Browse Topic: Acoustics
This ARP provides two methods for measuring the aircraft noise level reduction of building façades. Airports and their consultants can use either of the methods presented in this ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
A proprietary metamaterial has been shown to reduce panel vibration. In this particular case, the metamaterial is designed to be attached to the edge of a glass panel and can reduce panel vibration and noise transmission due to wind or other sources into the vehicle interior. Acoustic transmission loss and panel vibration assessments show the benefit of this approach.
As the adoption of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV) continues to rise, more individuals are encountering these quieter vehicles in their daily lives. While topics such as propulsion sound via Active Sound Design (ASD) and bystander safety through Acoustic Vehicle Alerting Systems (AVAS) have been extensively discussed, charging noise remains relatively unexplored. Most EV/PHEV owners charge their vehicles at home, typically overnight, leading to a lack of awareness about charging noise. However, those who have charged their cars overnight often report a variety of sounds emanating from the vehicle and the electric vehicle supply equipment (EVSE). This paper presents data from several production EVs measured during their normal charging cycles. Binaural recordings made inside and outside the vehicles are analyzed using psychoacoustic metrics to identify sounds that may concern EV/PHEV owners or their neighbors.
A test and signal processing strategy was developed to allow a tire manufacturer to predict vehicle-level interior response based on component-level testing of a single tire. The approach leveraged time-domain Source-Path-Contribution (SPC) techniques to build an experimental model of an existing single tire tested on a dynamometer and substitute into a simulator vehicle to predict vehicle-level performance. The component-level single tire was characterized by its acoustic source strength and structural forces estimated by means of virtual point transformation and a matrix inversion approach. These source strengths and forces were then inserted into a simulator vehicle model to predict the acoustic signature, in time-domain, at the passenger’s ears. This approach was validated by comparing the vehicle-level prediction to vehicle-level measured response. The experimental model building procedure can then be adopted as a standard procedure to aid in vehicle development programs.
This study presents a novel methodology for optimizing the acoustic performance of rotating machinery by combining scattered 3D sound intensity data with numerical simulations. The method is demonstrated on the rear axle of a truck. Using Scan&Paint 3D, sound intensity data is rapidly acquired over a large spatial area with the assistance of a 3D sound intensity probe and infrared stereo camera. The experimental data is then integrated into far-field radiation simulations, enabling detailed analysis of the acoustic behavior and accurate predictions of far-field sound radiation. This hybrid approach offers a significant advantage for assessing complex acoustic sources, allowing for quick and reliable evaluation of noise mitigation solutions.
Noise transmission through the vehicle dash panel plays a critical role in isolating passengers from noise sources within the motor bay of the vehicle. Grommets that contain electrical harness routing as well as HVAC lines are examples of dash panel pass-throughs that should be selected with care. Acoustic performance of these components is generally characterized in terms of measured quantities such as noise reduction (NR), sound transmission loss (STL), and insertion loss (IL). These measurements need to be carried out per SAE or ASTM standards in appropriate anechoic or reverberant chambers as this is important for consistency. This work explores an in-situ measurement of the grommet STL performance in the vehicle environment. It utilizes a repurposed vehicle with its cabin retrofitted to serve as an anechoic chamber and its frunk acting as a reverberant chamber. Results of this in-situ measurement are then compared to measurements following industry standards to discuss the
As the automotive industry moves toward electrification, new challenges emerge in keeping pleasant acoustics inside vehicles and their surroundings. This paper proposes a method for anticipating the main sound sources at driver’s ear for custom driving scenarios. Different categories of Road and Wind noise were created from a dataset of multiple vehicles. Using innovative sound synthesis techniques, it enables Valeo to make early predictions of the emergence of an electric axle powertrain (ePWT) once it is combined with this masking noise. Realistic signals could be generated and compared with actual acoustic measurements to validate the method.
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
This paper discusses a systematic process that was developed to evaluate the acoustic performance of a production dash system. In this case it is for an electric vehicle application. The production dash panel was tested under different configurations to understand the importance of passthroughs in the acoustics of the system. Results show that often the performance of the passthroughs strongly affects the overall performance of the dash system and this may become the limiting factor to increase the system sound transmission loss. To understand the acoustic strength of different passthroughs and their effects on the overall system, the dash with passthroughs underwent extensive testing. Subsequently, a test procedure using flat panels was developed to quantify the performance of individual passthroughs on a part level. This data can be used by the OEM to develop STL targets that can be considered in the grommet design early in the vehicle development process.
The author’s life work in acoustics and sound quality, continuous over more than 40 years, has followed a number of branches all involving measurement technologies and their evolution. The illustrated discussion begins 60 years ago in 1965 at Arizona State University in its Frank Lloyd Wright-designed Gammage Auditorium, and moves to the Research and Development Division of Kimball International, Inc. (Jasper, Indiana) in 1976 with piano research using a Federal Scientific Ubiquitous analog real-time FFT analyzer and Chladni-plate-mode studies with fine sand and high-speed photography of sound board modes. It continues at Jaffe Acoustics, Inc., a concert-hall-specializing consultancy in Norwalk, CT, with early-reflection plotting using a parabolic microphone on an altazimuth angular-readout mounting and either photographing oscillograms, or running a high-speed paper chart printer, assembling “wheel plots” incremented every 10 degrees in azimuth and altitude to map reflection patterns
A good Noise, Vibration, and Harshness (NVH) environment in a vehicle plays an important role in attracting a large customer base in the automotive market. Hence, NVH has been given significant priority while considering automotive design. NVH performance is monitored using simulations early during the design phase and testing in later prototype stages in the automotive industry. Meeting NVH performance targets possesses a greater risk related to design modifications in addition to the cost and time associated with the development process. Hence, a more enhanced and matured design process involves Design Point Analysis (DPA), which is essentially a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are used to develop a product model that better fulfills the predefined requirement. This paper shows the systematic approach of conducting a Design Point Analysis-level NVH study to evaluate the acoustic
Centralization of electrically driven hydraulic power packs into the body of aircraft has increased attention on the noise and vibration characteristics of the system. A hydraulic power pack consists of a pump coupled to an electrical motor, accumulator, reservoir, and associated filter manifolds. In previous studies, the characteristics of radiated acoustic noise and fluid borne noise were studied. In this paper, we focus on the structure-borne forces generated by the hydraulic pump characterized through blocked force measurements. The blocked force of the pump was determined experimentally using an indirect measurement method. The indirect method required operation with part under test fixed to an instrumented receiver structure. Measured operational accelerations on the receiver plate were used in conjunction with transfer function measurements to predict the blocked forces. Blocked forces were validated by comparing directly measured accelerations to predicted accelerations at
There is an increasing effort to reduce noise pollution across different industries worldwide. From a transportation standpoint, pass-by regulations aim to achieve this and have been implementing increasingly stricter emissions limits. Testing according to these standards is a requirement for homologation, but does little to help manufacturers understand why their vehicles may be failing to meet limits. Using a developed methodology such as Pass-by Source Path Contribution (SPC, also known as TPA) allows for identification of dominant contributors to the pass-by receivers along with corresponding acoustic source strengths. This approach is commonly used for passenger vehicles, but can be impractical for off-highway applications, where vehicles are often too large for most pass-by-suitable chassis dynamometers. A hybrid approach is thereby needed, where the same techniques and instrumentation used in the indoor test are applied to scenarios in an outdoor environment. This allows for
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
Automotive audio components must meet high quality expectations with ever-decreasing development costs. Predictive methods for the performance of sound systems in view of the optimal locations of loudspeakers in a car can help to overcome this challenge. Use of simulation methods would enable this process to be brought up front and get integrated in the vehicle design process. The main objective of this work is to develop a virtual auralization model of a vehicle interior with audio system. The application of inverse numerical acoustics [INA] to source detection in a speaker is discussed. The method is based on truncated singular value decomposition and acoustic transfer vectors The arrays of transfer functions between the acoustic pressure and surface normal velocity at response sites are known as acoustic transfer vectors. In addition to traditional nearfield pressure measurements, the approach can also include velocity data on the boundary surface to improve the confidence of the
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
Vehicle HVAC noise performance is an important vehicle design validation criterion since it significantly links the brand image of a vehicle. It affects the customer’s buying decision and the business of selling vehicles because it directly affects driving comfort. Customers expect continuous improvement in HVAC noise without compromising cooling performance. The process of cascading vehicle-level acoustic performance to subsystem and component levels becomes an important factor in the vehicle NVH development process. It was found that the component-level [HVAC unit without duct] performance of an HVAC system measured in an anechoic chamber was at par when compared to targets, whereas the subsystem-level performance [HVAC unit with duct and dashboard] was on the higher side of the targets. Advanced NVH tools were used to identify the source of noise at the subsystem level. It helped to locate the source and its transfer path. A design modification done at the transfer path location
As palliative acoustic material mixtures and compositions become more complex, the ability to accurately simulate their acoustic performance within an installed NVH component is becoming increasingly difficult. Historically, Biot parameters and their associated TMM models have been used to simulate the acoustic performance of multi-layered material compositions. However, these simulations are not able to account for real-world complexities such as manufacturing imperfections or inter-layer gluing effects. The assumptions made by simulation models, such as the perfectly diffuse field, are rarely true in actual measurements, let alone in the vehicle, further increasing the uncertainty when comparing measurement versus simulation. There already exists widely accepted methods for obtaining Biot parameters for single-layer materials. Typically, a multi-layer simulation considers each individual layer in isolation rather than its interactions with the rest of the composition after heating
From a Noise Vibration Harshness (NVH) perspective, electric vehicles represent a great opportunity since the noise of the combustion engine, dominant in many driving conditions, is no longer present. On the other hand, drivers accustomed to driving cars with a strong personality (for example typically sporty ones) may perceive "silence" as a lack of character. Our internal study, conducted with a jury of people, has in fact already shown that for half of customers silence should characterize (Battery Electric Vehicle - BEV) vehicle; but, at the same time, the other half of the jury expects feedback from the vehicle while driving. The silence inside the passenger compartment, from an NVH point of view, can therefore be compared to a blank sheet of paper, on which, if desired, sounds designed to satisfy the driving pleasure expected by the customer can be introduced. Starting from this scenario, the paper describes: the approach adopted to define how many and what are the levers to
In the acoustic study of the interior noise of a vehicle, whether for structure-borne or air-borne excitations, knowing which areas contribute the most to interior noise and therefore should be treated as a priority, is the main goal of the engineer in charge of the NVH. Very often these areas are numerous, located in different regions of the vehicle and contribute at different frequencies to the overall sound pressure level. This has led to the development of several “Panel Contribution Analysis” (PCA) experimental techniques. For example, a well-known technique is the masking technique, which consists of applying a “maximum package” (i.e., a package with very high sound insulation) to the panels outside of the area whose contribution must be measured. This technique is pragmatic but rather cumbersome to implement. In addition, it significantly modifies the dynamics and internal acoustics of the vehicle. In another well-known technique, the contribution of a certain area is defined
The development of an effective Acoustic Vehicle Alerting System (AVAS) is not solely about adhering to safety regulations; it also involves crafting an auditory experience that aligns with the expectations of vulnerable road users. To achieve this, a deep understanding of the acoustic transfer function is essential, as it defines the relationship between the sound emitter (the speaker inside the vehicle) and the receiver (the vulnerable road user). Maintaining the constancy of this acoustic transfer function is paramount, as it ensures that the sound emitted by the vehicle aligns with the intended safety cues and brand identity that is defined by the car manufacturer. In this research paper, three distinct methodologies for calculating the acoustic transfer function are presented: the classical Boundary Element method, the H-Matrix BEM accelerated method, and the Ray Tracing method. Furthermore, the paper encompasses an assessment of the correlation between these methods and their
When traveling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so-thin shear layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps – the most prominent example being CLEAN-SC – to produce certain ring effects, so-called halos, around sources. In this paper, we intend to cast some light on this effect by describing our path of analyzing/circumventing these halos and how they are linked to the
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Items per page:
50
1 – 50 of 2102