Browse Topic: Maintenance, repair and overhaul (MRO)
Without reliability and signal integrity, aerospace communications risk severe signal degradation and reduced security, posing risks to both personnel and mission-critical data. These challenges are particularly critical for applications that depend on military aircraft, satellite communications, and unmanned aerial vehicles (UAVs). As global demand for real-time data continues to surge, communication infrastructure requires regular maintenance and upgrades to maintain secure and reliable performance.
Missions to the moon and other planets will require large-scale infrastructure that would benefit from autonomous assembly by robots without on-site human intervention. Modular and reconfigurable structures, such as those built from lattice-based building blocks, are reusable and easy to manufacture. Furthermore, reconfigurable systems have the potential to outperform traditional, fixed infrastructure in applications that require high levels of flexibility in addition to structural strength and rigidity. NASA Ames Research Center has developed a novel and efficient mobile bipedal robot system to construct low-mass, high precision, and largescale infrastructure.
In the electrical machines, detrimental effects resulted often due to the overheating, such as insulation material degradation, demagnetization of the magnet and increased Joule losses which result in decreased lifetime, and reduced efficiency of the motor. Hence, by effective cooling methods, it is vital to optimize the reliability and performance of the electric motors and to reduce the maintenance and operating costs. This study brings the analysis capability of CFD for the air-cooling of an Electric-Motor (E-Motor) powering on Deere Equipment's. With the aggressive focus on electrification in agriculture domain and based on industry needs of tackling rising global warming, there is an increasing need of CFD modeling to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors.
To evaluate the performance evolution patterns of road structures under natural environmental conditions and loading, data were collected from the RIOHTrack system. Pavement deflection, smoothness, and skid resistance were selected as evaluation indicators. The performance evolution characteristics over 50 million load cycles were analyzed to investigate the impact of different structural configurations on service performance. The study results are summarized as follows: The deflection basin area exhibits significant annual cyclic fluctuations, indicating that ambient temperature significantly affects pavement deflection. The initial rapid decrease in texture depth was attributed to the compaction of the surface layer under traffic loading, leading to a reduction in texture depth. Differences in tire and subgrade stiffness can cause variations in texture depth across various scenarios. Circular pavement structures' smoothness can be categorized into three classes; however, even within
A research team at RCSI University of Medicine and Health Sciences has developed a 3D-printed implant to deliver electrical stimulation to injured areas of the spinal cord offering a potential new route to repair nerve damage. Details of the 3D-printed implant and how it performs in lab experiments have been published in the journal Advanced Science.
ETH Zurich Zurich, Switzerland
In the commercial and off-highway sectors, equipment reliability isn't just a maintenance target but a business imperative. Whether it's a long-haul truck on the interstate or a dozer working through dust and rock, these machines operate in some of the most demanding environments on Earth. And while engine design and fuel choice often dominate conversations about performance, the role of grease is just as critical, particularly as equipment is pushed harder and longer under more variable conditions. Over the last decade, heavy-duty grease development has undergone a quiet evolution. Performance expectations have risen sharply. So have the environmental and regulatory considerations that influence formulation decisions.
Repartly, a startup based in Guetersloh, Germany, is using ABB’s collaborative robots to repair and refurbish electronic circuit boards in household appliances. Three GoFa cobots handle the sorting, visual inspection and precise soldering tasks enabling the company to enhance efficiency and maintain high quality standards.
Low-cost jelly-like materials, developed by researchers at the University of Cambridge, can sense strain, temperature, and humidity. And unlike earlier self-healing robots, they can also partially repair themselves at room temperature.
Noise transmission through the vehicle dash panel plays a critical role in isolating passengers from noise sources within the motor bay of the vehicle. Grommets that contain electrical harness routing as well as HVAC lines are examples of dash panel pass-throughs that should be selected with care. Acoustic performance of these components is generally characterized in terms of measured quantities such as noise reduction (NR), sound transmission loss (STL), and insertion loss (IL). These measurements need to be carried out per SAE or ASTM standards in appropriate anechoic or reverberant chambers as this is important for consistency. This work explores an in-situ measurement of the grommet STL performance in the vehicle environment. It utilizes a repurposed vehicle with its cabin retrofitted to serve as an anechoic chamber and its frunk acting as a reverberant chamber. Results of this in-situ measurement are then compared to measurements following industry standards to discuss the
Airworthiness certification of aircraft requires an Airworthiness Security Process (AWSP) to ensure safe operation under potential unauthorized interactions, particularly in the context of growing cyber threats. Regulatory authorities mandate the consideration of Intentional Unauthorized Electronic Interactions (IUEI) in the development of aircraft, airborne software, and equipment. As the industry increasingly adopts Model-Based Systems Engineering (MBSE) to accelerate development, we aim to enhance this effort by focusing on security scope definitions – a critical step within the AWSP for security risk assessment that establishes the boundaries and extent of security measures. However, our findings indicate that, despite the increasing use of model-based tools in development, these security scope definitions often remain either document-based or, when modeled, are presented at overly abstract levels, both of which limit their utility. Furthermore, we found that these definitions
The segment manipulator machine, a large custom-built apparatus, is used for assembling and disassembling heavy tooling, specifically carbon fiber forms. This complex yet slow-moving machine had been in service for nineteen years, with many control components becoming obsolete and difficult to replace. The customer engaged Electroimpact to upgrade the machine using the latest state-of-the-art controls, aiming to extend the system's operational life by at least another two decades. The program from the previous control system could not be reused, necessitating a complete overhaul.
Additive manufacturing has been a game-changer in helping to create parts and equipment for the Department of Defense's (DoD's) industrial base. A naval facility in Washington state has become a leader in implementing additive manufacturing and repair technologies using various processes and materials to quickly create much-needed parts for submarines and ships. One of the many industrial buildings at the Naval Undersea Warfare Center Division, Keyport, in Washington, is the Manufacturing, Automation, Repair and Integration Networking Area Center, a large development center housing various additive manufacturing systems.
Items per page:
50
1 – 50 of 1120