Browse Topic: Tools and equipment

Items (7,463)
ABSTRACT Rubber tracks are now extremely competitive for vehicles up to 50 tons and fully fielded on 39 ton vehicles. They represent the best of what technology can offer for tracked vehicles, in terms of high durability, performance and low life cycle cost. This is mainly attributed to the optimization through the five (5) technological tools described in this paper. Better from its numerous distinctive advantages, rubber tracks can be adapted to suit virtually any specific need. This ductile rubber track technology can be shaped to match today’s requirements, with the help of advanced rubber compounding and computer simulations
Marcotte, Tommy
ABSTRACT Simulation is a critical step in the development of autonomous systems. This paper outlines the development and use of a dynamically linked library for the Mississippi State University Autonomous Vehicle Simulator (MAVS). The MAVS is a library of simulation tools designed to allow for real-time, high performance, ray traced simulation capabilities for off-road autonomous vehicles. It includes features such as automated off-road terrain generation, automatic data labeling for camera and LIDAR, and swappable vehicle dynamics models. Many machine learning tools today leverage Python for development. To use these tools and provide an easy to use interface, Python bindings were developed for the MAVS. The need for these bindings and their implementation is described. Citation: C. Hudson, C. Goodin, Z. Miller, W. Wheeler, D. Carruth, “Mississippi State University Autonomous Vehicle Simulation Library”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
Hudson, Christopher R.Goodin, ChristopherMiller, ZachWheeler, WarrenCarruth, Daniel W.
ABSTRACT Product Development (PD) remains a highly uncertain process for both commercial and DoD programs. The presence of multiple stakeholders (e.g., DoD and allied agencies, soldiers/users, PEO, contractors, manufacturing, service, logistics) with varying requirements, preferences, constraints, and evolving priorities make this particularly challenging for the DoD. These risks are well recognized by agencies, and it is widely understood that acquisition is about risk management and not certainties. However, almost all the DoD acquisition processes still require critical reviews, and most importantly, structured decision support for the fuzzy front-end of the acquisition process. What is lacking, are effective decision support tools that explicitly recognize the sequential milestone structure embedded with multi-stakeholder decision making in all acquisition programs. We describe the Resilient Program Management & Development (RPMD) framework to support complex decision making with
Murat, AlperChinnam, Ratna BabuRana, SatyendraRapp, Stephen H.Hartman, Gregory D.Lamb, David A.Agusti, Rachel S.
ABSTRACT At the onset of the Second World War, it was noticed that equipment being shipped overseas to the frontlines arrived corroded. The Department of Defense rapidly escalated the use of corrosion inhibitors in packaging materials to reduce the severity of the corrosion of those assets. This paper provides an overview of vapor corrosion inhibitors, describes how they are incorporated into anti-corrosion covers, and summarizes field test results showing typical protection provided to Department of Defense assets. The paper describes the environmental conditions that warrant the use of anti-corrosion covers and presents independent ground vehicle focused return-on-investment analysis. Citation: David J. Sharman, Robert R. Danko, Bill Scheible, “Light-weight drapable anti-corrosion covers,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 15-17, 2023
Sharman, David JDanko, Robert R.Schieble, Bill
ABSTRACT Over the course of typical survivability analyses for underbody blast events, a multitude of individual cases are examined where charge size, charge location relative to the vehicle, and vehicle clearance from the ground are varied, so as to arrive at a comprehensive assessment. While multi-physics computational tools have reduced the expense and difficulty of testing each loading case experimentally, these tools still often require significant execution and wall-clock times to perform the simulations. In efforts to greatly reduce the time required to conduct a holistic survivability analysis, Fast Running Models (FRMs) have been implemented and validated to act as a surrogate for the computationally expensive finite element tools in use today. Built using a small set of simulations, FRMs generate loading data in a matter of seconds, representing a significant improvement in survivability analysis turnaround time
Li, LiangjunStowe, NicholasVlahopoulos, NickolasMohammad, SyedBarker, CraigThyagarajan, Ravi
ABSTRACT An important aspect of any new ground vehicle acquisition program is an analytic understanding of the key performance, cost, risk and growth tradeoffs inherent with the system design. The Whole System Trades Analysis Tool (WSTAT) provides a holistic framework for modeling and understanding these tradeoffs. In this paper, we present the overarching WSTAT methodology and then consider a specific implementation for the Army’s Squad Multipurpose Equipment Transport (SMET) autonomous ground vehicle. Emerging results regarding high-level SMET design considerations are provided to demonstrate the types of decision support enabled by the WSTAT capability
Henry, Stephen M.Waddell, Lucas A.DiNunzio, Michael R.
ABSTRACT The growing sophistication and emergence of widespread cyber threats today has driven the DOD to place Cyber Resiliency requirements on new and legacy defense systems. The DOD has recently garnered a massive defensive DevSecOps effort aimed at defining structured practices to unify software (Dev), Security (Sec), and operations (Ops) under the umbrella of more OpSec-driven engineering practices. According to the DOD DevSecOps practicum referenced in this document [1], “Practicing DevSecOps provides demonstrable quality and security improvements over the traditional software lifecycle, enabling application security, secure deployments, and secure operations in close alignment with mission objectives.” Modern systems often contain greater networking capability and are therefore more exposed to cyber-threats. Legacy systems were often conceived prior to the field of cyber warfare maturing, resulting in unpatched potential vulnerabilities that could be exploited through trusting
Wysocki, WilliamPrice, GregFriedman, SteveConage, Adrianne
ABSTRACT The value of modularity in ground vehicles to the Army and other services has been a topic of much debate for decades. There are instances of successful implementations of modularity in current ground vehicle programs of record. However, these implementations have generally been accomplished through swappable mission equipment rather than large-scale transformation of the vehicle and its core components. Concurrently, the Army Science and Technology (S&T) community has continued to demonstrate the technical feasibility of large-scale, transformative ground vehicle modularity, but the business case of modularity remains elusive. Decision support tools are needed to enable Army leadership to confidently and holistically assess the right balance between modular and mission-specific (conventional) vehicle platforms. This complex problem needs to address numerous considerations, including total lifecycle cost, mission utility, personnel requirements, and fleet adaptability. In this
Bayrak, EmrahEgilmez, MertKuang, HenryLi, XingyuPark, Jong MinPapalambros, PanosEpureanu, BogdanUmpfenbach, EdwardGerth, RichardDasch, JeanGorsich, DavidAnderson, ErikDasch, Jean
ABSTRACT A methodology for rapid development of purpose-built, heavy-fueled engines is being created. The methodology leverages best-in-class computational tools, component supplier expertise, user-programmable ECUs, and rapid prototyping to quickly provide custom engines for demanding military applications. . First-tier automotive suppliers are being used extensively on non-complex standard components to reduce the development time. Our design methodology aggressively eliminates unnecessary components and incorporates various other weight-saving features to minimize system weight. The anticipated total development time to a working prototype is less than 15 months for this first iteration of the methodology, and will be further reduced for any subsequent design iterations
Sykes, David M.Ratowski, Jeffrey
ABSTRACT In order to assess a design from a supportability perspective early in a technology’s prototyping phase, TARDEC’s Systems Engineering Directorate has established a Design for Supportability (DfS) competency. This competency, under the SE umbrella, encompasses the relationship between Design for Reliability (DfR), Design for Maintainability (DfM), and Design for Logistics (DfL). The combination of DfR, DfM and DfL form a trifecta of knowledge that determines whether a developing technology will: 1) perform its intended function for the complete duration of the mission it’s designed for; 2) be designed in a way to be fixable in a reasonable amount of time using standard tools; 3) be designed to have replaceable parts as accessible as possible; 4) not increase the logistics burden for our men and women in uniform
Majcher, MonicaEaly, James
ABSTRACT The Product Director Light Tactical Vehicles (PdD LTV) is responsible for the Army’s High Mobility Multipurpose Wheeled Vehicle (HMMWV) family of vehicles. Due to the large number of variants found throughout the Army plus the continued need for their service into the foreseeable future, the Army has conducted extensive depot recapitalization programs and continues to explore modernization options to sustain enduring requirements. Because competing performance requirements exist and budget constraints demand careful design choices, PdD LTV commissioned the development of a Whole System Trades Analysis Tool (WSTAT) specified for the HMMWV family of vehicles to help gain an analytic understanding of the key performance, cost, risk, and growth tradeoffs inherent within their potential designs. The WSTAT provides a holistic framework for modeling and understanding these tradeoffs. In this paper, the overarching WSTAT methodology is presented along with the specific implementation
Ballantine, MarissaDessanti, AlexPierson, AdamHo, YangDinunzio, MichaelCardinale, TeraCosta, LauraHopkinson, DanielPykor, Nathan
ABSTRACT Off-road autonomous navigation poses a challenging problem, as the surrounding terrain is usually unknown, the support surface the vehicle must traverse cannot be considered flat, and environmental features (such as vegetation and water) make it difficult to estimate the support surface elevation. This paper will focus on Robotic Research’s suite of off-road autonomous planning and obstacle avoidance tools. Specifically, this paper will provide an overview of our terrain detection system, which utilizes advanced LADAR processing techniques to provide an estimate of the surface. Additionally, it will describe the kino-dynamic off-road planner which can, in real-time, calculate the optimal route, taking into account the support surface, obstacles sensed in the environment, and more. Finally, the paper will explore how these technologies have been applied to a wide variety of different robotic applications
Lacaze, AlbertoMottern, EdwardBrilhart, Bryan
ABSTRACT Use of the Model-Based Design (MBD) processes is becoming increasingly common in embedded control system software as a means to manage software complexity, improve quality, and reduce development costs. The MBD process can achieve these goals by combining the design, simulation, and implementation of software features into a single, integrated workflow that reduces development effort and allows extensive software testing to be performed in simulation. In order to realize the full benefit of MBD, engineering organizations must invest resources intelligently in the tools, processes, and infrastructure to avoid common mistakes and pitfalls
Fraser, SteveFenstermacher, DavidDoyle, Chris
ABSTRACT The Digital Engineering Environment is new and rapidly changing. It is a complex system with many tools, databases and views. Organizations struggle with how to access their maturity in a new environment. This paper discusses the different aspects of determination of the maturity of architecture model within a Digital Engineering Environment. The intended audience is all levels of system engineers. It will address the characteristics of maturity from content, size and usefulness of architecture models. The goal of this paper is to provide system architecture with tools, process and insight into gaining more productivity and value from architecture models
Van Brocklin, Keith L
ABSTRACT This paper describes a software infrastructure made up of tools and libraries designed to assist developers in implementing computational dynamics applications running on heterogeneous and distributed computing environments. Together, these tools and libraries compose a so called Heterogeneous Computing Template (HCT). The underlying theme of the solution approach embraced by HCT is that of partitioning the domain of interest into a number of sub-domains that are each managed by a separate core/accelerator (CPU/GPU) pair. The five components at the core of HCT, which ultimately enable the distributed/heterogeneous computing approach to large-scale dynamical system simulation, are as follows: (a) a method for the geometric domain decomposition; (b) methods for proximity computation or collision detection; (c) support for moving data within the heterogeneous hardware ecosystem to mirror the migration of simulation elements from subdomain to subdomain; (d) parallel numerical
Negrut, DanHeyn, TobySeidl, AndrewMelanz, DanGorsich, DavidLamb, David
ABSTRACT Ground vehicles are complex systems with many interrelated subsystems - finding the sweet-spot among competing objectives such as performance, unit cost, O&S costs, development risk, and growth potential is a non-trivial task. Whole Systems Trade Analysis (WSTA) is a systems analysis and decision support methodology and tool that integrates otherwise separate subsystem models into a holistic system view mapping critical design choices to consequences relevant to stakeholders. As a highly integrated and collaborative effort WSTA generates a holistic systems and Multiple Objective Decision Analysis (MODA) model. The decision support model and tool captures and synthesizes outputs from individual analyses into trade-space visualizations designed to facilitate rapid and complete understanding of the trade-space to stakeholders and provide drill down capability to supporting rationale. The approach has opened up trade space exploration significantly evaluating up to 1020+ potential
Edwards, ShatielCilli, MatthewPeterson, TroyZabat, MikeLawton, CraigShelton, Liliana
ABSTRACT The Advanced Systems Engineering Capability (ASEC) developed by TARDEC Systems Engineering & Integration (SE&I) group is an integrated Systems Engineering (SE) knowledge creation and capture framework built on a decision centric method, high quality data visualizations, intuitive navigation and systems information management that enable continuous data traceability, real time collaboration and knowledge pattern leverage to support the entire system lifecycle. The ASEC framework has evolved significantly over the past year. New tools have been added for capturing lessons learned from warfighter experiences in theater and for analyzing and validating the needs of ground domains platforms/systems. These stakeholder needs analysis tools may be used to refine the ground domain capability model (functional decomposition) and to help identify opportunities for common solutions across platforms. On-going development of ASEC will migrate all tools to a single virtual desktop to promote
Mendonza, PradeepFitch, John
ABSTRACT Tools have been developed to compare the dynamic deformation of vehicle hulls as they undergo blast-testing with numerical simulations. These tools allow quantitative comparisons and measurements over a wide area of the hull surface, rather than point comparisons as have been performed in the past. The experimental measurements are performed with the Dynamic Deformation Instrumentation System (DDIS) that was developed for TARDEC. Numerical simulations of the test article attached to Southwest Research Institute’s Landmine Test Fixture were performed with LS-DYNA using an empirical blast-loads model. The specific example highlighted in this paper is the deformation by blast testing of a hull component
Walker, James D.Grosch, Donald J.Chocron, SidneyGrimm, MattCarpenter, Alexander J.Moore, Thomas Z.Weiss, CarlBigger, Rory P.Mathis, James T.McLoud, Katie
ABSTRACT Integration risk differentiates from other program risk in that it always involves interfaces between various systems or subsystems. The level of integration required is different depending on the phase of the Acquisition Life Cycle (i.e. Materiel Solution Analysis Phase, Technology Development Phase, Engineering and Manufacturing Development Phase, Production and Deployment Phase and Operation and Support Phase). This paper focuses on the process used to assess the integration risks of integrating various technologies or subsystems into a vehicle platform. The process presented provides a step by step instruction on how to perform an integration risk assessment. A new Integration Readiness Level (IRL) rating system has been developed by the TARDEC System Engineering and Integration Group to help acquisition vehicle programs as well as science and technology teams to evaluate the health of their technology or subsystem integration into their vehicles. The rating system is
Tzau, Jerome
ABSTRACT Research is currently underway to improve controllability of high degree-of-freedom manipulators under a Phase II SBIR contract sponsored by the U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). As part of this program, the authors have created new control methods as well as adapting tool changing technology onto a dexterous arm to look at controllability of various manipulator functions. In this paper, the authors describe the work completed under this program and describe the findings of this work in terms of how these technologies can be used to extend the capabilities of existing and newly developed robotic manipulators
Peters, DouglasGunnett, KeithGray, Jeremy
ABSTRACT Defense fleet managers require maintenance strategies that deliver high readiness, reliable and sustainable combat equipment in the face of operational uncertainty and chaotic tactical environments. Shaping depot maintenance strategy is complex: aircraft, vehicles, and weapons systems operate in unpredictable and dynamic environments while component aging, convoluted maintenance practices, and overlapping sustainment programs all influence requirements. Yet, most predictive analytics efforts are focused on short-term tactics and historical data. As a result, these models cannot deliver the needed long-run precision suitable for depot strategies. Despite new big-data feeds, cloud applications, and innovative visualizations, most underlying predictive models are not suited for the challenge due to a simple reason: The past does not represent the future. Without the appropriate predictive tools, fleet managers lean heavily and cautiously towards doing more maintenance. The
Posadas, Serg
ABSTRACT The Integrated Systems Engineering Framework (ISEF) is an Army Research, Development, and Engineering Command (RDECOM) solution to address stovepiped systems engineering(SE) information and processes, disparate tools united by custom, one-off integrations, and a lack of accepted, common standards that exists in today’s Department of Defense (DoD) operating environment. Ever increasing technical complexity of fielded solutions combined with budgetary constraints push DoD engineers to “do more with less,” requiring a technical management solution that allows them collaborate virtually yet effectively with distributed engineers and other stakeholders. Easy access to systems engineering tools and information through a single “cloud” based application allows connections between federated databases, and facilitates knowledge preservation over time to avoid “reinventing the wheel” when new programs replace retired ones. ISEF is an ever-expanding collection of systems engineering
Umpfenbach, EdwardMendonza, PradeepGraf, Lisa
ABSTRACT Supporting Open Architecture is a key to most major automation and control suppliers. In every industry, there is a desire to make a unified control system architecture that can easily integrate control system equipment from multiple suppliers. Whether it is a Navy military application or an industrial application, the needs are almost identical. Some of the keys to providing this transparency among control systems are utilizing an open standard that can pull together communications from multiple suppliers. In this paper, SIEMENS will demonstrate the capabilities of utilizing an open standard, which is PROFINET. By adhering to the PROFINET standards, Open Architecture is achieved at many levels in a naval application. Open Architecture is intended to yield modular, interoperable systems that adhere to open standards with published interfaces. As will be demonstrated by this paper, PROFINET provides these capabilities and more. By implementing PROFINET as the infrastructure for
Cantrell, Wayne
ABSTRACT Modern military forces need an alternative to radio-frequency (RF) based communications between tactical vehicles. Free Space Optics (FSO) can provide that alternative but, to date, the design and form-factor of the equipment precluded considering it as a viable solution. Recent advances in FSO technologies are changing that and systems suitable for use in tactical field operations are currently being introduced into the battlefield by the special operations community. This paper explores some of the issues associated with adapting FSO to mobile vehicular applications and provides an overview of the current maturity and capabilities of these technologies
Volfson, LeoStautz, Mr. Tom
Super Duplex Stainless Steels (SDSS) are attracting attentions of the manufacturing industries due to the excellent corrosion resistance to critical corrosion. But SDSS2507 is the hardest to machine with lowest machinability index among DSS family. Moreover, formation of built-up layer (BUL) and work hardening tendency makes it further difficult to machine. Researchers have the conflict in opinions on using wet machining or dry machining using tool coatings. In this investigation SDSS2507 machining is carried out using uncoated and PVD–TiAlSiN-coated tools. The wet and dry machining environment are compared for increase in cutting speed from 170 m/min to 230 m/min. Excellent properties of PVD–TiAlSiN coatings exhibited microhardness of 39 GPa and adhesion strength of 88 N, which outperformed the uncoated tools. Tool life exhibited by coated tools was four times higher than uncoated tools. Wet machining was found to be ineffective when PVD-coated tools are used, exhibiting the same
Sonawane, Gaurav DinkarBachhav, Radhey
Mode identification, particularly Modal Map Generation, is pivotal within the NVH (Noise, Vibration, and Harshness) domain for managing the performance of complex systems like TBIW/Powertrain. This study addresses the critical task of accurately identifying Global / Local behavior of a particular system as single entity (Complete TBIW, Power train) or all the systems attached to main structure (Sub Systems i.e Seat , Fuel Tank , Pump etc), which is crucial for effective NVH post-processing. Introducing a novel tool/methodology developed by the Applus IDIADA team, this paper presents an efficient approach to Global & Local mode identification across subsystems, TBIW, and Powertrain levels. Leveraging ".op2" file content, mainly Strain Energy Density[1] and Displacement [2], the tool integrates Machine Learning Techniques [3] to produce mode predictions along with detailed visual outputs such as graphs , pie chart , modal charts etc. Implemented as a Python-based solution compatible with
Naphad, AniruddhaLama Borrajo, InesPatil Sr, HitendraChandratre, SudipRana, Upendra
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases
Lasers are essential tools for observing, detecting, and measuring things in the natural world that we can’t see with the naked eye. But the ability to perform these tasks is often restricted by the need to use expensive and large instruments
Aerospace engine components like discs, blisks and rings are engineered to perform in extreme operating environments. They need to withstand intense heat and stress and be as lightweight as possible to meet exacting specifications. These parts are also notoriously difficult to machine, and manufacturers who work with them must meet serious challenges of their own. Holding tight tolerances, maintaining predictable tool life and accounting for internal material stress relief from material removal can be especially difficult when profiling complicated features such as thin-walled flanges, undercut pockets and seal fins
More than 80 percent of stroke survivors experience walking difficulty, significantly impacting their daily lives, independence, and overall quality of life. Now, new research from the University of Massachusetts Amherst pushes forward the bounds of stroke recovery with a unique robotic hip exoskeleton, designed as a training tool to improve walking function. This invites the possibility of new therapies that are more accessible and easier to translate from practice to daily life compared to current rehabilitation methods
Mobility in the Arctic often determines a military unit’s ability to accomplish mission objectives. This article provides fundamental characteristics and models that can be used to adapt military operations for Arctic and cold region terrain. It explains the need for mobility research in the Arctic, details the Arctic regional terrain types, common yet unique terrain surfaces of the Arctic, and the impact of seasonality on mobility. There is still much research to be done to advance mobility in the Arctic. The terrestrial science and basic modeling framework here provide the foundation to develop military operations, doctrine, and equipment solutions for the Arctic
Shoop, SallyParker, MichaelOlivier, JasonGaribay, Edward A.
The Virtual Autonomous Navigation Environment (VANE) is a set of tools that have been developed over a decade to assist autonomy developers in building autonomous systems. VANE has high-fidelity, physics-based sensors and vehicle models that interact with virtual environments built by utilizing decades of experience in characterizing environmental conditions. These models and environments are used in software-in-the-loop simulations to assist in the development and evaluation of autonomous vehicles in a cost-effective and time-sensitive manner. The software-in-the-loop simulations have been verified with data from concurrent physical testing and are used by autonomy developers to improve the safety, scalability, and cost effectiveness of testing autonomous vehicles
Holden, GarrettAspin, ZacharyMonroe, John G.McInnis, DavidDavenport, CollinPrice, PhillipHansen, Brad
As engineering systems evolve to encompass more intricate and complex designs, featuring a broad range of physical phenomena, the task of modeling these systems with high fidelity becomes increasingly challenging. This complexity often surpasses what a single simulation tool can handle, requiring the integration of various tools to comprehensively cover all facets of the system, with their outcomes merged to represent the entire system accurately. This paper presents a case study of such an integration, focusing on a vehicle dynamics simulation that incorporates composite materials. The vehicle’s dynamics are modeled using Chrono, while the simulation of the composite materials is conducted in Abaqus. The outputs from both tools are then amalgamated to provide a complete description of the system
Montalbano, AndrewMocko, GregoryLi, Gang
This specification covers design requirements, performance requirements, and methods of procurement for tools and associated accessories used to strip aerospace vehicle electrical wire and cable. Aerospace vehicle electrical wire has stranded conductors with protective plating and specialized insulation. Poor quality wire strippers or mismatched blades can compromise the performance of wiring
AE-8C2 Terminating Devices and Tooling Committee
Today, advancements in industrial laser cleaning automation show great promise in boosting productivity and safety when rust and contaminant removal or surface preparation is required for higher volumes of components and equipment
There are examples in aerodynamics that take advantage of electric-to-aerodynamic analogies, like the law of Biot–Savart, which is used in aerodynamic theory to calculate the velocity induced by a vortex line. This article introduces an electric-to-aerodynamic analogy that models the lift, drag, and thrust of an airplane, a helicopter, a propeller, and a flapping bird. This model is intended to complement the recently published aerodynamic equation of state for lift, drag, and thrust of an engineered or a biological flyer by means of an analogy between this equation and Ohm’s law. This model, as well as the aerodynamic equation of state, are both intended to include the familiar and time-proven parameters of pressure, work, and energy, analytical tools that are ubiquitous in all fields of science but absent in an aerodynamicists’ day-to-day tasks. Illustrated by various examples, this modeling approach, as treated in this article, is limited to subsonic flight
Burgers, Phillip
Defense Equipment & Support (DE&S) Bristol, UK 0117-913-0893
The recommended practices of this document are intended for optical devices and associated optical cables and connectors installed inside transport category aircraft or environments of equivalent ignitability. This document covers optical radiation in the wavelength range from 380 nm to 10 μm. As explained in this document, wavelengths below this range are capable of igniting fuel-air mixtures through an ignition mechanism not considered at this issue of ARP7977. Use of wavelengths outside the range 380 nm to 10 μm should be discussed with the relevant Certification Authority
AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. And it’s sensitive enough to help farmers with pest problems. The wireless microphone array that one company recently created with help from NASA can locate crop-threatening insects by listening for sound they make in fields. And now, it’s making fast, affordable testing possible almost anywhere
Linear actuators, in particular, electromechanical linear actuators, have become integral components of modern medical devices because of their high precision, accuracy, and ability to deliver repeatable motion control. Patient comfort, positioning and mobility, robotic surgery, imaging equipment, infusion, and pumping are just a few of the applications where the use of linear actuators has revolutionized the way medical devices are designed, improving patient outcomes and enhancing the overall quality of care
Items per page:
1 – 50 of 7463