Browse Topic: Stability control
This study presents an integrated vehicle dynamics framework combining a 12-degree-of-freedom full vehicle model with advanced control strategies to enhance both ride comfort and handling stability. Unlike simplified models, it incorporates linear and nonlinear tire characteristics to simulate real-world dynamic behavior with higher accuracy. An active roll control system using rear suspension actuators is developed to mitigate excessive body roll and yaw instability during cornering and maneuvers. A co-simulation environment is established by coupling MATLAB/Simulink-based control algorithms with high-fidelity multibody dynamics modeled in ADAMS Car, enabling precise, real-time interaction between control logic and vehicle response. The model is calibrated and validated against data from an instrumented test vehicle, ensuring practical relevance. Simulation results show significant reductions in roll angle, yaw rate deviation, and lateral acceleration, highlighting the effectiveness
How a mechanically simple idea has kept cars stable for decades, and why it can still evolve for an autonomous future. Since debuting in 1995, Bosch's electronic stability program (ESP) has become one of the most essential safety features in modern vehicles. It's now a standard on nearly every new car sold in America and has been deployed in over 350 million vehicles worldwide. ESP is more than just legacy tech. It's the foundation behind advanced driver assistance, motion control and a more automated future.
Direct debugging of a vertical takeoff and landing (VTOL) fixed-wing aircraft’s control system can easily result in risk and personnel damage. It is effectively to employ simulation and numerical methods to validate control performance. In this paper, the attitude stabilization controller for VTOL fixed-wing aircraft is designed, and the controller performance is verified by MATLAB and visual simulation software, which significantly increases designed efficiency and safety of the controller. In detail, we first develop the VTOL fixed-wing aircraft’s six degrees of freedom kinematics and dynamics models using Simulink module, and the cascade PID control technique is applied to the VTOL aircraft’s attitude stabilization control. Then the visual simulation program records the flight data and displays the flight course and condition, which can validate the designed controller performance effectively. It can be concluded that the designed VTOL fixed-wing aircraft control visual simulation
The purpose of this SAE Information Report is to describe currently known automotive active stability enhancement systems, as well as identify common names which can be used to refer to the various systems and common features and functions of the various systems. The primary systems discussed are: a ABS - Antilock Brake Systems b TCS - Traction Control Systems c ESC - Electronic Stability Control The document is technical in nature and attempts to remain neutral regarding unique features that individual system or vehicle manufacturers may provide.
This SAE Recommended Practice presents a method and example results for determining the Automotive Safety Integrity Level (ASIL) for automotive motion control electrical and/or electronic (E/E) systems. The ASIL determination activity is required by ISO 26262-3, and it is intended that the process and results herein are consistent with ISO 26262. The technical focus of this document is on vehicle motion control systems. The scope of this SAE Recommended Practice is limited to collision-related hazards associated with motion control systems. This SAE Recommended Practice focuses on motion control systems since the hazards they can create generally have higher ASIL ratings, as compared to the hazards non-motion control systems can create. Because of this, the Functional Safety Committee decided to give motion control systems a higher priority and focus exclusively on them in this SAE Recommended Practice. ISO 26262 has a wider scope than SAE J2980, covering other functions and accidents
In this study, we introduce an electronically controlled brake system (ECB) that can be applied to electric vehicles (EVs) and internal combustion engine vehicles (ICEVs). The main features of the ECB include maximizing the regenerative energy while maintaining vehicle stability and ensuring redundancy in automatic braking. The brake system consists of upper and lower units. The newly developed upper unit has a brake-by-wire configuration and can control the front and rear wheel pressures separately. Hereinafter, controlling the front and rear wheel pressures separately is referred to as two-channel pressure control. The regenerated energy can be maximized while appropriately maintaining the distribution of the front and rear braking forces based on the two-channel pressure control during regenerative cooperation. The lower unit is a conventional hydraulic unit for executing anti-lock brake control, electronic stability control and so on. Each of the upper and lower units has a
Items per page:
50
1 – 50 of 459