Browse Topic: Brake-by-wire

Items (106)
Electric vehicles represent a shift towards sustainability in the automotive industry, with the Brake-by-Wire (BBW) system as an innovation to enhance safety, and performance. This study proposes an electromagnetic BBW system for Formula SAE vehicles, optimizing an electromagnet with a genetic algorithm as the actuator. Through a selection process from a million individuals, the system was modeled. Integrated with electric motors using CarMaker® software, the optimized electromagnet surpassed the minimum required force of 228.08 N without reaching its nominal current of 12.5 A, achieving a force of 231.1 N for 150 W power, indicating an energy efficiency of 0.706 N/Watt. The system also exhibited a response time of 17.92ms for an 80 bar increase, 1.52 times better than compared systems. Simulation under varying braking intensities demonstrated dynamic behavior, with settling times for slow, moderate, and sharp braking at 193 ms, 62 ms, and 21 ms, respectively. Efficiency during
Salgado, Vinícius Batista AlvesGomes, Deilton GonçalvesAndrade Lima, Cláudio
With the rapid development of electric vehicles, the need for improved reliability and safety performance of electric vehicle braking systems has become paramount. In response to this demand, a novel direct-drive brake-by-wire actuator based on linear motors was designed to address these challenges. This article presents the structure and principles of the proposed braking actuator. Leveraging the traditional electromechanical brake systems as a foundation, the prototype was modified and fabricated. Additionally, the control and drive system for the braking actuator was established using the TMS320F28335 digital signal processor. Moreover, the current-position dual closed-loop control algorithm was devised to regulate the braking force accurately. Experimental results demonstrate that the direct-drive brake-by-wire actuator exhibits rapid responsiveness and precise braking force modulation, showcasing promising prospects in the field of electric vehicle braking
He, HaitaoGong, XiaoxiangDeng, ZhenghuaLi, TianleWang, XunZhang, HongXu, Rong
Electromechanical brakes (EMB) are currently coming into focus in the automotive industry. This trend was confirmed in 2022, when a first automotive supplier [1] announced the series production of EMB systems. One major driver is safety, especially if EMB systems are implemented with smart actuators that install redundant electronic control units (ECU) and distributed software [1]. Earlier, the authors have addressed safety mechanisms in EMB actuators [2]. In this article the authors extend their investigation to address safety mechanisms in future EMB central control systems (CCS). Impact of different brake system topologies (X-, H-, centralized) vis-à-vis potential safety mechanisms within communication buses and ECUs is analyzed
Schrade, SimonRöhler, AndreasNowak, XiVerhagen, ArminSchramm, Dieter
Electromechanically actuated drum brakes are one interesting option for the realization of brake-by-wire systems for future electric vehicles. A key characteristic for the design and control of electromechanical brake actuators is the actuation point stiffness, as this quantity relates the actuation force to the required actuator position. The various known approaches for the control of electromechanical brakes, which primarily focus on disc foundation brakes, typically rely on the stiffness curve at least to some extent. A transfer of these approaches to drum brakes is not straightforward, because the actuation point stiffness for drum brakes is much more complex compared to disc brakes. In particular, a strong hysteretic behavior is observed for the standing drum and a considerable change of the stiffness and hysteresis can be observed for the rotating drum. Although drum brakes have been used for decades these effects have not been thoroughly discussed in literature, yet. Hence
Peter, SimonJanhsen, MichaelStümke, DanielGörges, Daniel
The electronic mechanical brake (EMB) system is a critical actuator for achieving brake-by-wire control. This review categorizes and summarizes the literature related to EMB into three sections: actuator, mathematical modeling, and control strategies. In the actuator aspect, this article compares and analyzes motors, motion conversion mechanisms, and self-reinforcing mechanisms. For mathematical modeling, this article reviews modeling methods for EMB systems concerning motors, transmission mechanisms, friction, contact collisions, nonlinear stiffness, and hysteresis characteristics. Regarding control strategies, this article consolidates methods for clamp force control, clamp force estimation, and gap management. Finally, the article discusses potential future research directions in EMB from both hardware structure and software algorithm perspectives
Yan, ZhoudongPeng, HangChen, XinboYan, Min
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems
A-5A Wheels, Brakes and Skid Controls Committee
Abrasion of the Electromechanical brake (EMB) brake pad during the braking process leads to an increase in brake gap, which adversely affects braking performance. Therefore, it is imperative to promptly detect brake pad abrasion and adjust the brake gap accordingly. However, the addition of extra gap adjustment or sensor detection devices will bring extra size and cost to the brake system. In this study, we propose an innovative EMB gap active adjustment strategy by employing modeling and analysis of the braking process. This strategy involves identifying the contact and separation points of the braking process based on the differential current signal. Theoretical analysis and simulation results demonstrate that this gap adjustment strategy can effectively regulate the brake gap, mitigate the adverse effects of brake disk abrasion, and notably reduce the response time of the braking force output. Monitoring is critical to accurately control EMB clamping force. Pressure transducers are
Zhang, YilongChen, ZixuanWu, JinglaiZhang, Yunqing
A growing interest in electromechanical brakes (EMB) is discernible in the automotive industry finding its climax in an announcement of EMB series production in late 2022 [1]. The introduction of EMB allows for new design opportunities using distributed software on smart actuators. However, additional efforts are needed to ensure continuously high levels of safety even when established design principles in the brake system are changed. This article discusses different safety concepts that could potentially be put in place in EMB actuators. Therefore, safety goals that need to be satisfied by an actuator are derived. Furthermore, three different degrees of complexity are differentiated, evolving to different required electronic control units (ECU) and architectures. Additionally, also the safety of the actuation unit (AU) is considered to realize a holistic safety concept for the actuator. Finally, a conclusion is drawn comparing the different investigated concepts
Schrade, SimonRöhler, AndreasNowak, XiVerhagen, ArminSchramm, Dieter
De-centralized brake actuation – that is, brake systems that incorporate individual actuators at each wheel brake location to both provide the apply energy and the modulation of braking force – is not a new area of study. Typically realized in the form of electro-mechanical brake calipers or drum brakes, or as “single corner” hydraulic actuators, de-centralized actuation in braking systems has already been deployed in production on General Motor EV1 Electric Vehicle (1997) in the form of electric drum brakes and has been studied continually by the automotive industry since then. It is frequently confused with “brake by wire,” and indeed practical implementations of de-centralized actuation are a form of brake by wire technology. However, with millions of vehicles on the road already with “brake by wire” systems - the vast majority of which have centralized brake actuation – the future of “brake by wire” is arguable settled. The question of what is next for braking technology is
Antanaitis, David
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions. The integrated Electro-Hydraulic Braking system (iEHB) is the current advanced brake-by-wire system, which can build brake hydraulic pressure by its motor, and independently
Zhao, XinyuXiong, LuZhuo, GuirongShu, QiangZhao, Xuanbai
As the regulations aiming to limit air pollution become stricter, the battle against non-exhaust emissions known to be harmful to human health and the environment is attracting more focus and extending worldwide. EVs are equipped with a hybrid braking system combining regenerative and hydraulic braking to provide the same performance as traditional vehicles. Whenever the regenerative braking torque is insufficient to give the necessary deceleration rate, the hydraulic and electromechanical braking torque is applied. Thus, the recuperative braking of EVs reduces the need for brakes. As the brakes are not used as often, dust and rust will accumulate and impede their performance, so brake problems can arise from not using them enough. Due to the extra weight of EVs compared to ICEVs, more particulates are released through increased corrosion and friction on the braking system. Grey cast iron brake rotors rust quickly, and excessive corrosion causes heavy damage to the rotor’s surface
Nousir, SaadiaWinter, Karl-Michael
Brake-by-wire (BbW) systems are one key technology in modern vehicles. Due to their great potential in the areas of energy efficiency and automated driving, they receive more and more attention nowadays. However, increased complexity and reliance on electric and electrical components in BbW systems bring about new challenges. This applies in particular to the fault tolerance of the brake system. Since drivers cannot form a fallback layer of braking functions due to the mechanical decoupling of the brake pedal, known BbW concepts provide a redundant system layer. However, driving is significantly limited in the event of a failure in the BbW system and is only possible under certain restrictions. The reason for that is a further possible failure (double point of failure scenario), which can result in a significant loss of braking performance. To improve the availability level of the braking functions, a principally new redundancy concept for the double point of failure scenario is
Schlimme, Hauke ChristianHenze, Roman
If you accept that the oddball and odd-sized Journey never was a legit rival for the likes of the Honda CR-V, Toyota RAV4 and Ford Escape - and it wasn't - Stellantis' Dodge brand hasn't played in the compact SUV segment, one of the largest and most competitive in the U.S. That strategic gap is set to be filled by the 2023 Hornet, Dodge's performance-slanted attempt to peel out some sales volume from among the C-segment utilities that are typified by mundane and softly-tuned top-sellers. The Hornet's not just about having a little more engine power, either. Its platform is shared with the Alfa Romeo Tonale. Like Hornet, the Tonale slated to be in showrooms sometime in spring 2023 and incorporates chassis finery such as standard Koni-supplied Frequency Selective Damping (FSD) dampers. Specifically tuned, genuine by-wire braking (for the R/T trim) reduces curb weight by 9 lb. (4 kg) and improves steering feel via direct-action ratios from the electronic power steering; Stellantis claimed
Visnic, Bill
Brake-by-wire systems are an innovative and important component of modern high-performance and also electrified vehicles. Due to their decoupled architecture, they enable driver-independent vehicle dynamics control (e.g., brake torque blending) and easy integration of assistance functionalities (e.g. Emergency Brake Assist (EBA)). On the other hand, the development of these functions can cause high costs and development effort, and testing can be critical in case of improper gain tuning. Therefore, already in the concept phase, a large part of the testing is shifted to virtual environments and simulations that allow safe and reproducible experiments without damage. Therefore, suitable and reliable models are needed to represent reality as accurately as possible. This paper deals with the modelling of a purely electrohydraulic brake-by-wire system and a hybrid system with electrohydraulic brakes on the front axle and electromechanical brakes on the rear axle. For comparison, both an
Heydrich, MariusKellner, BjörnIvanov, Valentin
Current ADAS systems can improve vehicle safety directly influencing its dynamics, reducing the impact of human error while driving. These functionalities have a high impact on the complexity of each unit installed on the car, potentially increasing the development time. In this work, a Hardware in the Loop testing bench and methodology for Autonomous Emergency Braking system is presented, aiming to enable a faster system development process. A commercial production brake by wire unit has been installed on a real-time driving simulator. The AEB functionality of the unit is activable in real-time during the simulation, by the means of a customizable control strategy. Two different AEB controllers have been implemented: the first one reproduces the unit stock functionality, while the second computes the requested deceleration using a PID control strategy. The two controllers have been tested in standardized EuroNCAP Car-to-Car Rear (CCR) collision scenario, implemented on the static
Alfatti, FedericoGarinei, MicheleAnnicchiarico, ClaudioCapitani, Renzo
The vehicle will produce certain shock and vibration during the braking process, which will affect the driving experience of the driver. Aiming at the problems of pitch vibration, longitudinal vibration and shock during the braking process, this paper proposes a planning and following control method for target longitudinal acceleration in post-braking phase, and designs control trigger strategies. Target longitudinal acceleration planning takes minimizing longitudinal shock as the design goal. The following control takes the brake pressure as the control object, and adopts the “feedforward +PID feedback” method to follow the target longitudinal acceleration. Besides, considering the safety of braking process, the trigger condition of control is designed which utilizes BP neural network method to judge whether the control has to be triggered. Based on Simulink software, the simulation model of straight-line braking is established. The results of straight-line braking simulation show
Xiong, WeiWang, WeiweiJiang, KaihongHou, LimingShangguan, Wen-Bin
The initial step to implement the brake-by-wire on vehicles is to replace the conventional mechanical parking brake with an Electric Parking Brake (EPB). This paper aims to share the experience in integrating the EPB into the vehicle with respect to design and validation points of view. It starts by introducing the EPB in comparison with the conventional mechanical parking brake, showing two kinds of EPB: with a drum brake (EPB-Si, Simplex integrated) and with a caliper (EPB-Ci, Caliper integrated). In sequence, it explains the most important EPB functions. After a basic knowledge introduction, it describes the integration process, separating into 3 different levels: mechanical, electrical, and software, having a brief description that includes some lessons learned from each one. Two parts compose the EPB system: drum brake or caliper with Motor Gear Unit (MGU) and the software to control it, Parking Brake Controller (PBC) library, running into the Electronic Stability Control (ESC
Dias, Fábio GaiottoMinutti, Carlos JoséMenezes, Fabricio Oliveira
This article presents a survey on active safety control of X-by-wire electric vehicles. The steer-by-wire (SBW) system, brake-by-wire (BBW) system, and electric drive system are three critical techniques for X-by-wire electric vehicles. As to the three systems, the structure comparison and performance analysis of existing products and prototypes are conducted. Then two kinds of X-by-wire chassis configuration, i.e., the centralized type and the distributed type, are introduced. For active safety control, various control models are summarized, including vehicle dynamics model, single-track model, path tracking model, and wheel dynamics model. Based on the proposed model, different active safety control algorithms are introduced involving longitudinal dynamics control, handling stability control, rollover prevention control, path tracking control, and active fault-tolerant control. In addition, some data-driven approaches for active safety control of X-by-wire electric vehicles are
Peng, HangChen, Xinbo
The fully decoupled brake by wire system is a complex system consisting of mechanical components such as springs and rubber and hydraulic structural components coupled together. Compared to conventional braking systems, it is characterized by the full decoupling of the brake pedal from the brake wheel cylinders in normal braking mode, and the pressure fluctuations in the wheel cylinders do not affect the pedal feel. In order to predict brake pedal feel in a passenger car, a dynamic model was developed for both normal and backup braking modes, taking into account the variation of the volume modulus of the brake fluid and the frictional forces of the master cylinder pistons. The influence of different pedal input speeds on the pedal feel characteristic curve was analyzed using static vehicle tests and the related parameters of the braking system were identified in order to correct the design data. Subsequently, a dynamic test of the vehicle pedal feel was conducted to establish a
Yin, FaguoWang, MinghuiJiang, YongfengKang, Yingzi
The decoupling brake-by-wire system controls the key components of the flow path and liquid flow of the whole brake system through the solenoid valve of the bottom control unit. The reference cross-sectional area value at the valve inlet is obtained by calculation, and the valve body structure model is established. The flow channel structure is extracted, and the porous media model is used to replace the fluid area of the filter screen at the entrance of the solenoid valve. The Fluent software is used to analyze the influence on the flow characteristics of the solenoid valve with or without a filter. The accuracy of the model is verified by the experimental results, which also show that the porous medium can effectively and accurately reflect the characteristics of the solenoid valve end filter. Based on the simulation model, the influences of parameters such as the diameter of the solenoid valve inlet, cone angle and spool stroke on the internal flow field characteristics of the
wan, lipingWang, MinghuiJiang, YongfengZhao, Xuezhi
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following commercial aircraft types; wide body jet airliners, narrow body jet airliners, and turboprop/commuter aircraft and the following military aircraft types; fighter, bomber, cargo, attack, surveillance, tanker and helicopter categories. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems. Future revisions of this document will add aircraft as they enter into service
A-5 Aerospace Landing Gear Systems Committee
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design
A-5A Wheels, Brakes and Skid Controls Committee
Efficiency testing of hybrid-electric vehicles is challenging, because small run-to-run differences in pedal application can change when the engine fires or the when the friction brakes supplement regenerative braking, dramatically affecting fuel use or energy regeneration. Electronic accelerator control has existed for years, thanks to the popularity of throttle-by-wire (TBW). Electronic braking control is less mature, since most vehicles don’t use brake-by-wire (BBW). Computer braking control on a chassis dynamometer typically uses a mechanical actuator (which may suffer backlash or misalignment) or braking the dynamometer rather than the vehicle (which doesn’t yield regeneration). The growth of electrification and autonomy provides the means to implement electronic brake control. Electrified vehicles use BBW to control the split between friction and regenerative braking. Automated features, e.g. adaptive cruise control, require BBW to actuate the brakes without pedal input. We
Gross, Michael C.Hamermesh, JonathanJonson, KyleAlden, Joshua
A hydraulic chamber is embedded in serial with the accumulator of a normal mono-tube magnetorheological fluid damper (MRFD). The damper stiffness can be adjusted by changing the accumulator volume with the hydraulic chamber. The hydraulic chamber is connected to an electric pump and controlled by the braking-by-wire (BBW) system. A modified bi-viscosity magnetorheological fluid (MRF) model that explicitly includes the parameter of control current is proposed. A dynamic model of this hydraulic MRFD is subsequently set up based on the MRF model. Experiments are conducted to validate the model and simulations are carried out to study the influences of accumulator volume on the external performances. Results show that the hydraulic chamber is able to provide rapid variations of the external force through accumulator volume changes
Xiong, CenboYu, LiangyaoLi, ZhenchuanLu, ZhenghongLanie, Abi
As a new brake-by-wire solution, the electro-booster (Ebooster) brake system can work with the electronic stability program (ESP) equipped in the real vehicle to realize various excellent functions such as basic force boosting (BFB), active braking and energy recovery, which is promoting the development of smart vehicles. Among them, the BFB is the function of Ebooster's servo force to assist the driver's brake pedal force establishing high-intensity braking pressure. After the BFB function failure of the Ebooster, it was not possible to provide sufficient brake pressure for the driver's normal braking, and eventually led to traffic accidents. In this paper, a compensation redundancy control strategy based on ESP is proposed for the BFB failure of the self-designed Ebooster. Firstly, introduced the working principle of Ebooster and ESP, and a suitable pressure-building circuit was selected for the dual brake actuator system; Secondly, after the BFB failure of Ebooster, the rule-based
Zhao, JianChen, ZhichengZhu, BingWu, Jian
The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm. Secondly, the
Lao, DexingWu, JianHe, RuiZhu, BingZhao, JianChen, Zhicheng
Active collision avoidance can assist drivers to avoid longitudinal collision through active brake. Regenerative braking can improve the driving range and braking response speed. At this stage, conventional hydraulic braking system limits the implements of above technologies because of its poor performance of response speed and coordinated control. While the brake-by-wire system is a better actuator that can fulfill requirements of automotive electric and intelligent development due to its rapid response and flexible adjustment. However, the system control algorithm becomes more complicated with introduction of regenerative braking and active collision avoidance function, which is also the main problem solved in this paper. First, a new type of cooperative regenerative auxiliary braking system (CRABS) of intelligent electric vehicles, which integrates the functions of brake-by-wire, regenerative braking and active collision avoidance, is proposed, for purpose of analyzing the
Hou, XiaohuiZhang, JunzhiZhang, ZhongshiHe, Chengkun
This SAE document defines a recommended practice for implementing circuit identification for electrical power and signal distribution systems of the Class 8 trucks and tractors. This document provides a description of a supplemental circuit identifier that shall be utilized in conjunction with the original equipment manufacturer’s primary circuit identification as used in wire harnesses but does not include electrical or electronic devices which have pigtails. The supplemental circuit identifier is cross-referenced to a specified subsystem of the power and signal distribution system identified in Section 5
Truck and Bus Electrical Systems Committee
The brake-by-wire system (BBW) is better match the new energy vehicle in the future direction of development. The electro-mechanical brake (EMB) is lack of the brake failure backup and need a high 42 V voltage for the power supply. This paper presents a new brake-by-wire hybrid brake system (HBS) with the electro-hydraulic brake (EHB) equipped on the front wheels and the EMB equipped on the rear wheels. The combination of these two brake-by-wire systems has advantages of both the EHB and EMB system. The EMB on the rear wheels totally removing the rear pipes and can be simply mounted. In addition, since the need of brake torque on the rear axle is relatively small, the power supply of EMB can be reduced to 12 V. Meanwhile, the EHB on the front wheels has the failure backup function through the hydraulic line. The HBS can quickly and accurately regulate four wheels brake force of vehicles which can well meet the requirement of antilock brake system (ABS). This paper proposes an ABS
Chen, ZhichengWu, JianZhao, JianHe, RuiYang, ChanghaiZhang, Yuxiang
As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively. The control strategies of brake force distribution and
Yuan, YeZhang, JunzhiLi, YutongLv, Chen
A vehicle dynamics stability control system based on integrated-electro-hydraulic brake (I-EHB) system with hierarchical control architecture and nonlinear control method is designed to improve the vehicle dynamics stability under extreme conditions in this paper. The I-EHB system is a novel brake-by-wire system, and is suitable to the development demands of intelligent vehicle technology and new energy vehicle technology. Four inlet valves and four outlet valves are added to the layout of a conventional four-channel hydraulic control unit. A permanent-magnet synchronous motor (PMSM) provides a stabilized high-pressure source in the master cylinder, and the four-channel hydraulic control unit ensures that the pressures in each wheel cylinder can be modulated separately at a high precision. Besides, the functions of Anti-lock Braking System, Traction Control System and Regenerative Braking System, Autonomous Emergency Braking can be integrated in this brake-by-wire system. A sliding
He, XiangkunYang, KaimingJi, XuewuLiu, YahuiDeng, Weiwen
An advanced braking system had to be developed for a next-generation hybrid sports car with Sport Hybrid Super Handling All-Wheel Drive to achieve an intuitive brake feeling in a variety of driving conditions, ultimate track performance and reduction of CO2 emissions per vehicle. This paper outlines the integration of brake-by-wire with traditional high-performance braking hardware and describes the technology needed to achieve these goals. Key focus areas to generate these results were: brake feeling control, corner hardware specification considerations and brake cooling
Dyar, Lorne R.Akita, YuichiroPaul, ScottLepito, JosephIshikawa, YoshioWatanabe, Tomohiro
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system. In this paper, energy consumption of the
Yu, LiangyaoLiu, XiaohuiLiu, Xiaoxue
With development of vehicle advanced driver assistant system and intelligent techniques, safer and more intelligent Integrated-Electro-Hydraulic Braking System is required to realize brake-by-wire. Thus, more and more companies and universities developed Integrated-Electro-Hydraulic Braking System to fulfill these requirements. In this paper, an Integrated-Electro-Hydraulic Braking System is introduced, which consists of active source power, pedal feel emulator and electro control unit. As a composite system of mechanic, electron and hydraulic pressure, the Integrated-Electro-Hydraulic Braking System has complex system characteristics. Integrated-Electro-Hydraulic Braking System and active power source have very different dynamic characteristics. So algorithms of hydraulic pressure control and motor control should be apart, but algorithm of them should be united in hardware to meet integration demand. At the same time, a novel motor control method based on permanent magnet synchronous
Yu, ZhuopingZhang, YiXiong, LuXu, Songyun
Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints. Then a simulation
Liu, HaizhenDeng, WeiwenHe, RuiWu, JianZhu, Bing
The Braking System is the most crucial part of the racing vehicle. There is no doubt, that if only one minority failure in the braking system took place, this would be more than enough reason to cause the racing team disqualification from the competition. Time is the main and the most important criteria for any racing competition; on the other hand the formula student “FS UK SAE” competition care the most about developing the automotive engineering sense in the students by putting them under strict rules normally taken from the original version “formula 1” to encourage their creativity to reach the optimum performance under these strict rules. One of the most important rules is “No Braking by wire”, and the obvious consequences are more stopping distance and time. Braking distance is a critical facture in achieving racing success in a competitive domain. This report will cover using the bias bar, dynamic weight distribution “before and after braking” and carefully choosing the braking
Barakat, Mohamed Samy
Regenerative braking, which can effectively improve vehicle's fuel economy by recuperating the kinetic energy during deceleration processes, has been applied in various types of electrified vehicle as one of its key technologies. To achieve high regeneration efficiency and also guarantee vehicle's brake safety, the regenerative brake should be coordinated with the mechanical brake. Therefore, the regenerative braking control performance can be significantly affected by the structure of mechanical braking system and the brake blending control strategy. By-wire brake system, which mechanically decouples the brake pedal from the hydraulic brake circuits, can make the braking force modulation more flexible. Moreover, its inherent characteristic of ‘pedal-decouple’ makes it well suited for the implementation in the cooperative regenerative braking control of electrified vehicles. With the aims of regeneration efficiency and braking performance, a regenerative braking control algorithm for
Lv, ChenZhang, JunzhiLi, YutongYuan, Ye
This SAE document defines a recommended practice for implementing circuit identification for electrical power and signal distribution systems of the Class 8 trucks and tractors. This document provides a description of a supplemental circuit identifier that shall be utilized in conjunction with the original equipment manufacturer’s primary circuit identification as used in wire harnesses but does not include electrical or electronic devices which have pigtails. The supplemental circuit identifier is cross-referenced to a specified subsystem of the power and signal distribution system identified in Section 5
Truck and Bus Electrical Systems Committee
A Brake By Wire (BBW) system is generally composed of electro-mechanical calipers at each wheel, a pedal simulator and a central controller. The brake demand is processed by the pedal and the central controller commands the brake distribution for each brake actuator. The highly responsive and independent brake actuators lead to enhanced controllability which should result in not only better basic braking performance, but also improvements in various active braking functions such as integrated chassis control, driver assistance systems, or cooperative regenerative braking. Although the BBW system has the potential for numerous advantages and innovations in braking, it has yet to be successfully introduced in series production mainly due to safety and cost concerns. Recent studies have been made to investigate the functional safety aspects and additional mechanical backup measures in this regard. Another area that needs to be considered is the optimization of key BBW system components to
Kwon, YongsikKim, JongsungCheon, Jae SeungMoon, Huyng-ilChae, Ho Joong
The ample electrical power supply makes brake-by-wire technology more suitable for application in electric vehicles than in conventional vehicles. The fail-safe performance of a brake-by-wire system is a key factor regarding its application on production vehicles. A new control allocation algorithm for improving the fail-safe performance of an electric vehicle brake system is proposed. The electric vehicle is equipped with a four-wheel independent brake-by-wire and steer-by-wire system. The main objective of the algorithm is to maintain the vehicle braking performance as close to the desired level as possible by reallocating the control inputs to the actuators in cases of partial or full failure of the brake-by-wire system. The control algorithm is developed using a two degrees of freedom vehicle model. A pseudo control vector is calculated by a sliding mode controller to minimize the difference between the desired and actual vehicle motions. A pseudo-inverse controller then allocates
Feng, ChongDing, NenggenHe, YonglingXu, GuoyanGao, Feng
In this paper, an optimal control tracking strategy for a brake-by-wire system is developed and tested on a laboratory setup consisting of a driving motor, clutch and gearbox system, rotating inertia and an electro-mechanical brake actuator. The presented brake by wire system consists of a brake pedal sub-system connected to the electro-mechanical brake actuator through an electronic control module handling the optimal control logic. A mathematical model of the proposed brake-by-wire control system is presented. The presented mathematical model is simulated and validated against the experimental data. The good agreement between both simulation results and experimental validates the mathematical model. The validated mathematical model is then used to test the proposed optimal control tracking strategy against different levels of disturbances that are difficult to emulate in the laboratory. The developed control logic ensures optimal control effort of the electro-mechanical brake
Haggag, Salem A.Abidou, Diaa
EMB (Electro-Mechanical Brake) system that removes hydraulic brake device from conventional brake systems completely can be considered as BbW (Brake-by-Wire) system in the full sense. As the research on the EMB system is actively conducted, it is also required to establish the test methods for the performance verification and evaluation of developed EMB system. In fact, however, the characteristics of the EMB system makes it difficult to apply it to an actual vehicle test due to the expense and safety matters in the process of the test and evaluation. Thus, this study developed the EMB HILS (Hardware In the Loop Simulation) system in application of the actual EMB system in order to verify the actuating response characteristics and control logic performance of the EMB system before an actual vehicle test. In addition, for the comparative evaluation of the CBS (Conventional Brake System) that is conventional hydraulic brake system, the CBS HILS system was developed in application of a
Kwon, JaejoonHong, TaewookPark, KihongPark, ManBokKim, Myoungjune
The automotive industry is replacing more and more hydraulic systems by electronic system. This not only reduces the weight of vehicles, but also has the potential for a large number of new features [1]. Such a change has led to researches on XbW(X-by-Wire) without the existing mechanical connection and hydraulic system, among which the study on BbW(Brake-by-Wire) in relation to brake devices proceeded to the point of EHB(Electro-Hydraulic-Brake) and then EMB(Electro-Mechanical-Brake). In replacement of existing CBS(Conventional Brake System) with EMB, various advantages such as improvement of response performance and easy combination with various brake applications including ABS and ESC have been found. In fact, however, the problem of fail-safe has remained. This study, therefore, is to develop the control strategy with which the vehicle's longitudinal and lateral motion can follow the driver's steering intention upon failure of one EMB actuator for braking in straight and corner. To
Sho, MinwooPark, KihongPark, ManBokKim, Myoungjune
Items per page:
1 – 50 of 106