Browse Topic: Maintenance and Aftermarket

Items (10,251)
ABSTRACT Rubber tracks are now extremely competitive for vehicles up to 50 tons and fully fielded on 39 ton vehicles. They represent the best of what technology can offer for tracked vehicles, in terms of high durability, performance and low life cycle cost. This is mainly attributed to the optimization through the five (5) technological tools described in this paper. Better from its numerous distinctive advantages, rubber tracks can be adapted to suit virtually any specific need. This ductile rubber track technology can be shaped to match today’s requirements, with the help of advanced rubber compounding and computer simulations
Marcotte, Tommy
ABSTRACT Route planning plays an integral role in mission planning for ground vehicle operations in urban areas. Determining the optimum path through an urban area is a well understood problem for traditional ground vehicles; however, in the case of autonomous unmanned ground vehicles (UGVs), additional factors must be considered. For a UGV, perception, rather than mobility, will be the limiting factor in determining operational areas. Current ground vehicle route planning techniques do not take perception concerns into account, and these techniques are not suited for route planning for UGVs. For this study, perception was incorporated into the route planning process by including expected sensor accuracy for GPS, LIDAR, and inertial sensors into the path planning algorithm. The path planner also accounts for additional factors related to UGV performance capabilities that affect autonomous navigation
Durst, Phillip J.Goodin, ChristopherSong, PeilinDu, Thien K.
ABSTRACT This paper is a technology update of the continued leveraging of using the newest vehicle diagnostics system, the Smart Wireless Internal Combustion Engine (SWICE) interface as the Mini-VCS (Vehicle Computer System). The objective is to further enhance Conditioned Based Maintenance Plus (CBM+) secure diagnostics, data logging, prognostics and sensor integration to support improvement of the US military ground vehicle fleet’s uptime to enhance operational readiness. Evolving advancements of the SWICE initiative will be presented, including how the SWICE “At Platform” Test System can readily be deployed as a multiple-use Mini-VCS. The application of the Mini-VCS integrates the best practices of diagnostics and prognostics, coupled with specialized sensor integration, into a solution that optimally benefits the military ground vehicle fleet. These benefits include increased readiness and operational availability, reduced maintenance costs, lower repair part inventory levels
Zachos, MarkDeGrant, Kenneth
ABSTRACT Sustaining readiness is a core component of the Army Modernization Strategy and the fleet of ground vehicles must be capable and available to fight when called to action even as additional requirements such as additional armor and electrical loads are imposed on such systems. In support of this principle, Combat Capabilities Development Command Ground Vehicle Systems Center (CCDC GVSC) provided Program Executive Office Ground Combat Systems with modeling and simulation (M&S) expertise to analyze soft soil towing capability of a notional recovery vehicle. The analysis involved simulating a notional recovery vehicle and disabled towed main battle tank up a slope and developing design changes to improve soft soil towing performance
Cole, MichaelGoryca, JillSingh, AmandeepRoss, Brant
ABSTRACT Simulation is a critical step in the development of autonomous systems. This paper outlines the development and use of a dynamically linked library for the Mississippi State University Autonomous Vehicle Simulator (MAVS). The MAVS is a library of simulation tools designed to allow for real-time, high performance, ray traced simulation capabilities for off-road autonomous vehicles. It includes features such as automated off-road terrain generation, automatic data labeling for camera and LIDAR, and swappable vehicle dynamics models. Many machine learning tools today leverage Python for development. To use these tools and provide an easy to use interface, Python bindings were developed for the MAVS. The need for these bindings and their implementation is described. Citation: C. Hudson, C. Goodin, Z. Miller, W. Wheeler, D. Carruth, “Mississippi State University Autonomous Vehicle Simulation Library”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
Hudson, Christopher R.Goodin, ChristopherMiller, ZachWheeler, WarrenCarruth, Daniel W.
ABSTRACT Product Development (PD) remains a highly uncertain process for both commercial and DoD programs. The presence of multiple stakeholders (e.g., DoD and allied agencies, soldiers/users, PEO, contractors, manufacturing, service, logistics) with varying requirements, preferences, constraints, and evolving priorities make this particularly challenging for the DoD. These risks are well recognized by agencies, and it is widely understood that acquisition is about risk management and not certainties. However, almost all the DoD acquisition processes still require critical reviews, and most importantly, structured decision support for the fuzzy front-end of the acquisition process. What is lacking, are effective decision support tools that explicitly recognize the sequential milestone structure embedded with multi-stakeholder decision making in all acquisition programs. We describe the Resilient Program Management & Development (RPMD) framework to support complex decision making with
Murat, AlperChinnam, Ratna BabuRana, SatyendraRapp, Stephen H.Hartman, Gregory D.Lamb, David A.Agusti, Rachel S.
In the realm of low-altitude flight power systems, such as electric vertical take-off and landing (eVTOL), ensuring the safety and optimal performance of batteries is of utmost importance. Lithium (Li) plating, a phenomenon that affects battery performance and safety, has garnered significant attention in recent years. This study investigates the intricate relationship between Li plating and the growth profile of cell thickness in Li-ion batteries. Previous research often overlooked this critical aspect, but our investigation reveals compelling insights. Notably, even during early stage of capacity fade (~ 5%), Li plating persists, leading to a remarkable final cell thickness growth exceeding 20% at an alarming 80% capacity fade. These findings suggest the potential of utilizing cell thickness growth as a novel criterion for qualifying and selecting cells, in addition to the conventional measure of capacity degradation. Monitoring the growth profile of cell thickness can enhance the
Zhang, JianZheng, Yiting
ABSTRACT At the onset of the Second World War, it was noticed that equipment being shipped overseas to the frontlines arrived corroded. The Department of Defense rapidly escalated the use of corrosion inhibitors in packaging materials to reduce the severity of the corrosion of those assets. This paper provides an overview of vapor corrosion inhibitors, describes how they are incorporated into anti-corrosion covers, and summarizes field test results showing typical protection provided to Department of Defense assets. The paper describes the environmental conditions that warrant the use of anti-corrosion covers and presents independent ground vehicle focused return-on-investment analysis. Citation: David J. Sharman, Robert R. Danko, Bill Scheible, “Light-weight drapable anti-corrosion covers,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023
Sharman, David JDanko, Robert R.Schieble, Bill
ABSTRACT Over the course of typical survivability analyses for underbody blast events, a multitude of individual cases are examined where charge size, charge location relative to the vehicle, and vehicle clearance from the ground are varied, so as to arrive at a comprehensive assessment. While multi-physics computational tools have reduced the expense and difficulty of testing each loading case experimentally, these tools still often require significant execution and wall-clock times to perform the simulations. In efforts to greatly reduce the time required to conduct a holistic survivability analysis, Fast Running Models (FRMs) have been implemented and validated to act as a surrogate for the computationally expensive finite element tools in use today. Built using a small set of simulations, FRMs generate loading data in a matter of seconds, representing a significant improvement in survivability analysis turnaround time
Li, LiangjunStowe, NicholasVlahopoulos, NickolasMohammad, SyedBarker, CraigThyagarajan, Ravi
ABSTRACT A customized approach to Pseudo Random Number Generation (PRNG) is developed specifically for the highly parallelizable sensor models in the ground vehicle autonomy application domain. The work considers three desirable attributes (namely quality, efficiency and determinism). Furthermore, the application demands high fanout (1:1Million+) seeding of traditional PRNGs. An approach using hash functions to generate the seeds for the PRNGs, each of which generates a small (i.e. 20) run of numbers, to handle determinism is investigated. Quality and efficiency are evaluated for multiple combinations of hash functions and PRNGs and a pareto front is created. Quality assessments were performed using industry standard testing suites (TestU01 and PractRand) and efficiency of various hash, PRNG, and batch size combinations was benchmarked on Windows/x64, ARM and NVIDIA/CUDA architectures. Citation: J. Kaniarz, M. Brudnak, “Evaluation of Hash-Seeded Pseudo-Random Number Generators in
Kaniarz, JohnBrudnak, Mark
ABSTRACT An important aspect of any new ground vehicle acquisition program is an analytic understanding of the key performance, cost, risk and growth tradeoffs inherent with the system design. The Whole System Trades Analysis Tool (WSTAT) provides a holistic framework for modeling and understanding these tradeoffs. In this paper, we present the overarching WSTAT methodology and then consider a specific implementation for the Army’s Squad Multipurpose Equipment Transport (SMET) autonomous ground vehicle. Emerging results regarding high-level SMET design considerations are provided to demonstrate the types of decision support enabled by the WSTAT capability
Henry, Stephen M.Waddell, Lucas A.DiNunzio, Michael R.
ABSTRACT Bayesian networks have been applied to many different domains in order to perform prognostics, reduce risk and ultimately improve decision making. However, these methods have not been applied to military ground vehicle field data sets. The primary objective of this study is to illustrate how Bayesian networks can be applied to a ground vehicle data set in order to predict potential downtime. The study generated a representative field data set, along with tabu search, in order to learn the network structure followed by quantification of link probabilities. The method is illustrated in a case study and future work is described in order to integrate the method into a real-time monitoring system. The study yielded a highly accurate prediction algorithm that can improve decision making, reduce downtime and more efficiently manage resources in the ground vehicle community
Banghart, MarcNelson, DavidBrennan, Adam
The advent of the low-altitude economy represents a novel economic paradigm that has emerged in recent years in response to technological advancement and an expanding social demand. The low-altitude economy is currently undergoing a period of rapid development, which underscores the importance of ensuring the safety of airfield operations. To enhance operational efficiency, unmanned aerial vehicles (UAVs) can be utilized for the inspection of the surrounding area, runway inspection, environmental monitoring, and other tasks. This paper employs TurMass technology, the TurMass gateway is miniaturised as the communication module of FT24, and the TK8620 development board replaces the LoRa RF module in the ELRS receiver to achieve the communication transmission between the remote control and the receiver. Additionally, a TurMass chip is integrated into the UAV to transmit beacons, while an airfield management aerial vehicle is employed to receive nearby UAV data, thereby preventing
Zhang, XiaoyangChen, Hongming
ABSTRACT Survivability of a welded vehicle hull is directly tied to the performance of the grade of steel armor used. Selecting the highest performing grade of armor that can be welded into a specific location on a vehicle will improve survivability. While rolled homogeneous armor is the simplest to weld, challenges in welding high hard, and especially ultra high hard, are well known. Preventative measures to avoid weld cracking in vehicle structures can lead to increased costs during fabrication. Cracking of welds, both seen and unseen, in deployed vehicles directly impacts the survivability of the vehicle. Weld cracking during deployment further magnifies repair costs and leads to non-mission capable status. This analysis examines the weldability, ballistic/blast performance, and underlying metallurgy of Flash® Processed steels that have been tested by Army, Academia, and Industry. Citation: G. Cola, “Flash® 600 Ultra High Hard: Room-Temp ER120S-1 Weldability Tekken, H-Plate
Cola, Gary M
ABSTRACT Predictive analysis of vehicle electrical systems is achievable by combining condition based maintenance (CBM) techniques and testing for statistical significance (TSS). When paired together, these two fundamentally sound sciences quantify the state of health (SOH) for batteries, alternators, starters, and electrical systems. The use of a communication protocol such as SAE J1939 allows for scheduling maintenance based on condition and not a traditional time schedule
Rini, GuyZachos, Mark
ABSTRACT The growing sophistication and emergence of widespread cyber threats today has driven the DOD to place Cyber Resiliency requirements on new and legacy defense systems. The DOD has recently garnered a massive defensive DevSecOps effort aimed at defining structured practices to unify software (Dev), Security (Sec), and operations (Ops) under the umbrella of more OpSec-driven engineering practices. According to the DOD DevSecOps practicum referenced in this document [1], “Practicing DevSecOps provides demonstrable quality and security improvements over the traditional software lifecycle, enabling application security, secure deployments, and secure operations in close alignment with mission objectives.” Modern systems often contain greater networking capability and are therefore more exposed to cyber-threats. Legacy systems were often conceived prior to the field of cyber warfare maturing, resulting in unpatched potential vulnerabilities that could be exploited through trusting
Wysocki, WilliamPrice, GregFriedman, SteveConage, Adrianne
ABSTRACT A cybersecurity exploit can be crafted to affect the vehicle diagnostic adapter system, which consists of the technician, vehicle diagnostic adapter, device drivers, and maintenance software all working together in a trusting relationship. In this paper, application layer encryption of the SAE J1939 diagnostic traffic between the vehicle diagnostic application and the in-vehicle secure gateway is developed to mitigate the vulnerabilities in potential attack paths. The proposed encryption strategy uses AES-128, which uses 16-byte cipher blocks. The secure connection is established by adjusting the bit rate to over twice the normal speed and packing a single J1939 message into two encrypted sequential CAN frames, The in-vehicle diagnostic gateway employs a hardware security module. A provisioning process is employed wherein the diagnostic application and the hardware security module both generate public-private key pairs. An elliptic curve Diffie-Hellman (ECDH) key exchange then
Daily, Jeremy S.Kulkarni, Prakash
ABSTRACT The M1 Abrams will be the primary heavy combat vehicle for the US military for years to come. Improvements to the M1 that increase reliability and reduce maintenance will have a multi-year payback. The M1 engine intake plenum seal couples the air intake plenum to the turbine inlet, and has opportunities for improvement to reduce leakage and intake of FOD (foreign object debris) into the engine, which causes damage and premature wear of expensive components
Tarnowski, StevePennala, SteveGoryca, MaryKauth, Kevin
ABSTRACT Materials and parts in complex systems, such as ground vehicles, can suffer from fatigue due to use, age and other stresses experienced during service. It is therefore essential to evaluate damage and predict the remaining life, reliability and safety of the vehicle. This paper describes the design of a wireless system for real-time monitoring of ground vehicles using Lamb waves. The proposed approach integrates sensor technology, signal processing and wireless networking into a single solution for online structural health monitoring (SHM). Lamb wave inspection is accomplished by inexpensive piezoelectric transducer patches (PZT), which are surface-mounted on the critical components of the vehicle without interrupting its operation. Lamb wave scattering from damage is obtained by comparing the recorded signal with the healthy sample and then damage-related features are identified using Probability Diagnostic Imaging (PDI). The problem of multiple Lamb wave modes is addressed
Dib, GergesKarpenko, OleksiiKlaser, JacobUdpa, Lalita
ABSTRACT A toolchain must be functionally cohesive with a business process, especially in technical domains such as complex systems engineering. Despite the industry-wide shift towards model-based digitization within engineering organizations, there is a lack of development in implementing model-based RAMS (Reliability, Availability, Maintenance, Safety) processes. This results in a missed opportunity to create value throughout the entire system lifecycle, from conceptual design to operations. This paper proposes some reasons for this and outlines a framework for evaluating model-based toolchains in the context of the entire Engineering cycle. A model-based architecture for RAMS is proposed and contrastively evaluated with respect to SysML. Key use cases are identified, and benefits are demonstrated using Maintenance Aware Design Environment Software. Citation: J. Langton, S. Hilton, “Iterative Co-Design Of Organizational Processes and Toolchains For Model-Based Reliability
Langton, JakeHilton, Sam
ABSTRACT This report documents the investigation of a vibration-based diagnostic approach developed for automotive transmissions. Data was recorded throughout three durability tests that were conducted by the transmission OEM. Rebuilt transmissions were operated around the clock under the most demanding speed and load set-points until critical gear or bearing failures resulted in loss of operability. The analysis results indicate that an embedded diagnostic and predictive capability can be implemented for military ground vehicle transmissions using vibration-based techniques. The results also specifically show an early indication of a fault condition is possible three weeks before failure for the test transmission. A technique for detecting solenoid faults using only the existing control signals rather than response measurements comparison that does not require the installation of additional sensors was also developed through this effort and will be discussed. This paper highlights the
Lebold, MitchellPflumm, ScottHines, JasonBanks, JeffreyBednar, JonathanMarino, LarryBechtel, Jim
ABSTRACT The value of modularity in ground vehicles to the Army and other services has been a topic of much debate for decades. There are instances of successful implementations of modularity in current ground vehicle programs of record. However, these implementations have generally been accomplished through swappable mission equipment rather than large-scale transformation of the vehicle and its core components. Concurrently, the Army Science and Technology (S&T) community has continued to demonstrate the technical feasibility of large-scale, transformative ground vehicle modularity, but the business case of modularity remains elusive. Decision support tools are needed to enable Army leadership to confidently and holistically assess the right balance between modular and mission-specific (conventional) vehicle platforms. This complex problem needs to address numerous considerations, including total lifecycle cost, mission utility, personnel requirements, and fleet adaptability. In this
Bayrak, EmrahEgilmez, MertKuang, HenryLi, XingyuPark, Jong MinPapalambros, PanosEpureanu, BogdanUmpfenbach, EdwardGerth, RichardDasch, JeanGorsich, DavidAnderson, ErikDasch, Jean
ABSTRACT Implementing Prognostic and Predictive Maintenance (PPMx) for the U.S. Army’s ground vehicle fleet requires the design and integration of on-platform predictive analytics. To support the design process, U.S. Army DEVCOM Ground Vehicle Systems Center (GVSC) and Applied Research Laboratory (ARL) Penn State researchers are developing a systematic approach that uses reliability modeling in a guiding role. The key steps of the process are building the initial reliability model from available data (e.g., system diagrams and physical layouts), augmenting with information on observed states and failure modes via subject matter experts, and then conducting trades on additional sensors and algorithms to determine a suitable predictive analytics capability. In this paper we provide an example of this process as applied to an Army ground vehicle, first focusing on a simplified sub-problem to demonstrate the technique, then providing statistics on the large scale process. Citation: M
Majcher, MonicaBennett, Lorri A.Banks, JeffreyLukens, MatthewNulton, EricYukish, Michael A.Merenich, John J.
Many of the “ilities” (Reliability, Maintainability, etc) are afterthoughts in the creation of a specification, and are often relegated to a set of templated boilerplate requirements, that are largely ignored. The Reliability / Robust Design professionals often use a P-Diagram (Parameter Diagram) as a key part of understanding the system under design. A way of integrating the Reliability effort more into the mainstream of the design activity, and give them a stronger voice, is to put their P-Diagram right into the specification, before it gets released to industry. This paper describes the rationale and the manner in which to do this
Dutcher, Kevin J.
ABSTRACT For large populations of vehicles, it is often difficult to estimate how changes to scheduled maintenance plans will impact future operational availability, especially when component failure rates may not be known precisely or the operational environment changes. The primary objective of this contribution is to illustrate a Modeling and Simulation (M&S) approach which determines the minimum amount of maintenance necessary to keep a given threshold of operational availability. The analysis was performed using discrete-event simulation, maintenance data, and anecdotal information from technicians. The information was combined within a model containing over 15 variables including labor and process constraints. The analysis yielded a decision tool that can be utilized to assess several potential long term storage maintenance policies, focused on cost minimization while meeting readiness requirements
Vergenz, PeterBanghart, Marc
ABSTRACT A retrofittable intelligent vehicle performance and fuel economy maximization system would have widespread application to military tactical and non-tactical ground vehicles as well as commercial vehicles. Barron Associates, Inc. and Southwest Research Institute (SwRI) recently conducted a research effort in collaboration with the U.S. Army RDECOM to demonstrate the feasibility of a Fuel Usage Monitor and Economizer (FUME) – an open architecture vehicle monitoring and fuel efficiency optimization system. FUME features two primary components: (1) vehicle and engine health monitoring and (2) real-time operational guidance to maximize fuel efficiency and extend equipment life given the current operating conditions. Key underlying FUME technologies include mathematical modeling of dynamic systems, real-time adaptive parameter estimation, model-based diagnostics, and intelligent usage monitoring. The research included demonstration of the underlying FUME technologies applied to a
Burkholder, Jason O.Ostrowski, Gregory J.Beck, Christopher S.
ABSTRACT A methodology for rapid development of purpose-built, heavy-fueled engines is being created. The methodology leverages best-in-class computational tools, component supplier expertise, user-programmable ECUs, and rapid prototyping to quickly provide custom engines for demanding military applications. . First-tier automotive suppliers are being used extensively on non-complex standard components to reduce the development time. Our design methodology aggressively eliminates unnecessary components and incorporates various other weight-saving features to minimize system weight. The anticipated total development time to a working prototype is less than 15 months for this first iteration of the methodology, and will be further reduced for any subsequent design iterations
Sykes, David M.Ratowski, Jeffrey
ABSTRACT In order to assess a design from a supportability perspective early in a technology’s prototyping phase, TARDEC’s Systems Engineering Directorate has established a Design for Supportability (DfS) competency. This competency, under the SE umbrella, encompasses the relationship between Design for Reliability (DfR), Design for Maintainability (DfM), and Design for Logistics (DfL). The combination of DfR, DfM and DfL form a trifecta of knowledge that determines whether a developing technology will: 1) perform its intended function for the complete duration of the mission it’s designed for; 2) be designed in a way to be fixable in a reasonable amount of time using standard tools; 3) be designed to have replaceable parts as accessible as possible; 4) not increase the logistics burden for our men and women in uniform
Majcher, MonicaEaly, James
ABSTRACT Reliability Physics simulations for electronic assemblies has matured to become best practice during specification and design. However, the potential advantages of these simulations to programs and integrators are more far reaching. This paper will explore how the simulations can be used for virtual qualification, reliability assurance, maintenance scheduling and obsolescence management. Citation: Ed Dodd, “Reliability Simulations for Electronic Assemblies: Virtual Qualification, Reliability Assurance, Maintenance Scheduling and Obsolescence Mitigation”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Dodd, Ed
ABSTRACT The Product Director Light Tactical Vehicles (PdD LTV) is responsible for the Army’s High Mobility Multipurpose Wheeled Vehicle (HMMWV) family of vehicles. Due to the large number of variants found throughout the Army plus the continued need for their service into the foreseeable future, the Army has conducted extensive depot recapitalization programs and continues to explore modernization options to sustain enduring requirements. Because competing performance requirements exist and budget constraints demand careful design choices, PdD LTV commissioned the development of a Whole System Trades Analysis Tool (WSTAT) specified for the HMMWV family of vehicles to help gain an analytic understanding of the key performance, cost, risk, and growth tradeoffs inherent within their potential designs. The WSTAT provides a holistic framework for modeling and understanding these tradeoffs. In this paper, the overarching WSTAT methodology is presented along with the specific implementation
Ballantine, MarissaDessanti, AlexPierson, AdamHo, YangDinunzio, MichaelCardinale, TeraCosta, LauraHopkinson, DanielPykor, Nathan
ABSTRACT Off-road autonomous navigation poses a challenging problem, as the surrounding terrain is usually unknown, the support surface the vehicle must traverse cannot be considered flat, and environmental features (such as vegetation and water) make it difficult to estimate the support surface elevation. This paper will focus on Robotic Research’s suite of off-road autonomous planning and obstacle avoidance tools. Specifically, this paper will provide an overview of our terrain detection system, which utilizes advanced LADAR processing techniques to provide an estimate of the surface. Additionally, it will describe the kino-dynamic off-road planner which can, in real-time, calculate the optimal route, taking into account the support surface, obstacles sensed in the environment, and more. Finally, the paper will explore how these technologies have been applied to a wide variety of different robotic applications
Lacaze, AlbertoMottern, EdwardBrilhart, Bryan
ABSTRACT Use of the Model-Based Design (MBD) processes is becoming increasingly common in embedded control system software as a means to manage software complexity, improve quality, and reduce development costs. The MBD process can achieve these goals by combining the design, simulation, and implementation of software features into a single, integrated workflow that reduces development effort and allows extensive software testing to be performed in simulation. In order to realize the full benefit of MBD, engineering organizations must invest resources intelligently in the tools, processes, and infrastructure to avoid common mistakes and pitfalls
Fraser, SteveFenstermacher, DavidDoyle, Chris
ABSTRACT The Digital Engineering Environment is new and rapidly changing. It is a complex system with many tools, databases and views. Organizations struggle with how to access their maturity in a new environment. This paper discusses the different aspects of determination of the maturity of architecture model within a Digital Engineering Environment. The intended audience is all levels of system engineers. It will address the characteristics of maturity from content, size and usefulness of architecture models. The goal of this paper is to provide system architecture with tools, process and insight into gaining more productivity and value from architecture models
Van Brocklin, Keith L
ABSTRACT This paper describes a software infrastructure made up of tools and libraries designed to assist developers in implementing computational dynamics applications running on heterogeneous and distributed computing environments. Together, these tools and libraries compose a so called Heterogeneous Computing Template (HCT). The underlying theme of the solution approach embraced by HCT is that of partitioning the domain of interest into a number of sub-domains that are each managed by a separate core/accelerator (CPU/GPU) pair. The five components at the core of HCT, which ultimately enable the distributed/heterogeneous computing approach to large-scale dynamical system simulation, are as follows: (a) a method for the geometric domain decomposition; (b) methods for proximity computation or collision detection; (c) support for moving data within the heterogeneous hardware ecosystem to mirror the migration of simulation elements from subdomain to subdomain; (d) parallel numerical
Negrut, DanHeyn, TobySeidl, AndrewMelanz, DanGorsich, DavidLamb, David
ABSTRACT Modern data loggers of industrial bus networks provide a useful tool to record the bus traffic associated critical vehicle systems, but provide little insight into the impact of maintenance patches on the associated system binary codes and system behaviors. This paper describes an emerging DARPA technology, the Tactical Smart Network Interface Card (TSNIC), that provides a secure base from which to deploy, monitor, and interact with patched binaries. Our TSNIC appliance can take either a passive or active presence on the vehicle bus, obviating the need for a vulnerable JTAG interface, and processes diagnostic messages arriving from the patched binary. These messages can provide a wide range of insights into the behavior of the system. The Tactical Smart NIC represents the next-generation of secure and reliable patching technology for military and heavy industrial systems. It provides a unique way for developers, maintainers, and field engineers to gain a new appreciation for
Brock, JamesDahlstrom, JasonPadnos, Stephen WilleTaylor, Stephen
ABSTRACT This paper discusses the Diagnostics And System Health (DASH) embedded diagnostics software originally developed for use on the M109A7 / M992A3 Family of Vehicles (FoV). The history and background of work completed by the DEVCOM Armaments Center (AC) System Health & Interactive Future Technologies (SHIFT) Division in developing and managing the DASH program are described. The DASH software architecture and design details are also discussed in depth, with a focus on the more recent efforts to adapt DASH to use a generic core software application that can be integrated on a wide variety of current and future ground combat systems to more easily provide embedded diagnostics capability. Citation: A. Ludwig, D. Tagliente, “Enabling Custom Vehicle Diagnostics with a Common Application Platform”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021
Ludwig, AndrewTagliente, Daniel
ABSTRACT As the Army leverages Prognostic and Predictive Maintenance (PPMx) models to migrate ground vehicle platforms toward health monitoring and prescriptive maintenance, the need is imminent for a pipeline to quickly and constantly move operational and maintenance data off the platform, through analytic models, and push the insights gained back out to the edge. This process will reduce data-to-decision time and operation and sustainment costs while increasing reliability for the platform and situational awareness for analysts, subject matter experts, maintainers, and operators. The US Army Ground Vehicle Systems Center (GVSC) is collaborating with The US Army Engineer Research and Development Center (ERDC) to develop a system of systems approach to stream operational and maintenance data to appropriate computing resources, collocating the data with DoD High-Performance Computing (HPC) processing capabilities where appropriate, then channeling the generated insights to maintainers
Bond, W. GlennPokoyoway, AndrewDaniszewski, DavidLucas, CesarArnold, Thomas L.Dozier, Haley R.
ABSTRACT Ground vehicles are complex systems with many interrelated subsystems - finding the sweet-spot among competing objectives such as performance, unit cost, O&S costs, development risk, and growth potential is a non-trivial task. Whole Systems Trade Analysis (WSTA) is a systems analysis and decision support methodology and tool that integrates otherwise separate subsystem models into a holistic system view mapping critical design choices to consequences relevant to stakeholders. As a highly integrated and collaborative effort WSTA generates a holistic systems and Multiple Objective Decision Analysis (MODA) model. The decision support model and tool captures and synthesizes outputs from individual analyses into trade-space visualizations designed to facilitate rapid and complete understanding of the trade-space to stakeholders and provide drill down capability to supporting rationale. The approach has opened up trade space exploration significantly evaluating up to 1020+ potential
Edwards, ShatielCilli, MatthewPeterson, TroyZabat, MikeLawton, CraigShelton, Liliana
ABSTRACT The Advanced Systems Engineering Capability (ASEC) developed by TARDEC Systems Engineering & Integration (SE&I) group is an integrated Systems Engineering (SE) knowledge creation and capture framework built on a decision centric method, high quality data visualizations, intuitive navigation and systems information management that enable continuous data traceability, real time collaboration and knowledge pattern leverage to support the entire system lifecycle. The ASEC framework has evolved significantly over the past year. New tools have been added for capturing lessons learned from warfighter experiences in theater and for analyzing and validating the needs of ground domains platforms/systems. These stakeholder needs analysis tools may be used to refine the ground domain capability model (functional decomposition) and to help identify opportunities for common solutions across platforms. On-going development of ASEC will migrate all tools to a single virtual desktop to promote
Mendonza, PradeepFitch, John
ABSTRACT FBS Inc. is working with the TARDEC Electrified Armor Lab to develop a nondestructive structural health monitoring technology for composite armor panels that utilizes an array of embedded ultrasonic sensors for guided wave tomographic imaging. This technology would allow for periodic or real-time monitoring of armor integrity while being minimally intrusive and adding negligible weight. The technology is currently being developed and tested in pseudo composite armor panels and efforts are focused on reducing sensor array density, improving sensor integration procedures, and maximizing system sensitivity to damage. In addition to experimental testing and development, FBS is developing a highly-automated finite element model generation and analysis program to be used in conjunction with Abaqus/Explicit commercial finite element software. This program is specifically dedicated to modeling guided wave propagation in pseudo composite armor panels between embedded ultrasonic sensors
Borigo, Cody J.Bostron, JasonRose, Joseph L.Owens, Steven E.Reynolds, Thomas P.Meitzler, Thomas J.
ABSTRACT Corrosion damage to military ground vehicles costs the U.S. Army around $1.6B per year. A large part of that cost is related to keeping vehicles like the Stryker at their full fighting capability. Corrosion damage has been a common finding on Stryker vehicles and even light corrosion damage, which often reaches 10% of the body thickness or more, can degrade its armor protection rating and require replacement. Recently, cold spray deposition has been shown to be capable of restoring the full ballistic resistance of corrosion damaged high hard steel armor panels. These repairs can be done on-vehicle in depot facilities, using mobile high-pressure cold spray systems. This repair capability can reduce the number of entire side, roof, and floor panels that need to be cut out and re-welded in, which is the only currently approved repair operation for corrosion damage that exceeds allowable depths. Citation: V.K. Champagne, C.A. Widener, A.T. Nardi, G.D. Ferguson, “Structural Repair
Champagne, Victor K.Widener, Christian A.Nardi, Aaron T.Ferguson, Gehn D.
ABSTRACT All CBM+ solutions must establish a business case considering cost of implementation and sustainment of value with a quantifiable return on investment. The business case must be traceable to specific failure modes, associated failure effects, criticality, and risk. Risk is not limited to safety and operational risks. Predictive systems by definition return both true and false predictions representing operational and financial risk from high false positive rates. There is also risk of losing operator confidence in predictive systems when there is a high false positive rate. All of these risks must be quantified and considered in the design and development of CBM+ systems. Model based approaches are effective in accelerating development, defining advanced functional characteristics, and efficiently testing dynamic effects of complex systems. CBM+ maintenance strategies rely on performance of complex systems
Nelson, DavidBanghart, Marc
ABSTRACT Realizing End-to-End capabilities such as Condition Based Maintenance-Plus (CBM+) using the DoD’s acquisition process presents significant challenges that need to be overcome. Acquisition of new capabilities, especially non-Programs of Records (PoR), has become more difficult to demonstrate and field based on a set of complex factors which include unique and special build requirements, more options for components, cost and schedule constraints, and quality risks of unprecedented systems. In this paper, we document the process on how Enterprise Architecture (EA) methodologies can be effectively used to incorporate critical structures within the Systems Engineering Process to streamline the requirements and architectures development for a non-PoRs. We then explore the dimensions of strategic planning, testing, and data collection that are needed to determine basis of issue requirements and Capability Set Architectures from EA methodologies. We conclude by presenting the results
Zandstra, RobertReineke, DanielWard, William T.
ABSTRACT Defense programs require accurate estimates of future asset performance and cost to manage the life cycles of both new and aging platforms. Traditional forecasting techniques and business intelligence applications typically fall short. Simulation-driven predictive analysis can deliver detailed insights that extend well beyond traditional methods. Advances in computing power and data management technologies now unshackle asset managers from the limitations of traditional forecasting. Clockwork’s simulation platform and predictive analysis approach leverages experience developed through serving defense programs. A case study on the allocation of maintenance resources illustrates this technique. Balancing manpower levels across multiple echelons and multiple geographic locations is accomplished after running nearly one thousand simulation scenarios—each spanning the full life cycle of the complete set of weapons systems. Historical data is merely a starting point—the distinctive
Posadas, Sergio
ABSTRACT Developing preventive and corrective maintenance strategies for military ground vehicles based on asset readiness and lifecycle cost is a challenge due to the complexity associated with the collection and storage of maintenance and failure data in the operational environment. Many of the past reliability centered maintenance efforts have encountered significant challenges in collecting, identifying, accessing, cleaning, enhancing, fusing, and analyzing the data. Another challenge is creating and maintaining complex simulation models that require significant effort and time to produce business value. The work described in this paper is the result of a collaborative effort among multiple US Army organizations to simplify the approach in order to gain valuable insight from the existing data. It is shown how the resulting process can be used to develop simplified models to optimize corrective and preventive maintenance programs. Details are provided on how to work with the
Gugaratshan, GugaSrinivasan, SyamalaHarrison, DeanCastanier, Matthew P.Wade, Jody D.Jones, J. Isaac “Ike”
ABSTRACT Tools have been developed to compare the dynamic deformation of vehicle hulls as they undergo blast-testing with numerical simulations. These tools allow quantitative comparisons and measurements over a wide area of the hull surface, rather than point comparisons as have been performed in the past. The experimental measurements are performed with the Dynamic Deformation Instrumentation System (DDIS) that was developed for TARDEC. Numerical simulations of the test article attached to Southwest Research Institute’s Landmine Test Fixture were performed with LS-DYNA using an empirical blast-loads model. The specific example highlighted in this paper is the deformation by blast testing of a hull component
Walker, James D.Grosch, Donald J.Chocron, SidneyGrimm, MattCarpenter, Alexander J.Moore, Thomas Z.Weiss, CarlBigger, Rory P.Mathis, James T.McLoud, Katie
ABSTRACT The M109A7/M992A3 Paladin Integrated Management (PIM) is a sustainment program designed to bring the M109 Family of Vehicles (FOV) up-to-date and extend the service life of the fleet. PIM consists of the sustainment and upgrade of two military tracked vehicles; the Paladin M109A6 Self Propelled Howitzer (SPH) and the M992A2 Carrier Ammunition, Tracked (CAT). The M109A7/M992A3 program is engineered to improve readiness, avoid component obsolescence, and increase sustainability. These changes will increase the performance of the M109A7/M992A3, eliminate obsolescence issues associated with supplying new parts to the M109A6 and M992A2, and ease the logistics burden within the Artillery Brigade Combat Team (ABCT) through commonality of spares parts. The PIM project has been a multi-phase project with development expected to continue into 2015
Bailey, BruceMiller, Mark R.Brinton, GordonSwartz, EricHamilton, GeorgeUetz, PaulJochum, EricRegmont, Dennis
ABSTRACT Integration risk differentiates from other program risk in that it always involves interfaces between various systems or subsystems. The level of integration required is different depending on the phase of the Acquisition Life Cycle (i.e. Materiel Solution Analysis Phase, Technology Development Phase, Engineering and Manufacturing Development Phase, Production and Deployment Phase and Operation and Support Phase). This paper focuses on the process used to assess the integration risks of integrating various technologies or subsystems into a vehicle platform. The process presented provides a step by step instruction on how to perform an integration risk assessment. A new Integration Readiness Level (IRL) rating system has been developed by the TARDEC System Engineering and Integration Group to help acquisition vehicle programs as well as science and technology teams to evaluate the health of their technology or subsystem integration into their vehicles. The rating system is
Tzau, Jerome
Items per page:
1 – 50 of 10251