeways from medium speed and generates considerable fatigue for passengers on long journeys. Aero-acoustic noise is the result of turbulent and acoustic pressure fluctuations created within the flow. They are transmitted to the passenger compartment via the vibro-acoustic excitation of vehicle surfaces and underbody cavities. Generally, this is the dominant flow-induced source at low frequencies. The transmission mechanism through the vehicle floor and underbody is a complex phenomenon as the paths to the cavity can be both airborne and structure-borne. This study is focused on the simulation of the floor contribution to wind noise of two types of vehicles (SUV and Sports car), whose underbody structure are largely different. Aero-Vibro-acoustic simulations are performed to identify the transmission mechanism of the underbody wind noise and contribution
Mordillat, PhilippeZerrad, MehdiErrico, Fabrizio
Reducing gear rattle noise within the passenger cabin is a crucial objective in vehicle development due to its direct impact on customer comfort and driving experience. Gear rattle occurs when free gears collide during meshing, primarily driven by high torsional vibrations generated by engine fluctuations. These vibrations are transmitted through the clutch system to the transmission, amplifying noise inside the cabin. This study focuses on optimizing the clutch by stabilizing its hysteresis to address this issue. This helps minimize the torsional vibrations transferred to the transmission input shaft, thereby reducing gear rattle. The investigation centers on a case where significant gear rattle was observed at high vehicle speeds, particularly under high engine torque conditions. A thorough root cause analysis identified that the primary contributor to the noise was a drop in the clutch hysteresis value at elevated engine torques. This drop increased torsional vibrations in the
Awasthi, MradulDhankhar, Dinesh SinghKhare, Devendra KumarRana, DeepakPandey, Anant
Electric drive units (EDU) of battery electric vehicles and electric drivetrain components of hybrid vehicles require significant development effort and planning to ensure that a refined NVH sound quality is achieved. New tools and methods are required to understand the NVH performance throughout the development process and to ensure that NVH risks can be quickly identified and mitigated within the correct EDU subsystems. This paper discusses the development of a methodology (EDSL – Electric Drive Sound Level) aimed at addressing this need. It also outlines how the EDSL process can be used to address radiated noise issues and understand the NVH performance of the various subsystems within an electrified drivetrain component. The first use of the EDSL methodology is to characterize component-level radiated noise test results and compare the different mechanical and electrical noise sources to targets. The results from this are used to guide EDU development in the appropriate areas
Pruetz, Jeffrey E.Steffens, ChristophFu, TongfangFord, Alex
The Sottek Hearing Model provides a comprehensive framework for understanding the nuances of sound perception, including such aspects as loudness, tonality, roughness, fluctuation strength, sharpness, and impulsiveness. The principal model was first published more than three decades ago as part of a doctoral thesis. Over the past few decades, the model has been refined and recently standardized in the international standard ECMA 418-2. This standard addresses several psychoacoustic parameters, including a new approach to time-varying loudness based on a nonlinear combination of partial tonal and noise loudness (as part of the tonality). This is the preferable approach because the loudness of tonal components (i.e., tonal loudness) may have a more pronounced impact on loudness perception than the loudness caused by other components (i.e., noise loudness). Other standardized parameters include psychoacoustic modulation analyses. These are roughness, which is employed to evaluate rapidly
Sottek, RolandBray, Wade
As India’s economy expands and road infrastructure improves, the number of car owners is expected to grow substantially in the coming years. This market potential has intensified competition among original equipment manufacturers (OEMs) to position their products with a focus on cost efficiency while delivering a premium user experience. Noise and Vibration (NV) performance is a critical differentiator in conveying a vehicle's premiumness, and as such, NV engineers must strategically balance the achievement of optimal acoustic performance with constraints on cost, mass, and development timelines. Traditionally, NV package optimization occurs at the prototype or advanced prototype stage, relying heavily on physical testing, which increases both cost and time to market. Furthermore, late-stage design changes amplify these challenges. To address these issues, this paper proposes the integration of Hybrid Statistical Energy Analysis (HSEA) into the early stages of vehicle development
Rai, NiteshMehta, MakrandRavindran, Mugundaram
Low density polyurethane foam was first proposed as an alternative to expandable baffles and tapes for sealing vehicle body cavities towards the end of the last century. Despite several inherent advantages for cavity sealing, the high equipment cost of dispensing amongst other reasons, this technology has not spread as widely as expected. With the advent of electric vehicles, there is an increased emphasis on controlling higher frequencies from motors, inverters and other components, and polyurethane foam can be a viable solution by providing more robust sealing. Polyurethane foam sealing is already being employed in the new breed of electric vehicles, but its NVH advantages have not been fully studied or published in literature. Using an existing electric vehicle with conventional expandable baffles & tape sealing measures, a comprehensive evaluation of NVH performance using the closed-cell polyurethane foam solution was conducted. Testing included component level bench test on body
Kavarana, FarokhGuertin, Bill
The digitalization of industrial systems has led to increased data availability. Machine learning (ML) methodologies are now commonly used for data analysis in industrial contexts. Not all contexts have abundant data; sometimes data collection can be scarce or expensive. Design of Experiments (DOE) is a technique that provides an informative dataset for ML analysis when data are limited. It involves systematically designing experiments to collect relevant data points with regression models. Disc brake noise is a challenging problem in vehicle noise, vibration, and harshness (NVH). Different noise events occur under various operating conditions and across frequencies (1-16 kHz). To enhance computer-aided engineering (CAE) techniques for brake noise, ML is used to generate additional data. Sequential experimentation in DOE aligns well with ML’s ability to continuously learn and improve as more data become available. DOE is applied in CAE to collect data for training ML models. ML helps
Song, GavinSridhar, GurupriyaVlademar, MichaelVenugopal, Narayana
Mechanical light detection and ranging (LiDAR) units utilize spinning lasers to scan surrounding areas to enable limited autonomous driving. The motors within the LiDAR modules create vibration that can propagate through the vehicle frame and become unwanted noise in the cabin of a vehicle. Decoupling the module from the body of the vehicle with highly damped elastomers can reduce the acoustic noise in the cabin and improve the driving experience. Damped elastomers work by absorbing the vibrational energy and dispelling it as low-grade heat. By creating a unique test method to model the behavior of the elastomers, a predictable pattern of the damping ratio yielded insight into the performance of the elastomer throughout the operating temperature range of the LiDAR module. The test method also provides an objective analysis of elastomer durability when exposed to extreme temperatures and loading conditions for extended periods of time. Confidence in elastomer behavior and life span was
Russell, CaseyMasterson, PeterO'Connell, Kerry
As the adoption of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV) continues to rise, more individuals are encountering these quieter vehicles in their daily lives. While topics such as propulsion sound via Active Sound Design (ASD) and bystander safety through Acoustic Vehicle Alerting Systems (AVAS) have been extensively discussed, charging noise remains relatively unexplored. Most EV/PHEV owners charge their vehicles at home, typically overnight, leading to a lack of awareness about charging noise. However, those who have charged their cars overnight often report a variety of sounds emanating from the vehicle and the electric vehicle supply equipment (EVSE). This paper presents data from several production EVs measured during their normal charging cycles. Binaural recordings made inside and outside the vehicles are analyzed using psychoacoustic metrics to identify sounds that may concern EV/PHEV owners or their neighbors.
Marroquin, MarcBray, Wade
Noise reduction at the source level is key to achieve the overall vehicle level interior targets. This paper presents a novel approach that integrates directivity analysis with simulation techniques to optimize acoustic encapsulation design for automotive sound sources to achieve the targeted radiation levels. The foundation for this methodology is to measure the angular distribution of sound pressure levels around the noise source so called Directivity, at every frequency of interest and determine the most effective acoustic encapsulation to achieve the targeted sound radiation. Accurate measurement of directivity in physical testing with fine angular resolutions can be complex and expensive, this study utilizes numerical simulation techniques using FEA to mitigate the challenges in mid frequency range. The scope of the study is focused on mid frequency sound pressure levels between 500-2500 Hz, which are determined to be significant contributors to overall DU noise. The first step is
Kaluvakota, SrikanthGhaisas, NikhilPilz, Fernando
Items per page:
1 – 50 of 5987