Browse Topic: Maintenance and Aftermarket
For years researchers at the Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) have been developing tools to accelerate the materials discovery and development of new energy storage technologies, including those that can predict the performance of the batteries systems for long-term grid services.
Medical tubing is an essential component of countless healthcare applications, from intravenous (IV) and oxygen lines to catheters and diagnostic equipment. These tubes, often made of clear flexible polymers, must be produced to exacting standards: free of contaminants, strong under pressure, and biocompatible. However, the joining process to connect these tubes can introduce significant manufacturing challenges.
MIT researchers have used 3D printing to produce self-heating microfluidic devices, demonstrating a technique which could someday be used to rapidly create cheap, yet accurate, tools to detect a host of diseases.
Solar panels are composed of dozens of solar cells, which are usually made of silicon. While silicon is the standard, producing and processing it is energy-intensive, making it costly to build new solar panel manufacturing facilities. Most of the world’s solar cells are made in China, which has an abundance of silicon. To increase solar cell production in the U.S., a new, easily produced domestic material is needed. “We’re developing technologies that we can easily produce without spending a ton of money on expensive equipment,” said Juan-Pablo Correa-Baena, an Associate Professor in the School of Materials Science and Engineering.
Warehouse logistics increasingly rely on automation in the form of autonomous mobile robots (AMRs), scanners, complex conveyors, and fleet management systems for seamless operation, but it’s the ubiquitous, century-old pallet that remains the critical support system. Make no mistake, if even one of those thousands of pallets is defective, it can create havoc in the warehouse.
This document describes: a The preparatory steps to test experimental Type I fluids according to AMS1424; b The recommendations for the preparation of samples for endurance time testing according to ARP5945; c A short description of the recommended field spray test; d The protocol to demonstrate that Type I fluid can be used with the Type I holdover time guidelines published by the FAA and Transport Canada, including endurance time data obtained from ARP5945; e The protocol for inclusion of Type I fluids on the FAA and Transport Canada lists of fluids; f The protocol for updating the FAA and Transport Canada lists of fluids; g The role of the SAE G-12 Aircraft Deicing Fluids Committee; h The role of the SAE G-12 Holdover Time Committee; and i The process for the publication of Type I holdover time guidelines. This document does not describe laboratory-testing procedures. This document does not include the qualification requirements for AMS1428 Type II, III, and IV fluids (these are
This document describes: a The preparatory steps to test experimental Type II, III, and IV fluids according to AMS1428 b The recommendations for the preparation of samples for endurance time testing according to ARP5485 c A short description of wind tunnel testing d A short description of the recommended field spray test e The protocol to generate draft holdover time guidelines from endurance time data obtained from ARP5485 f The protocol for inclusion of Type II, III, and IV fluids on the FAA and Transport Canada lists of fluids and the protocol for updating the lists of fluids g The role of the SAE G-12 Aircraft Deicing Fluids Committee h The role of the SAE G-12 Holdover Time Committee i The process for the publication of Type II, III, and IV holdover time guidelines This document does not describe laboratory testing procedures. This document does not include the qualification requirements for AMS1424 Type I fluids (these are provided in ARP6207).
This document establishes general design criteria, tolerances, and limits of application for tooling, fixtures, and accessories for mounting and driving gas turbine engine rotors on horizontal and vertical balancing machines.
A paper-based diagnostic device can detect COVID-19 and other infectious diseases in under 10 minutes, without the need for sophisticated lab equipment or trained personnel.
A research team has developed DeepNeo, an AI-powered algorithm that automates the process of analyzing coronary stents after implantation. The tool matches medical expert accuracy while significantly reducing assessment time. With strong validation in both human and animal models, Deep-Neo has the potential to standardize monitoring after stent implantation and thus improve cardiovascular treatment outcomes.
Chronic stress can lead to increased blood pressure and cardiovascular disease, decreased immune function, depression, and anxiety. Unfortunately, the tools we use to monitor stress are often imprecise or expensive, relying on self-reporting questionnaires and psychiatric evaluations.
This SAE Standard covers complete general and dimensional specifications for refrigeration tube fittings of the flare type specified in Figures 1 to 42 and Tables 1 to 15. These fittings are intended for general use with flared annealed copper tubing in refrigeration applications. Dimensions of single and double 45 degree flares on tubing to be used in conjunction with these fittings are given in Figure 2 and Table 1 of SAE J533. The following general specifications supplement the dimensional data contained in Tables 1 to 15 with respect to all unspecified details.
The AMS1428 specification defines the technical requirements for Type II, III, and IV aircraft deicing/anti-icing fluids. These non-Newtonian thickened fluids are formulated to effectively remove frost, ice, and snow from aircraft surfaces while offering protection times longer than Type I fluids against refreezing or frozen contamination. The document outlines key performance criteria, such as freezing point, aerodynamic acceptance, and anti-icing performance, alongside environmental properties like biodegradability, aquatic toxicity, biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Operational considerations, including storage stability, materials compatibility, exposure to dry air, dry-out exposure to cold dry air, successive dry-out and rehydration, and physical properties like pH, refraction, and rheological properties (viscosity) are also specified. Additionally, the specification details the required testing methods to evaluate these properties and sets forth
Items per page:
50
1 – 50 of 10120