Browse Topic: Stability control
Direct debugging of a vertical takeoff and landing (VTOL) fixed-wing aircraft’s control system can easily result in risk and personnel damage. It is effectively to employ simulation and numerical methods to validate control performance. In this paper, the attitude stabilization controller for VTOL fixed-wing aircraft is designed, and the controller performance is verified by MATLAB and visual simulation software, which significantly increases designed efficiency and safety of the controller. In detail, we first develop the VTOL fixed-wing aircraft’s six degrees of freedom kinematics and dynamics models using Simulink module, and the cascade PID control technique is applied to the VTOL aircraft’s attitude stabilization control. Then the visual simulation program records the flight data and displays the flight course and condition, which can validate the designed controller performance effectively. It can be concluded that the designed VTOL fixed-wing aircraft control visual simulation
The purpose of this SAE Information Report is to describe currently known automotive active stability enhancement systems, as well as identify common names which can be used to refer to the various systems and common features and functions of the various systems. The primary systems discussed are: a ABS - Antilock Brake Systems b TCS - Traction Control Systems c ESC - Electronic Stability Control The document is technical in nature and attempts to remain neutral regarding unique features that individual system or vehicle manufacturers may provide.
This SAE Recommended Practice presents a method and example results for determining the Automotive Safety Integrity Level (ASIL) for automotive motion control electrical and/or electronic (E/E) systems. The ASIL determination activity is required by ISO 26262-3, and it is intended that the process and results herein are consistent with ISO 26262. The technical focus of this document is on vehicle motion control systems. The scope of this SAE Recommended Practice is limited to collision-related hazards associated with motion control systems. This SAE Recommended Practice focuses on motion control systems since the hazards they can create generally have higher ASIL ratings, as compared to the hazards non-motion control systems can create. Because of this, the Functional Safety Committee decided to give motion control systems a higher priority and focus exclusively on them in this SAE Recommended Practice. ISO 26262 has a wider scope than SAE J2980, covering other functions and accidents
In this study, we introduce an electronically controlled brake system (ECB) that can be applied to electric vehicles (EVs) and internal combustion engine vehicles (ICEVs). The main features of the ECB include maximizing the regenerative energy while maintaining vehicle stability and ensuring redundancy in automatic braking. The brake system consists of upper and lower units. The newly developed upper unit has a brake-by-wire configuration and can control the front and rear wheel pressures separately. Hereinafter, controlling the front and rear wheel pressures separately is referred to as two-channel pressure control. The regenerated energy can be maximized while appropriately maintaining the distribution of the front and rear braking forces based on the two-channel pressure control during regenerative cooperation. The lower unit is a conventional hydraulic unit for executing anti-lock brake control, electronic stability control and so on. Each of the upper and lower units has a
This SAE Recommended Practice (RP) establishes uniform powered vehicle-level test procedure for forward collision warning (FCW) and automatic emergency braking (AEB) used in trucks and buses greater than 10000 pounds (4535 kg) GVWR equipped with pneumatic brake systems for detecting, warning, and avoiding potential collisions. This RP does not apply to electric powered vehicles, trailers, dollies, etc., and does not intend to exclude any particular system or sensor technology. These FCW/AEB systems utilize various methodologies to identify, track, and communicate data/information to the operator and vehicle systems to warn, intervene, and/or mitigate in the momentary longitudinal control of the vehicle. This specification will test the functionality of the FCW/AEB (e.g., ability to detect objects in front of the vehicle), its ability to indicate FCW/AEB engagement and disengagement, the ability of the FCW/AEB to notify the human machine interface (HMI) or vehicle control system that an
This procedure covers vehicle operation and electric dynamometer (dyno) load coefficient adjustment to simulate track road load within dynamometer inertia and road load simulation capabilities.
Aiming at the problems of ineffective collision avoidance and vehicle instability in the process of vehicle emergency braking in road conditions with low adhesion and sudden change in adhesion coefficient, a stability-coordinated emergency braking and collision avoidance control system SEBCACS) is proposed. First, according to the motion of the ego vehicle and the target vehicle as well as the road adhesion conditions, a collision time model is proposed for evaluating the vehicle collision risk, and the expected deceleration required to avoid the collision is calculated. Then, the MPC method is used to calculate the yaw moment generated by the four-wheel braking force required to maintain vehicle stability according to the actual and reference yaw rate and side slip angle deviation. Then it is decided whether to implement additional yaw moment control according to the body stability evaluation results. Finally, the required four-wheel braking force is calculated according to the
Items per page:
50
1 – 50 of 454