Browse Topic: Acoustics

Items (2,102)
In order to improve the comfort and perceptive quality of vehicle on the climate conditions worldwide, the temperature effect on rattle and squeak of instrument panel and console is studied under temperatures of −30°C, 23°C, and 60°C. First, the modal accuracy of finite element model is certificated by real vehicle test. The first global mode shapes are reciprocating rotation and reciprocating translation for instrument panel and console, respectively, corresponding to frequencies of 36.6 Hz and 29.6 Hz, which attain about 91% and 92.5% relative to the experiment values. Second, on basis of the “3σ” threshold of 0.27%, an assembly clearance in left instrument panel has non-negligible rattle risk under all temperatures. Another three clearances have no rattle risk but get rattle increase under temperatures of −30°C and 60°C. In addition, the rattle risk is increased around console end clearances at the temperature of 60°C. In other cases, the rattle risk is 0% or can be neglected. Third
Yang, XiaoyuMu, Yongtao
This ARP provides two methods for measuring the aircraft noise level reduction of building façades. Airports and their consultants can use either of the methods presented in this ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
A-21 Aircraft Noise Measurement Aviation Emission Modeling
A proprietary metamaterial has been shown to reduce panel vibration. In this particular case, the metamaterial is designed to be attached to the edge of a glass panel and can reduce panel vibration and noise transmission due to wind or other sources into the vehicle interior. Acoustic transmission loss and panel vibration assessments show the benefit of this approach.
Sorenson, SteveLi, XiaopengMoore, JaimeRobison, Scott
As the adoption of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV) continues to rise, more individuals are encountering these quieter vehicles in their daily lives. While topics such as propulsion sound via Active Sound Design (ASD) and bystander safety through Acoustic Vehicle Alerting Systems (AVAS) have been extensively discussed, charging noise remains relatively unexplored. Most EV/PHEV owners charge their vehicles at home, typically overnight, leading to a lack of awareness about charging noise. However, those who have charged their cars overnight often report a variety of sounds emanating from the vehicle and the electric vehicle supply equipment (EVSE). This paper presents data from several production EVs measured during their normal charging cycles. Binaural recordings made inside and outside the vehicles are analyzed using psychoacoustic metrics to identify sounds that may concern EV/PHEV owners or their neighbors.
Marroquin, MarcBray, Wade
The frequency and amplitude content of powertrain noise is motor torque and speed dependent and tends to influence the driver’s subjective perception of the vehicle. This provides manufacturers with an opportunity to drive product differentiation through consideration of powertrain noise in early stages of the development cycles for electric vehicles (EVs). This paper focuses on the evaluation of customer preference and perception of acoustic feedback from different powertrain design options based on targeted powertrain orders and expected wind and road masking during high acceleration maneuvers. A jury study is used to explore customer feedback to a two-stage gearbox design with AC permanent magnet motor order combinations. The subjective influence of order spacing, dominant frequency content and the number of audible orders is studied to understand aural perspective product differentiation opportunities.
Joodi, BenjaminJayakumar, VigneshConklin, ChrisPilz, FernandoIyengar, ShashankWeilnau, KelbyHodgkins, Jeffrey
To predict the sound field produced by a vehicle horn requires a good source representation of it in the full vehicle model. This paper investigates the characterization of a physical vehicle horn by an inverse method called pellicular analysis. To implement this method, firstly an acoustic testing is performed to measure the sound pressure radiated from the horn at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual horn, the locations of each microphone and measured sound pressure data, pellicular analysis is adopted to recover a set of vibration pattern of the virtual horn. The virtual horn and the recovered vibration information are then incorporated in a full vehicle numerical model to simulate its exterior sound field. The validity of this approach is confirmed by comparing the prediction for a horn in a production vehicle to the corresponding physical test which is required to meet the Brazilian regulation CONTRAN 764/2018.
Yang, WenlongMelo, Andre
Cairo’s soundscape has witnessed changes due to the ongoing urban structure developments that accommodate the number of vehicles passing through the city. The soundscape produced by this growing automobility is affected not only by vehicles but also by their owners' behavior. Cairenes use their cars as a communication tool and an extension of private space. By viewing the vehicle as a component of the soundscape as well as a space that filters it, this study examines the synergy between social behavior, automobility, urban structure, and their interdependent relationship on the soundscape of Cairo. The study responds to literature elaborating on acoustic ecology, car culture, urban structure, and social behavior. The methodology applied in this study follows practice-based phenomenological research while documenting and reflecting on car cultural practices in Cairo from an aural perspective. Grounded theory contextualizes the analysis of archived audio and video material, semi
Abd El Naby, Abla Mohamed
A test and signal processing strategy was developed to allow a tire manufacturer to predict vehicle-level interior response based on component-level testing of a single tire. The approach leveraged time-domain Source-Path-Contribution (SPC) techniques to build an experimental model of an existing single tire tested on a dynamometer and substitute into a simulator vehicle to predict vehicle-level performance. The component-level single tire was characterized by its acoustic source strength and structural forces estimated by means of virtual point transformation and a matrix inversion approach. These source strengths and forces were then inserted into a simulator vehicle model to predict the acoustic signature, in time-domain, at the passenger’s ears. This approach was validated by comparing the vehicle-level prediction to vehicle-level measured response. The experimental model building procedure can then be adopted as a standard procedure to aid in vehicle development programs.
Nashio, HiroshiKajiwara, KoheiRinaldi, GiovanniSakamoto, Yumiko
This study presents a novel methodology for optimizing the acoustic performance of rotating machinery by combining scattered 3D sound intensity data with numerical simulations. The method is demonstrated on the rear axle of a truck. Using Scan&Paint 3D, sound intensity data is rapidly acquired over a large spatial area with the assistance of a 3D sound intensity probe and infrared stereo camera. The experimental data is then integrated into far-field radiation simulations, enabling detailed analysis of the acoustic behavior and accurate predictions of far-field sound radiation. This hybrid approach offers a significant advantage for assessing complex acoustic sources, allowing for quick and reliable evaluation of noise mitigation solutions.
Fernandez Comesana, DanielVael, GeorgesRobin, XavierOrselli, JosephSchmal, Jared
As India’s economy expands and road infrastructure improves, the number of car owners is expected to grow substantially in the coming years. This market potential has intensified competition among original equipment manufacturers (OEMs) to position their products with a focus on cost efficiency while delivering a premium user experience. Noise and Vibration (NV) performance is a critical differentiator in conveying a vehicle's premiumness, and as such, NV engineers must strategically balance the achievement of optimal acoustic performance with constraints on cost, mass, and development timelines. Traditionally, NV package optimization occurs at the prototype or advanced prototype stage, relying heavily on physical testing, which increases both cost and time to market. Furthermore, late-stage design changes amplify these challenges. To address these issues, this paper proposes the integration of Hybrid Statistical Energy Analysis (HSEA) into the early stages of vehicle development
Rai, NiteshMehta, MakrandRavindran, Mugundaram
Noise transmission through the vehicle dash panel plays a critical role in isolating passengers from noise sources within the motor bay of the vehicle. Grommets that contain electrical harness routing as well as HVAC lines are examples of dash panel pass-throughs that should be selected with care. Acoustic performance of these components is generally characterized in terms of measured quantities such as noise reduction (NR), sound transmission loss (STL), and insertion loss (IL). These measurements need to be carried out per SAE or ASTM standards in appropriate anechoic or reverberant chambers as this is important for consistency. This work explores an in-situ measurement of the grommet STL performance in the vehicle environment. It utilizes a repurposed vehicle with its cabin retrofitted to serve as an anechoic chamber and its frunk acting as a reverberant chamber. Results of this in-situ measurement are then compared to measurements following industry standards to discuss the
Joodi, BenjaminJayakumar, VigneshChang, MichaelGeissler, ChristianPilz, FernandoConklin, Chris
As the automotive industry moves toward electrification, new challenges emerge in keeping pleasant acoustics inside vehicles and their surroundings. This paper proposes a method for anticipating the main sound sources at driver’s ear for custom driving scenarios. Different categories of Road and Wind noise were created from a dataset of multiple vehicles. Using innovative sound synthesis techniques, it enables Valeo to make early predictions of the emergence of an electric axle powertrain (ePWT) once it is combined with this masking noise. Realistic signals could be generated and compared with actual acoustic measurements to validate the method.
Redon, MilanDendievel, ClementPluton, Matthias
Silent motors are an excellent strategy to combat noise pollution. Still, they can pose risks for pedestrians who rely on auditory cues for safety and reduce driver awareness due to the absence of the familiar sounds of combustion engines. Sound design for silent motors not only tackles the above issues but goes beyond safety standards towards a user-centered approach by considering how users perceive and interpret sounds. This paper examines the evolving field of sound design for electric vehicles (EVs), focusing on Acoustic Vehicle Alerting Systems (AVAS). The study analyzes existing AVAS, classifying them into different groups according to their design characteristics, from technical concerns and approaches to aesthetic properties. Based on the proposed classification, an (adaptive) sound design methodology, and concept for AVAS are proposed based on state-of-the-art technologies and tools (APIs), like Wwise Automotive, and integration through a functional prototype within a virtual
Rodrigues Ferraz Esteves, Ana RaquelCampos Magalhães, Eduardo MiguelBernardes de Almeida, Gilberto
Platform based vehicle development is standardized at John Deere. The challenges of frontloading the integration of individual components within different platforms using predictive methods is key to shortening the development cycle. Components are individually characterized on test benches and results cannot directly be used to evaluate system performance. Invariant characterization is needed instead, which is possible through techniques such as blocked loads estimation. To evaluate the applicability of such methods, the component-based loads and vehicle in-situ operational loads need to be compared. The confident use of these methods for obtaining structural and acoustic loads enables the use of hybrid system models, enhancing early NVH response predictions. The objective of this work was to enable the confident use of test stand measurements in predictive models across various vehicle platforms. This study compares a powertrain characterization in a vehicle against a test stand to
Vesikar, Prasad BalkrishnaEdgington, JasonDrabison II, John
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Rittenschober, Thomas
The arrangement of error microphones for a vehicle active noise control (ANC) system is no trivial work, especially for heavy-duty trucks, due to the dilemma resulted from the large volume of the cab and the limited number of microphones accepted by most manufacturers in the auto industry. Although some pioneering work has laid the foundation for the application of numerical methods exemplified by the genetic-algorithm (GA) to optimize the error sensor arrangement in an ANC system, most ANC developers still resort to trial and error in practice, which is not only a heavy workload given the amount of interested working conditions to be tested, but also does not guarantee to yield the optimum noise cancellation performance. In this paper, the authors designed and implemented an error microphone selection process using a genetic-algorithm (GA) -based mechanism. The target vehicle was a heavy-duty truck with a six-piston diesel engine, and two application scenarios were particularly
Wang, JianLing, ZihongZhang, ZheCai, DeHualv, XiaoZhang, MingGao, GuoRan
This paper discusses a systematic process that was developed to evaluate the acoustic performance of a production dash system. In this case it is for an electric vehicle application. The production dash panel was tested under different configurations to understand the importance of passthroughs in the acoustics of the system. Results show that often the performance of the passthroughs strongly affects the overall performance of the dash system and this may become the limiting factor to increase the system sound transmission loss. To understand the acoustic strength of different passthroughs and their effects on the overall system, the dash with passthroughs underwent extensive testing. Subsequently, a test procedure using flat panels was developed to quantify the performance of individual passthroughs on a part level. This data can be used by the OEM to develop STL targets that can be considered in the grommet design early in the vehicle development process.
Saha, PranabBaack, GregoryGeissler, ChristianKaluvakota, SrikanthPilz, Fernando
A newly formulated fiber-based material was developed to offer a sustainable alternative to foam-based vehicle acoustic products. The fiber-based material was designed to be used in multiple vehicle acoustic applications, with different blends of the material available depending on the application. It performs well as an engine bay sound absorber due to its high heat tolerance and good absorption performance. A study was conducted to evaluate the sound absorption performance of this fiber-based material, specifically the engine bay blends, in comparison to that of current foam-based products. The results from this study show that the sound absorption performance of this new fiber-based material can match that of current foam-based materials while providing a sustainable and fully recyclable product, unlike the foam.
Krugh, Jack
Exterior noise (EN) regulations for earth-moving machines (EMMs) require original equipment manufacturers (OEMs) to develop noise mitigation solutions early in the design process. Predicting the effectiveness of these solutions at this stage, however, is challenging. Excavators differ from other EMMs due to their rotating upper frame, which operates atop a fixed lower frame. Regulations such as ISO 6395 and EC/2000/14 mandate specific operating maneuvers, where noise sources dynamically change their position, directivity, and speed throughout the operating cycle. This complexity makes noise contribution analysis more difficult, as it must account for variations in angular position and operating conditions. While previous studies successfully applied Acoustic Source Quantification (ASQ) and contribution analysis to linearly moving EMMs, the angular motion of an excavator’s cab with respect to fixed target microphones introduces additional data processing challenges. This study addresses
Vesikar, Prasad BalkrishnaChaduvula, PrasannaAquino Arriaga, Adrian AntonioHaynes, TimothyDrabison II, John
This paper investigates the performance of a dissipative material compared to conventional acoustic materials under conditions that simulate real-world vehicle applications with acoustic leakage. Various acoustic materials were evaluated through laboratory experiments, which included acoustic leakage in both the steel panel and the acoustic materials. Acoustic leakages commonly occur in actual vehicle conditions at pass-throughs or fastener mounting locations. The study also presents in-vehicle test results to demonstrate the effectiveness of the dissipative material in managing acoustic leakage.
Yoo, TaewookMaeda, HirotsuguSawamoto, KeisukeAnderson, BrianGan, KimTongHerdtle, Thomas
Noise reduction at the source level is key to achieve the overall vehicle level interior targets. This paper presents a novel approach that integrates directivity analysis with simulation techniques to optimize acoustic encapsulation design for automotive sound sources to achieve the targeted radiation levels. The foundation for this methodology is to measure the angular distribution of sound pressure levels around the noise source so called Directivity, at every frequency of interest and determine the most effective acoustic encapsulation to achieve the targeted sound radiation. Accurate measurement of directivity in physical testing with fine angular resolutions can be complex and expensive, this study utilizes numerical simulation techniques using FEA to mitigate the challenges in mid frequency range. The scope of the study is focused on mid frequency sound pressure levels between 500-2500 Hz, which are determined to be significant contributors to overall DU noise. The first step is
Kaluvakota, SrikanthGhaisas, NikhilPilz, Fernando
The author’s life work in acoustics and sound quality, continuous over more than 40 years, has followed a number of branches all involving measurement technologies and their evolution. The illustrated discussion begins 60 years ago in 1965 at Arizona State University in its Frank Lloyd Wright-designed Gammage Auditorium, and moves to the Research and Development Division of Kimball International, Inc. (Jasper, Indiana) in 1976 with piano research using a Federal Scientific Ubiquitous analog real-time FFT analyzer and Chladni-plate-mode studies with fine sand and high-speed photography of sound board modes. It continues at Jaffe Acoustics, Inc., a concert-hall-specializing consultancy in Norwalk, CT, with early-reflection plotting using a parabolic microphone on an altazimuth angular-readout mounting and either photographing oscillograms, or running a high-speed paper chart printer, assembling “wheel plots” incremented every 10 degrees in azimuth and altitude to map reflection patterns
Bray, Wade
A good Noise, Vibration, and Harshness (NVH) environment in a vehicle plays an important role in attracting a large customer base in the automotive market. Hence, NVH has been given significant priority while considering automotive design. NVH performance is monitored using simulations early during the design phase and testing in later prototype stages in the automotive industry. Meeting NVH performance targets possesses a greater risk related to design modifications in addition to the cost and time associated with the development process. Hence, a more enhanced and matured design process involves Design Point Analysis (DPA), which is essentially a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are used to develop a product model that better fulfills the predefined requirement. This paper shows the systematic approach of conducting a Design Point Analysis-level NVH study to evaluate the acoustic
Ranade, Amod A.Shirode, Satish V.Miskin, AtulMahamuni, Ketan J.Shinde, RahulChowdhury, AshokGhan, Pravin
Heavy Duty (HD) linehaul vehicles are majorly used in transportation of goods and heavy loads between different cities or long distances. Considering the current trend, payload capacity of these heavy-duty trucks are increasing due to constant increase in the load demand. Due to which engine torques of these HD vehicles are increasing which in turn increases the transmission input torque. At higher torque levels, gear excitation also increases and transmission becomes more susceptible towards higher noise radiation. The transmission is an integral part of the driveline in a heavy duty commercial vehicle. Along with speed and torque conversion, the transmission design is crucial to achieve better fuel economy. Important factors to consider in the transmission design are duty cycle, torque capacity, fuel economy and overall weight. Global vehicle pass-by noise regulations for HD commercial vehicles are becoming more stringent and transmissions are expected to be very quiet. Historically
Rastogi, SarthakMilind, T. R.
Basic structures of vehicle frames、aircraft fuselages and ship hulls are made of beams、columns and trusses. If Acoustic Black Holes(ABH) are carefully arranged alongside with the wave propagation paths in those structures, the wave propagation paths could be changed at NVH engineers’ will and the structure vibrations can be reduced. Two kinds of ABHs are used in this paper: one is ABH made of Polyurethane(PU), other one is ABH composed of several steel plate 1D ABH stacked up in parallel. Three structures are used to test the effectiveness of ABHs for vibration reductions: a squared hollow sectional steel commonly used in motorcoach/bus chassis and frame structures, a simple frame for motorcoach airbag suspension and a 12m chassis structure. The attached ABHs show a great vibration attenuation in terms of transfer functions on the basic structure element for a motorcoach. The lateral, vertical and longitudinal transfer functions for steel ABHs were greatly reduced from 13.2~14.7 dB
Xu, ChuanyanWang, JianjunXing, QisenChen, HengbinHuang, Xianli
Centralization of electrically driven hydraulic power packs into the body of aircraft has increased attention on the noise and vibration characteristics of the system. A hydraulic power pack consists of a pump coupled to an electrical motor, accumulator, reservoir, and associated filter manifolds. In previous studies, the characteristics of radiated acoustic noise and fluid borne noise were studied. In this paper, we focus on the structure-borne forces generated by the hydraulic pump characterized through blocked force measurements. The blocked force of the pump was determined experimentally using an indirect measurement method. The indirect method required operation with part under test fixed to an instrumented receiver structure. Measured operational accelerations on the receiver plate were used in conjunction with transfer function measurements to predict the blocked forces. Blocked forces were validated by comparing directly measured accelerations to predicted accelerations at
Smither, MatthewTuyls, ZacharyPatel, PratikYan, XinHerrin, David
This paper presents a fully parallelized Computational Acoustics (CA) module, integrated within the Simerics-MP+ platform, developed for the prediction of noise source power and far-field propagation across a range of Computational Fluid Dynamics (CFD) applications. Utilizing the Ffowcs Williams-Hawkings (FWH) acoustic analogy, the CA module seamlessly integrates with existing CFD workflows, offering minimal computational overhead with less than a 5% increase in runtime. Extensive validation has been conducted against analytical, numerical, and experimental data in various acoustic scenarios, including monopole and dipole noise emissions, flow around slender bodies, circular cylinders and aero-propellers. These validation studies underscore the reliability of the framework in accurately identifying noise sources and assessing the impact of design modifications, significantly reducing the need for expensive physical prototyping in industries such as automotive and aerospace. Building
Taghizadeh, SalarCzwielong, FelixBecker, StefanVarghese, JoelRaj, GowthamDhar, Sujan
There is no need to recall how the electrification trend of transport facilities has tightened the requirements around acoustic comfort. Within the automotive industry, these targets are more challenging for Heating, Ventilation and Air Conditioning systems for which passengers are in the frontline of noise emissions inside the car cabin. The complexity of the requirements and specifications set by car manufacturers and suppliers stems from a dual aspect. First is quantitative based on the sound pressure level, whether it's the overall level or 1/3 octave band spectra. The second is purely subjective, based on the perceived noise quality by stakeholders and final customers worldwide. During development phases, low tonal noises are frequently encountered on these systems which might induce discomfort to the passengers. The experimental investigations usually point to an aerodynamic origin, which prompted this research activity. The purpose of this work is to analyze and understand the
Bennouna, SaadAlaoui, MohamedHenner, Manuel
There is an increasing effort to reduce noise pollution across different industries worldwide. From a transportation standpoint, pass-by regulations aim to achieve this and have been implementing increasingly stricter emissions limits. Testing according to these standards is a requirement for homologation, but does little to help manufacturers understand why their vehicles may be failing to meet limits. Using a developed methodology such as Pass-by Source Path Contribution (SPC, also known as TPA) allows for identification of dominant contributors to the pass-by receivers along with corresponding acoustic source strengths. This approach is commonly used for passenger vehicles, but can be impractical for off-highway applications, where vehicles are often too large for most pass-by-suitable chassis dynamometers. A hybrid approach is thereby needed, where the same techniques and instrumentation used in the indoor test are applied to scenarios in an outdoor environment. This allows for
Freeman, ToddEngels, BretThuesen, Ben
With the current popularity of new energy vehicles and the continuous development of intelligent cabin technology, the demand for acoustic comfort within automotive cockpit is increasing. A multi-channel feedforward active sound design and control method was proposed to improve the sound quality of the hybrid broadband road and narrowband order noise inside the test vehicle. The method selectively designed the target amplitudes for broadband noise and narrowband noise in the vehicle to satisfy passengers comfort, mainly including the sound design phase and the control phase. During the sound design phase, objective sound quality parameter analysis was first conducted on the noise of the prototype vehicle, followed by an subjective evaluation of the sound quality with rating scale method. An active acoustic design strategy focusing on comfort, motivation sense were proposed, including a formula for the target amplitude of adjustment order and sound pressure level. The sound quality was
Liu, XuexianXu, WenxuanLi, RubinLu, Lu
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
Kumar, AdityaIppili, Rajani
Analyzing acoustic performance in large and complex assemblies, such as vehicle cabins, can be a time-intensive process, especially when considering the impact of seat location variations on noise levels. This paper explores the use of Ansys simulation and AI tools to streamline this process by predicting the effects of different speaker locations and seat configurations on cabin noise, particularly at the driver’s ear level. The study begins by establishing a baseline simulation of cabin noise and generating training data for various seat location scenarios. This data is then used to train an AI model capable of predicting the noise impact of different design adjustments. These predictions are validated through detailed simulations. The paper discusses the accuracy of these predictions, the challenges encountered and provides insights into the effective use of AI models in acoustic analysis for cabin noise, with a specific emphasis on seat location as a key variable.
Kottalgi, SantoshHe, JunyanBanerjee, Bhaskar
The significance of the liftgate's role in vehicle low-frequency boom noise is highlighted by its modal coupling with the vehicle's acoustic cavity modes. The liftgate's acoustic sensitivity and susceptibility to vehicle vibration excitation are major contributors to this phenomenon. This paper presents a CAE (Computer-Aided Engineering) methodology for designing vehicle liftgates to reduce boom risk. Empirical test data commonly show a correlation between high levels of liftgate vibration response to vehicle excitations and elevated boom risk in the vehicle cabin. However, exceptions to this trend exist; some vehicles exhibit low boom risk despite high vibration responses, while others show high boom risk despite low vibration responses. These discrepancies indicate that liftgate vibratory response alone is not a definitive measure of boom risk. Nonetheless, evidence shows that establishing a vibration level control guideline during the design stage results in lower boom risk. The
Abbas, AhmadHaider, Syed
Automotive audio components must meet high quality expectations with ever-decreasing development costs. Predictive methods for the performance of sound systems in view of the optimal locations of loudspeakers in a car can help to overcome this challenge. Use of simulation methods would enable this process to be brought up front and get integrated in the vehicle design process. The main objective of this work is to develop a virtual auralization model of a vehicle interior with audio system. The application of inverse numerical acoustics [INA] to source detection in a speaker is discussed. The method is based on truncated singular value decomposition and acoustic transfer vectors The arrays of transfer functions between the acoustic pressure and surface normal velocity at response sites are known as acoustic transfer vectors. In addition to traditional nearfield pressure measurements, the approach can also include velocity data on the boundary surface to improve the confidence of the
Baladhandapani, DhanasekarThaduturu, Sai RavikiranDu, Isaac
The flow resistivity is a critical parameter for evaluating the acoustic performance of the porous materials. Accurate determination of flow resistivity is essential for predicting the characteristic impedance and propagation constants of materials. In this paper, a method is proposed to calculate the flow resistivity of kapok fiber felt, aiming to accurately assess the flow resistivity of kapok fiber felt. Based on the dual-porosity equivalent model of kapok fiber felt, it is hypothesized that the flow resistivity is divided into two components. One part from the large pores between fibers, and the other part from the hollow structures within kapok fibers and the micropores on the fiber walls. The contribution of the large pores between fibers to the flow resistivity is calculated using the Tarnow_S model. Meanwhile, the hollow pores within the kapok fibers and the micropores on the fiber walls are represented as an equivalent pore. The slip effects are considered, and experimental
Lin, JiamanKang, YingziXie, XinxingZhang, QuYang, ShanmiaoShangguan, Wen-Bin
Modal performance of a vehicle body often influences tactile vibrations felt by passengers as well as their acoustic comfort inside the cabin at low frequencies. This paper focuses on a premium hatchback’s development program where a design-intent initial batch of proto-cars were found to meet their targeted NVH performance. However, tactile vibrations in pre-production pilot batch vehicles were found to be of higher intensity. As a resolution, a method of cascading full vehicle level performance to its Body-In-White (BIW) component level was used to understand dynamic behavior of the vehicle and subsequently, to improve structural weakness of the body to achieve the targeted NVH performance. The cascaded modal performance indicated that global bending stiffness of the pre-production bodies was on the lower side w.r.t. that of the design intent body. To identify the root cause, design sensitivity of number and footprint of weld spots, roof bows’ and headers’ attachment stiffness to BIW
Titave, Uttam VasantZalaki, NitinNaidu, Sudhakara
As a novel passive control method, the acoustic black hole (ABH) structure demonstrates achieve energy aggregation efficiently and has the characteristics of lightweight and wide-band noise reduction. This study applies ABH theory to aircraft ducts by incorporating an additional ABH structure into the inner wall design. The spiral structure is specifically engineered to increase the characteristic length of the black hole and lower the cutoff frequency. To validate the effectiveness of this ABH structural design, finite element analysis was conducted to investigate structural frequency response, acoustic energy concentration characteristics, as well as damping and energy dissipation effects. Simulation results indicate significant energy accumulation on the inner wall with ABH structure in frequencies above 800Hz. Additionally, through acoustic-structure coupling analysis, far-field acoustic radiation characteristics were determined for this structural design followed by a
Guo, YaningLv, PengLiu, PengfeiNing, Donghong
Vehicle HVAC noise performance is an important vehicle design validation criterion since it significantly links the brand image of a vehicle. It affects the customer’s buying decision and the business of selling vehicles because it directly affects driving comfort. Customers expect continuous improvement in HVAC noise without compromising cooling performance. The process of cascading vehicle-level acoustic performance to subsystem and component levels becomes an important factor in the vehicle NVH development process. It was found that the component-level [HVAC unit without duct] performance of an HVAC system measured in an anechoic chamber was at par when compared to targets, whereas the subsystem-level performance [HVAC unit with duct and dashboard] was on the higher side of the targets. Advanced NVH tools were used to identify the source of noise at the subsystem level. It helped to locate the source and its transfer path. A design modification done at the transfer path location
Titave, Uttam VasantKalsule, ShrikantNaidu, Sudhakara
When the brakes are released and the vehicle starts, the brakes and suspensions vibrate and the car body resonates at 10 to 300 Hz, which is called brake creep groan. This low-frequency noise is more likely to occur in high-humidity environments. As vehicles become quieter with the introduction of EVs, improving this low-frequency noise has become an important issue. It is known that the excitation force is the stick-slip between the brake rotor and pads, but there are few studies that directly analyze stick-slip occurring in a vehicle. Acoustic emission (AE) is a phenomenon in which strain energy stored inside a material is released as elastic stress waves, and AE sensing can be used to elucidate the friction phenomena. In this study, the AE sensing is used to analyze changes in the stick-slip occurrence interval and generated energy when creep groan occurs. As a result, it was confirmed that the AE signal increased with high humidity. Furthermore, the friction phenomena during creep
Toyoda, HajimeYazawa, YusukeArai, ShinichiOno, ManabuHara, YasuhiroHase, Alan
As palliative acoustic material mixtures and compositions become more complex, the ability to accurately simulate their acoustic performance within an installed NVH component is becoming increasingly difficult. Historically, Biot parameters and their associated TMM models have been used to simulate the acoustic performance of multi-layered material compositions. However, these simulations are not able to account for real-world complexities such as manufacturing imperfections or inter-layer gluing effects. The assumptions made by simulation models, such as the perfectly diffuse field, are rarely true in actual measurements, let alone in the vehicle, further increasing the uncertainty when comparing measurement versus simulation. There already exists widely accepted methods for obtaining Biot parameters for single-layer materials. Typically, a multi-layer simulation considers each individual layer in isolation rather than its interactions with the rest of the composition after heating
Harry, EvanMorris-Kirby, RodCaponio, EleonoraHoang, Minh Tan
From a Noise Vibration Harshness (NVH) perspective, electric vehicles represent a great opportunity since the noise of the combustion engine, dominant in many driving conditions, is no longer present. On the other hand, drivers accustomed to driving cars with a strong personality (for example typically sporty ones) may perceive "silence" as a lack of character. Our internal study, conducted with a jury of people, has in fact already shown that for half of customers silence should characterize (Battery Electric Vehicle - BEV) vehicle; but, at the same time, the other half of the jury expects feedback from the vehicle while driving. The silence inside the passenger compartment, from an NVH point of view, can therefore be compared to a blank sheet of paper, on which, if desired, sounds designed to satisfy the driving pleasure expected by the customer can be introduced. Starting from this scenario, the paper describes: the approach adopted to define how many and what are the levers to
Celiberti, LuciaBorgarello, LauraFalasca, VanniLolli, FrancescoMeriga, AlessandraMiglietta, PiercarloSoldati, Mirella
In the acoustic study of the interior noise of a vehicle, whether for structure-borne or air-borne excitations, knowing which areas contribute the most to interior noise and therefore should be treated as a priority, is the main goal of the engineer in charge of the NVH. Very often these areas are numerous, located in different regions of the vehicle and contribute at different frequencies to the overall sound pressure level. This has led to the development of several “Panel Contribution Analysis” (PCA) experimental techniques. For example, a well-known technique is the masking technique, which consists of applying a “maximum package” (i.e., a package with very high sound insulation) to the panels outside of the area whose contribution must be measured. This technique is pragmatic but rather cumbersome to implement. In addition, it significantly modifies the dynamics and internal acoustics of the vehicle. In another well-known technique, the contribution of a certain area is defined
Di Marco, FedericoLafont, ThibaultBertolini, ClaudioGerges, Youssef
The development of an effective Acoustic Vehicle Alerting System (AVAS) is not solely about adhering to safety regulations; it also involves crafting an auditory experience that aligns with the expectations of vulnerable road users. To achieve this, a deep understanding of the acoustic transfer function is essential, as it defines the relationship between the sound emitter (the speaker inside the vehicle) and the receiver (the vulnerable road user). Maintaining the constancy of this acoustic transfer function is paramount, as it ensures that the sound emitted by the vehicle aligns with the intended safety cues and brand identity that is defined by the car manufacturer. In this research paper, three distinct methodologies for calculating the acoustic transfer function are presented: the classical Boundary Element method, the H-Matrix BEM accelerated method, and the Ray Tracing method. Furthermore, the paper encompasses an assessment of the correlation between these methods and their
Calloni, MassimilianoHadjit, RabahSalvekar, PinakMusser, Chad
When traveling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so-thin shear layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps – the most prominent example being CLEAN-SC – to produce certain ring effects, so-called halos, around sources. In this paper, we intend to cast some light on this effect by describing our path of analyzing/circumventing these halos and how they are linked to the
Puhle, ChristofMeyer, AndyDöbler, Dirk
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Rittenschober, ThomasKarrer, Rafael
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, the battery and the electric motors must be cooled. The compressor causes the acoustic excitation of other refrigeration circuit components and the chassis via pressure pulsations and vibration transmission, as well as emitting airborne sound directly. Sound measurements have been performed in an anechoic chamber to investigate the influence of operating conditions on the acoustics of an electric scroll compressor. This paper investigates the influence of the operating conditions on compressor acoustics and shows that rotation speed is the main factor influencing compressor noise. The sound spectra of fluid, structure and airborne noise are dominated by speed-dependent, tonal components. Additionally the effect of varying pressure
Saur, LukasBecker, Stefan
Particle Dampers (PDs) are passive devices employed in vibration and noise control applications. They consist of a cavity filled with particles that, when fixed to a vibrating structure, dissipate vibrational energy through friction and collisions among the particles. These devices have been extensively documented in the literature and find widespread use in reducing vibrations in structural machinery components subjected to significant dynamic loads during operation. However, their application in reducing the vibration of vehicle body panels as well as vehicle interior noise has received, up to now, relatively little attention. Previous work by the authors [9] has proven the effectiveness of particle dampers in mitigating vibrations in vehicle body panels, achieving a notable reduction in structure-borne noise within the vehicle cabin with an additional weight comparable to or even lower than that of bituminous damping treatments traditionally used for this purpose. This effect may be
Sanchez Climent, Francisco VicenteBertolini, Claudio
Computer modelling, virtual prototyping and simulation is widely used in the automotive industry to optimize the development process. While the use of CAE is widespread, on its own it lacks the ability to provide observable acoustics or tactile vibrations for decision makers to assess, and hence optimize the customer experience. Subjective assessment using Driver-in-Loop simulators to experience data has been shown to improve the quality of vehicles and reduce development time and uncertainty. Efficient development processes require a seamless interface from detailed CAE simulation to subjective evaluations suitable for high level decision makers. In the context of perceived vehicle vibration, the need for a bridge between complex CAE data and realistic subjective evaluation of tactile response is most compelling. A suite of VI-grade noise and vibration simulators have been developed to meet this challenge. In the process of developing these solutions VI-grade has identified the need
Franks, GrahamTcherniak, DmitriKennings, PaulAllman-Ward, MarkKuhmann, Marvin
In vehicle development, reducing noise is a major concern to ensure passenger comfort. As electric vehicles become more common and engine and vibration noises improve, the aerodynamic noise generated around the vehicle becomes relatively more noticeable. In particular, the fluctuating wind noise, which is affected by turbulence in the atmosphere, gusts of wind, and wake caused by the vehicle in front, can make passengers feel uncomfortable. However, the cause of the fluctuating wind noise has not been fully understood, and a solution has not yet been found. The reason for this is that fluctuating wind noise cannot be quantitatively evaluated using common noise evaluation methods such as FFT and STFT. In addition, previous studies have relied on road tests, which do not provide reproducible conditions due to changing atmospheric conditions. To address this issue, automobile manufacturers are developing devices to generate turbulence in wind tunnels. However, in wind tunnels, it is
Tajima, AtsushiIkeda, JunNakasato, KosukeKamiwaki, TakahiroWakamatsu, JunichiOshima, MunehikoLi, ChungGangTsubokura, Makoto
Items per page:
1 – 50 of 2102