Browse Topic: Tools and equipment
Performing highly representative tests of aircraft equipment is a critical feature for gaining utmost confidence on their ability to perform flawlessly in flight under the entire spectrum of operating conditions. This can also contribute to accelerate the certification process of a new equipment. A research project (E-LISA) was performed in recent years, as part of the European funded Clean Sky 2 framework, with the objective of building an innovative facility for testing an electrically actuated landing gear and brake for a small air transport. The project eventually led to the development and construction of an Iron Bird able to reproduce in a realistic and comprehensive way a full variety of landing test cases consistent with certification specifications and landing histories available in the repository of the airframer. The Iron Bird that was eventually developed is a multi-functional intelligent and easy reconfigurable facility integrating hardware and software allowing to perform
Additive manufacturing has been a game-changer in helping to create parts and equipment for the Department of Defense's (DoD's) industrial base. A naval facility in Washington state has become a leader in implementing additive manufacturing and repair technologies using various processes and materials to quickly create much-needed parts for submarines and ships. One of the many industrial buildings at the Naval Undersea Warfare Center Division, Keyport, in Washington, is the Manufacturing, Automation, Repair and Integration Networking Area Center, a large development center housing various additive manufacturing systems.
Da Jiang Innovations (DJI)’s AeroScope drone detection platform has proven to be an effective security tool for military and law enforcement. It identifies and tracks drones in real time, providing AeroScope users with information like flight status, path and pilot location for drones up to 50 kilometers away. This data stream enables users to make fast and informed responses as soon as possible, mitigating the potentially harmful effects of consumer drones in and around public spaces, government facilities, infrastructure and other no-fly zones.
Remote sensing offers a powerful tool for environmental protection and sustainable management. While many remote sensing companies use wind or solar energy to power their platforms, California-based startup Dolphin Labs is harnessing wave energy to enable sensing networks for enhanced maritime domain awareness, improving the safety and security of offshore natural resources and critical infrastructure.
Researchers have developed comfortable, washable smart pajamas that can monitor sleep disorders such as sleep apnea at home, without the need for sticky patches, cumbersome equipment or a visit to a specialist sleep clinic.
Researchers have combined miniaturized hardware and intelligent algorithms to create a cost-effective, compact powerful tool capable of solving real-world problems in areas like healthcare.
Laparoscopic surgery, a minimally invasive technique, has transformed surgical procedures in high-income countries. This method, which uses a laparoscope to perform surgeries through small incisions, offers significant benefits such as reduced infection rates and quicker recovery times. Despite its advantages, laparoscopic surgery remains largely inaccessible in low- and middle-income countries (LMICs) due to the high cost of equipment and other logistical challenges.
With over 15,000 products, Boston Scientific is a market leader in pacemakers, defibrillators, monitoring equipment, spinal and brain stimulation, stents, catheters, and ablation devices. On one recent cardiac monitoring battery component, the company had an application running year-round on multiple mills, rectangular in shape, consisting of multiple milling operations per part, requiring an operator per mill at all times. Both Mill operations consist of multi-part fixtures as the process involved running Mill OP-1, light hand deburring and prepping the parts for Mill OP-2 fixture & process, following manual deburring step. The overall process was running around seven minutes per part.
There’s a lot of hype about generative AI, both pro and con. Researchers at the University of California, San Diego and the Allen Institute for Artificial Intelligence (Ai2) are on the pro side, demonstrating that it can have valuable global impact. They have developed a generative AI climate prediction model they call Spherical DYffusion, which is fast and agile enough to be used as a tool not just by scientists, but by anyone whose decisions are affected by climate trends.
Fused Deposition Modeling (FDM) is a widely recognized additive manufacturing method that is highly regarded for its ability to create complex structures using thermoplastic materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability. TPU has several applications, including automobile instrument panels, caster wheels, power tools, sports goods, medical equipment, drive belts, footwear, inflatable rafts, fire hoses, buffer weight tips, and a wide range of extruded film, sheet, and profile applications.. The primary objective of this study is to enhance the FDM parameters for TPU material and construct regression models that can accurately forecast printing performance. The study involved conducting experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses, including dimensional accuracy, surface quality, and mechanical
Historically, engineers have dealt with the possibility of equipment failure on board spacecraft in two main ways: First, by having a “safe mode” in which the spacecraft can do the least amount of damage to itself while scientists on the ground look at the data, make a diagnosis, and develop a solution; and second, by equipping autonomous vehicles with redundant systems. These allow a spacecraft to, for example, shut off a malfunctioning thruster and start using backup thrusters.
Innovators at the NASA Johnson Space Center have developed a novel foot-pedal-operated system and device to control movement of an object in three-dimensional (3D) space. The Foot Pedal Controller system enables operators to control movement of spacecraft, aircraft, and watercraft using only foot pedals. This design leaves the hands free for simultaneous operation of other equipment.
A team has developed a general, modular strategy for designing sensors that can be easily adapted to various target molecules and concentration ranges. The new modular sensor has the potential to significantly accelerate the development of new diagnostic tools for research.
Speed and flexibility are increasingly becoming the cornerstones of modern manufacturing, even as their continued adoption must align with existing values of cost and reliability all while keeping up with the demands for smarter, more complex products. This presents many challenges to machine builders since they must keep pace with the complexity of upcoming products while also being ready to meet the demands of the companies that will buy and operate these machines when it comes to efficiency, rapid production line ramp up, small batch sizes and high quality. Artificial intelligence will be a key tool going forward in achieving these results, offering the ability to more rapidly design, prototype, and implement changes and solutions through superior data analytics abilities and improved human-machine interactions.
Photonics is the study of the generation, detection, and manipulation of light waves in the form of photons. One interesting property of light is polarization, defined by its electric and magnetic fields oscillating in any direction perpendicular to the direction of propagation. This oscillation is not restricted to one plane. Circular polarization occurs when light waves have electric fields that follow a spiral trajectory along the direction of propagation.
The goal of this work is to increase the accuracy and efficiency of hose cutting operations in small scale industries is by designing and building an automatic hose-cutting equipment. The device uses a computer-controlled system to autonomously cut pipes of various sizes and lengths. By means of a stepper motor-driven, rapidly spinning blade, the cutting process is accomplished. Additionally, the machine has sensors that measure the hose's length and modify the cutting position as necessary. Premium components and materials are used in the machine's construction; these are chosen for their performance and longevity. The device is able to boost cut precision and raise industry production all around from 100% to 190% efficient system thereby decreasing labor and time needed for hose cutting operations.
This Recommended Practice provides procedures for defining the Accelerator Heel Point and the Accommodation Tool Reference Point, a point on the seat H-point travel path which is used for locating various driver workspace accommodation tools in Class B vehicles (heavy trucks and buses). Three accommodation tool reference points are available depending on the percentages of males and females in the expected driver population (50:50, 75:25, and 90:10 to 95:5). These procedures are applicable to both the SAE J826 HPM and the SAE J4002 HPM-II.
This SAE Recommended Practice applies to technical publications which present instructions for the proper unloading, set-up, installations, pre-delivery inspection, operation, and servicing of off-road self-propelled work machines as categorized in SAE J1116. Advertising/marketing and other pre-purchase publications are not included.
This SAE Aerospace Information Report (AIR) covers forced air technology including: reference material, equipment, safety, operation, and methodology. This resource document is intended to provide information and minimum safety guidelines regarding the use of forced air or forced air/fluid equipment to remove frozen contaminants.
Design and material choices can have a long-term impact on an original equipment manufacturer’s (OEM) production costs and product quality. When an OEM works together with an experienced contract design manufacturer (CDM) from the start of a project, many negative impacts to cost and quality can be avoided.
This SAE Information Report describes the collection of IUMPR data required by the heavy-duty onboard diagnostic regulation 13 CCR § 1971.1 (l)(2.3.3), using SAE J1939-defined messages incorporated in a suite of software functions.
Mode identification, particularly Modal Map Generation, is pivotal within the NVH (Noise, Vibration, and Harshness) domain for managing the performance of complex systems like TBIW/Powertrain. This study addresses the critical task of accurately identifying Global / Local behavior of a particular system as single entity (Complete TBIW, Power train) or all the systems attached to main structure (Sub Systems i.e Seat , Fuel Tank , Pump etc), which is crucial for effective NVH post-processing. Introducing a novel tool/methodology developed by the Applus IDIADA team, this paper presents an efficient approach to Global & Local mode identification across subsystems, TBIW, and Powertrain levels. Leveraging ".op2" file content, mainly Strain Energy Density[1] and Displacement [2], the tool integrates Machine Learning Techniques [3] to produce mode predictions along with detailed visual outputs such as graphs , pie chart , modal charts etc. Implemented as a Python-based solution compatible with
Aerospace engine components like discs, blisks and rings are engineered to perform in extreme operating environments. They need to withstand intense heat and stress and be as lightweight as possible to meet exacting specifications. These parts are also notoriously difficult to machine, and manufacturers who work with them must meet serious challenges of their own. Holding tight tolerances, maintaining predictable tool life and accounting for internal material stress relief from material removal can be especially difficult when profiling complicated features such as thin-walled flanges, undercut pockets and seal fins.
More than 80 percent of stroke survivors experience walking difficulty, significantly impacting their daily lives, independence, and overall quality of life. Now, new research from the University of Massachusetts Amherst pushes forward the bounds of stroke recovery with a unique robotic hip exoskeleton, designed as a training tool to improve walking function. This invites the possibility of new therapies that are more accessible and easier to translate from practice to daily life compared to current rehabilitation methods.
Items per page:
50
1 – 50 of 7072