Browse Topic: Aircraft operations
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding the use of forced air or forced air/fluid equipment to remove frozen contaminants
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that must be considered and evaluated by the design or specifying engineer in establishing the specifications and design characteristics of battery-powered aircraft tow tractors. This AIR is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications
This SAE Aerospace Information Report (AIR) considers the following major areas: 1 major components and their ratings; 2 selection criteria for optimum design balance for electrical systems; 3 effects of operating conditions and environment on both maintenance and life of components; 4 trouble signals - their diagnosis and cure
This document defines cables that are used to provide electrical power for U.S. Department of Defense avionics support and test equipment
This SAE Aerospace Standard (AS)/Minimum Operational Performance Specification (MOPS) specifies the minimum performance requirements of remote on-ground ice detection systems (ROGIDS). These systems are ground based. They provide information that indicates whether frozen contamination is present on aircraft surfaces. Section 1 provides information required to understand the need for the ROGIDS, ROGIDS characteristics, and tests that are defined in subsequent sections. It describes typical ROGIDS applications and operational objectives and is the basis for the performance criteria stated in Sections 3 through 5. Section 2 provides reference information, including related documents, definitions, and abbreviations. Section 3 contains general design requirements for the ROGIDS. Section 4 contains the Minimum Operational Performance Requirements for the ROGIDS, which define performance in icing conditions likely to be encountered during ground operations. Section 5 describes environmental
As aerospace engineers push the boundaries of new frontiers, the need for advanced materials that can withstand the rigorous demands of these advanced applications is relentless. These materials go beyond functionality; it is about ensuring reliability in the skies, where failure is not an option. Fluorosilicone can help do exactly that. In the 1960s, the U.S. Air Force noticed that conventional silicone-based sealants, coatings, and other components degraded rapidly when exposed to fuels, de-icing fluids, and other hydrocarbon-based solvents. Dimethyl-based silicones are non-polar and easily absorb hydrocarbon-based solvents, which may result in material swelling, mechanical weakening, and ultimately, failure
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore, the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training
This ARP describes methods that are known to have been used by aircraft manufacturers to evaluate aircraft aerodynamic performance and handling effects following application of aircraft ground deicing/anti-icing fluids (“fluids”), as well as methods under development. Guidance and insight based upon those experiences are provided, including: Similarity analyses. Icing wind tunnel tests. Flight tests. CFD and other numerical analyses. This ARP also describes: The history of evaluation of the aerodynamic effects of fluids. The effects of fluids on aircraft aerodynamics. The testing for aerodynamic acceptability of fluids for SAE and regulatory qualification performed in accordance with AS5900. Additionally, Appendices A to E present individual aircraft manufacturers’ histories and methodologies, which substantially contributed to the improvement of knowledge and processes for the evaluation of fluid aerodynamic effects, and Appendix F considers the modeling of fluid removal from
The tow vehicle should be designed for towbarless movement of aircraft on the ground. The design will ensure that the unit will safely secure the aircraft nose landing gear within the coupling system for any operational mode
This SAE aerospace recommended practice (ARP) covers the requirements for external ground power equipment supplying 115/200 V, three-phase, 400 HZ output power measured at the aircraft receptacle. All forms of 400 Hz ground power including mobile and fixed systems are addressed by this document
This specification covers a runway deicing and anti-icing product in the form of a solid. Unless otherwise stated, all specifications referenced herein are latest (current) revision
This specification covers runway deicing and anti-icing products in the form of a liquid. Unless otherwise stated, all specifications referenced herein are latest (current) revision
Aircraft moving at transonic speeds (i.e., ~0.7 to 0.85 Mach - or near the speed of sound) experience transonic wing flutter. Engineers have traditionally relied on experimental or computational methods to understand wing flutter for the design process. Modeling wing flutter using the customary computational methods requires tens of hours of simulations on a supercomputer that is costly to buy or rent. Having a method to model wing flutter aerodynamics without requiring supercomputer use would (a) increase the efficiency and decrease the cost of aircraft wing design and (b) enable real-time wing-flutter modeling to aid in-flight aircraft operation and control
The new 2600 Series 13-liter engine for off-highway machines will do more with less thanks to variable geometry turbocharging. Perkins announced in September its all-new engine series for off-highway applications, launching the 2600 Series 13-liter engine at a press event in London where Truck & Off-Highway Engineering was in attendance. Perkins states that the 2600 Series is intended for a wide array of off-highway applications including agricultural tractors, materials handling, construction, mining, aircraft ground support and other use cases. “As the off-highway industry advances toward a lower-carbon future, equipment manufacturers still face expectations for long-term productivity and reliability in the world's most-demanding work environments,” said Jaz Gill, vice president of global sales, marketing, service and parts. “The new Perkins 2600 Series engine platform demonstrates how we're leveraging our experience, intelligence and commitment to help OEMs navigate the energy
This SAE Aerospace Information Report (AIR) provides a description of a screening method for use in the field for verifying an AMS 1428 anti-icing fluid is above its minimum low shear viscosity as published with holdover time guidelines. The test will determine if the fluid is (a) satisfactory, (b) unsatisfactory, or (c) borderline needing more advanced viscometry testing. Other field tests may be required to determine if an anti-icing fluid is useable, such as refractive index, appearance or other tests as may be recommended by the fluid manufacturer
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the standardization of safe operating procedures to be used in performing services and maintenance at designated deicing facilities (DDFs), comprising both central deicing facilities (CDFs) and remote deicing facilities. These procedures are necessary for the proper deicing/anti-icing of aircraft on the ground and performance of associated checks in accordance with the various approved ground icing programs, while considering applicable local environmental, operational, and economic requirements. This document should be used by operators, regulators, and airport authorities to develop and standardize approvals and permits for the establishment and operation of a DDF. The coordination of stakeholders is required prior to the approval of design plans for a deicing facility. Operating procedures shall be agreed to, in writing, by all air operators, airport authorities, regulators, and service providers prior to
This foundation specification (AMS1424S) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid
Ice and snow accretion on aircraft surfaces imposes operational and safety challenges, severely impacting aerodynamic performance of critical aircraft structures and equipment. For optimized location-based ice sensing and integrated ‘smart’ de-icing systems of the future, microwave resonant-based planar sensors are presented for their high sensitivity and versatility in implementation and integration. Here, a conformal, planar complementary split ring resonator (CSRR) based microwave sensor is presented for robust detection of localized ice and snow accretion. The sensor has a modified thick aluminum-plate design and is coated with epoxy for greater durability. The fabricated sensor operates at a resonant frequency of 1.18 GHz and a resonant amplitude of -33 dB. Monitoring the resonant frequency response of the sensor, the freezing and thawing process of a 0.1 ml droplet of water is monitored, and a 60 MHz downshift is observed for the frozen droplet. Using an artificial snow chamber
Pitot probes and Total Air Temperature (TAT) probes are critical to aircraft performance. They are also susceptible to becoming overwhelmed and produce erroneous outputs when flying in icing conditions, especially in high altitude ice crystal situations. When the probes are overwhelmed with ice crystals, it can have significant impacts to aircraft operations. Through design and process iterations, Collins Aerospace (also known as Rosemount Aerospace™), has developed new Appendix D compliant pitot and TAT probes that are much more capable in high ice crystal content icing environments which greatly reduce the adverse risks to the aircraft and engine systems that depend on these probes
In-flight icing significantly influences the design of large passenger aircraft. Relevant aspects include sizing of the main aerodynamic surfaces, provision of anti-icing systems, and setting of operational restrictions. Empennages of large passenger aircraft are particularly affected due to the small leading edge radius, and the requirement to generate considerable lift for round out and flare, following an extended period of descent often in icing conditions. This paper describes a CFD-based investigation of the effects of sweep on the aerodynamic performance of a novel forward-swept horizontal stabilizer concept in icing conditions. The concept features an unconventional forward sweep, combined with a high lift leading edge extension (LEX) located within a fuselage induced droplet shadow zone, providing passive protection from icing. In-flight ice accretion was calculated, using Ansys FENSAP-ICE, on 10°, 15° and 20° (low, intermediate, and high) sweep horizontal stabilizers, with
This work presents the anti-icing simulation results from a pressure sensing probe. This study used various turbulence models to understand their influence in surface temperature prediction. A fully turbulence model and a transition turbulence model are considered in this work. Both dry air and icing conditions are considered for this study. The results show that at low Angle of Attack (AOA) both turbulence model results compared well and at higher AOA the results deviated. Overall, as AOA increases, the k-ꞷ SST model predicted the surface temperature colder than the Transition SST model result
This SAE Aerospace Standard (AS) establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer’s recommendations
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplements the requirements of the detail specification or drawings of specific components or assemblies (e.g., regulators, masks, cylinders, etc.). Where a conflict exists between this standard and detail specifications, detail specifications shall take precedence
This SAE Aerospace Standard (AS) establishes the characteristics and utilization of 270 V DC electric power at the utilization equipment interface and the constraints of the utilization equipment based on practical experience. These characteristics shall be applicable for both airborne and ground support power systems. This document also defines the related distribution and installation considerations. Utilization equipment designed for a specific application may not deviate from these requirements without the approval of the procuring activity
This document establishes the minimum training and qualification requirements for ground-based aircraft deicing/anti-icing methods and procedures. All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturers’ recommendations. The scope of training should be adjusted according to local demands. There are a wide variety of winter seasons and differences of the involvement between deicing operators, and therefore the level and length of training should be adjusted accordingly. However, the minimum level of training shall be covered in all cases. As a rule of thumb, the amount of time spent in practical training should equal or exceed the amount of time spent in classroom training
14-day material test to determine the cyclic effects of runway deicing compounds on cadmium plated parts
Items per page:
50
1 – 50 of 811