Browse Topic: Tools and equipment
The goal of this work is to increase the accuracy and efficiency of hose cutting operations in small scale industries is by designing and building an automatic hose-cutting equipment. The device uses a computer-controlled system to autonomously cut pipes of various sizes and lengths. By means of a stepper motor-driven, rapidly spinning blade, the cutting process is accomplished. Additionally, the machine has sensors that measure the hose's length and modify the cutting position as necessary. Premium components and materials are used in the machine's construction; these are chosen for their performance and longevity. The device is able to boost cut precision and raise industry production all around from 100% to 190% efficient system thereby decreasing labor and time needed for hose cutting operations.
This Recommended Practice provides procedures for defining the Accelerator Heel Point and the Accommodation Tool Reference Point, a point on the seat H-point travel path which is used for locating various driver workspace accommodation tools in Class B vehicles (heavy trucks and buses). Three accommodation tool reference points are available depending on the percentages of males and females in the expected driver population (50:50, 75:25, and 90:10 to 95:5). These procedures are applicable to both the SAE J826 HPM and the SAE J4002 HPM-II.
This document specifies dimensional, functional and visual requirements for Automotive grade coaxial cable. This material will be designated AG for general-purpose automotive applications or AG LL for low loss applications. It is the responsibility of the user of this cable to verify the suitability of the selected product (based on dimensional, mechanical, electrical and environmental requirements) for its intended application. It is the responsibility of the supplier to retain and maintain records as evidence of compliance to the requirements detailed in this standard.
This SAE Recommended Practice applies to technical publications which present instructions for the proper unloading, set-up, installations, pre-delivery inspection, operation, and servicing of off-road self-propelled work machines as categorized in SAE J1116. Advertising/marketing and other pre-purchase publications are not included.
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding the use of forced air or forced air/fluid equipment to remove frozen contaminants.
Design and material choices can have a long-term impact on an original equipment manufacturer’s (OEM) production costs and product quality. When an OEM works together with an experienced contract design manufacturer (CDM) from the start of a project, many negative impacts to cost and quality can be avoided.
This SAE Information Report describes the collection of IUMPR data required by the heavy-duty onboard diagnostic regulation 13 CCR § 1971.1 (l)(2.3.3), using SAE J1939-defined messages incorporated in a suite of software functions.
Mode identification, particularly Modal Map Generation, is pivotal within the NVH (Noise, Vibration, and Harshness) domain for managing the performance of complex systems like TBIW/Powertrain. This study addresses the critical task of accurately identifying Global / Local behavior of a particular system as single entity (Complete TBIW, Power train) or all the systems attached to main structure (Sub Systems i.e Seat , Fuel Tank , Pump etc), which is crucial for effective NVH post-processing. Introducing a novel tool/methodology developed by the Applus IDIADA team, this paper presents an efficient approach to Global & Local mode identification across subsystems, TBIW, and Powertrain levels. Leveraging ".op2" file content, mainly Strain Energy Density[1] and Displacement [2], the tool integrates Machine Learning Techniques [3] to produce mode predictions along with detailed visual outputs such as graphs , pie chart , modal charts etc. Implemented as a Python-based solution compatible with
Aerospace engine components like discs, blisks and rings are engineered to perform in extreme operating environments. They need to withstand intense heat and stress and be as lightweight as possible to meet exacting specifications. These parts are also notoriously difficult to machine, and manufacturers who work with them must meet serious challenges of their own. Holding tight tolerances, maintaining predictable tool life and accounting for internal material stress relief from material removal can be especially difficult when profiling complicated features such as thin-walled flanges, undercut pockets and seal fins.
Delivered by Team Hersa, a joint Defense Equipment & Support (DE&S) and Defense, Science and Technology Laboratory (DSTL) enterprise, the Radio Frequency Directed Energy Weapon (RFDEW) can detect, track and engage a range of threats across land, air and sea. The system uses radio waves to disrupt or damage critical electronic components inside enemy platforms, such as drones, causing them to stop in their tracks or fall out of the sky. As such, it offers a solution for the protection and defense of critical assets and bases.
Lasers are essential tools for observing, detecting, and measuring things in the natural world that we can’t see with the naked eye. But the ability to perform these tasks is often restricted by the need to use expensive and large instruments.
More than 80 percent of stroke survivors experience walking difficulty, significantly impacting their daily lives, independence, and overall quality of life. Now, new research from the University of Massachusetts Amherst pushes forward the bounds of stroke recovery with a unique robotic hip exoskeleton, designed as a training tool to improve walking function. This invites the possibility of new therapies that are more accessible and easier to translate from practice to daily life compared to current rehabilitation methods.
This specification covers design requirements, performance requirements, and methods of procurement for tools and associated accessories used to strip aerospace vehicle electrical wire and cable. Aerospace vehicle electrical wire has stranded conductors with protective plating and specialized insulation. Poor quality wire strippers or mismatched blades can compromise the performance of wiring.
Today, advancements in industrial laser cleaning automation show great promise in boosting productivity and safety when rust and contaminant removal or surface preparation is required for higher volumes of components and equipment.
In the early 2010s, LightSquared, a multibillion-dollar startup promising to revolutionize cellular communications, declared bankruptcy. The company couldn't figure out how to prevent its signals from interfering with those of GPS systems. Now, Penn Engineers have developed a new tool that could prevent such problems from ever happening again: an adjustable filter that can successfully prevent interference, even in higher-frequency bands of the electromagnetic spectrum.
Defense Equipment & Support (DE&S) Bristol, UK 0117-913-0893
Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. And it’s sensitive enough to help farmers with pest problems. The wireless microphone array that one company recently created with help from NASA can locate crop-threatening insects by listening for sound they make in fields. And now, it’s making fast, affordable testing possible almost anywhere.
New research pushes forward the bounds of stroke recovery with a unique robotic hip exoskeleton, designed as a training tool to improve walking function. This invites the possibility of new therapies that are more accessible and easier to translate from practice to daily life compared to current rehabilitation methods.
Linear actuators, in particular, electromechanical linear actuators, have become integral components of modern medical devices because of their high precision, accuracy, and ability to deliver repeatable motion control. Patient comfort, positioning and mobility, robotic surgery, imaging equipment, infusion, and pumping are just a few of the applications where the use of linear actuators has revolutionized the way medical devices are designed, improving patient outcomes and enhancing the overall quality of care.
This study aims to design a supersonic ejector, referred to as a liquid spray gun, with a simple operating procedure for producing an aerosol spray with adjustable droplet size distributions. A CFD model was developed to determine the influence of nozzle exit position and the primary air pressure on the supersonic patterns formed within the ejectors, providing a valuable insight into their internal physics. Based on the single-phase numerical results, at an air primary pressure of 2 bar, the flow may not reach a choking condition, possibly resulting in unstable ejector operation. However, at pressures exceeding 5 bar, the jet patterns emerging from the primary nozzle cause flow separation or the formation of vortex rings. This phenomenon leads to a flow configuration comparable to the diameter of the mixing tube, thereby reducing the available area for entrainment of suction flow. The suitable ejector was identified with a nozzle exit position of 13 mm and a primary pressure ranging
Though modal analysis is a common tool to evaluate the dynamic properties of a structure, there are still many individual decisions to be made during the process which are often based on experience and make it difficult for occasional users to gain reliable and correct results. One of those experience-based choices is the correct number and placement of reference points. This decision is especially important, because it must be made right in the beginning of the process and a wrong choice is only noticeable by chance in the very end of the process. Picking the wrong reference points could result in incomplete modal analysis outcomes, as it might make certain modes undetectable, compounded by the user's lack of awareness about these missing modes. In the paper an innovative approach will be presented to choose the minimal number of mandatory reference points and their placement. While other approaches use results of numerical simulations or rely on a visual evaluation of measurement
Automatically controlling equipment, and providing users with visualization of the operation, are two distinct but closely related functions. Specialized microcontrollers or commercial off-the-shelf (COTS) programmable logic controllers (PLCs) are workhorses for implementing control, while a variety of dedicated or PC-based human-machine interface (HMI) options are available.
Items per page:
50
1 – 50 of 7081