Browse Topic: Heavy trucks

Items (1,138)
This SAE Standard establishes the minimum construction and performance requirements for single conductor cable for use on trucks, trailers, and converter dollies.
Truck and Bus Electrical Systems Committee
Heavy heavy-duty diesel truck (HHDDT) drive cycles for long-haul transport trucks were developed over 20 years ago and have a renewed relevance for performance assessment and technical forecasting for transport electrification. In this study, a model was constructed from sparse data recorded from the real-life on-road activity of a small fleet of class 8 trucks by fitting them into separate driving-type segments constituting the complete HHDDT drive cycle. Detailed 1-s resolution truck fleet raw data were also available for assessing the drive cycle model. Numerical simulations were conducted to assess the model for trucks powered by both 1.0 MW charging and 300 kW-level e-Highway, accounting for elevation and seasonally varying climate conditions along the Windsor–Quebec City corridor in Canada. The modeling approach was able to estimate highway cruising speeds, energy efficiencies, and battery pack lifetimes normally within 2% of values determined using the detailed high-resolution
Darcovich, KenRibberink, HajoSoufflet, EmilieLauras, Gaspard
The depletion of fossil fuels and the emergence of global warming propel public sectors to explore alternative energy such as renewable electricity and hydrogen to reduce greenhouse gas (GHG) emissions. Numerous studies have demonstrated substantial environmental benefits of electric light-duty vehicles. However, research focusing on heavy-duty vehicles is still relatively scarce, and the transition to zero emissions heavy-duty trucks is facing enormous technical and economic challenges. This work investigated GHG emissions during the manufacturing and assembly phase of heavy-duty vehicles (HDVs), including battery electric trucks (BETs) and gaseous hydrogen fuel cell electric trucks (FCETs) using SimaPro software package with wildly accepted Ecoinvent database based on UK grid mix scenarios. A comparative analysis of greenhouse gas (GHG) emissions during the production phase of 700 bar- and 350 bar-H2 FCETs and their battery electric counterparts (eqBETs) was conducted under two UK
Zhao, JianboLi, HuBabaie, MeisamLi, Kang
An efficient and safe aircraft scheduling scheme is of great significance to the construction of smart airports. The towbarless aircraft taxiing system (TLATS) is a common dispatching method, which is composed of the towbarless towing vehicle (TLTV) and the aircraft. The system’s trajectory planning and autonomous steering control are being researched in order to improve steering accuracy, dispatching efficiency, and safety. In this article, the towbarless aircraft taxiing system is transformed into tractor-trailer system, the kinematic model and the dynamic model of the aircraft-tractor are established. Taking TLTV as a virtual subsystem of TLATS, and it is regarded as the controlled object of path planning and tracking. In response to the operational requirements of TLTV, an advanced A-star(A*) path planning algorithm is proposed to perform collision avoidance and turn radius restrictions during path planning resulting in a reference path for TLATS. Considering the estimation
Zhu, HengjiaZhao, ZhouqiaoXu, YitongZhang, Wei
An implementation of a robust predictive cruise control method for class 8 trucks utilizing V2X communication with connected traffic lights is presented in this work. This method accounts for traffic signal phases with the goal of reducing energy consumption when possible while respecting safety concerns. Tightened constraints are created using a robust model predictive control (RMPC) framework in which constraints are modified so that the safety critical requirements are satisfied even in the presence of disturbances, while requiring only the expected bounds of the disturbances to be provided. In particular, variation in the actuator performance under different conditions presents a unique challenge for this application, which the approach applied in this work is well-suited to handle. The errors resulting from lower-level control and actuator performance are accounted for by treating them as bounded and additive disturbances on the states of the model used in the higher level MPC
Ellison, EvanWard, JacobBrown, LowellBevly, David M.
Accurate mass estimation is essential for commercial heavy-duty vehicles (HDVs) because fluctuating payloads significantly impact energy consumption. Precise vehicle mass estimates enhance the accuracy of energy consumption models, leading to more effective energy management systems and performance optimization strategies. For example, improved energy estimates can lead to more optimized routing and refueling schedules, improving operational efficiency and reducing costs. For electric HDVs, accurate mass estimates are crucial for battery sizing, range prediction, and optimized charge scheduling. While direct mass measurements may be obtained through external weight-in-motion or specialized onboard weighing systems, this paper focuses on methods that use data from Controller Area Network systems for alternative real-time predictions. The challenge lies in identifying a method that performs well under the highly variable and often sparse data conditions typical of HDV driving datasets
Jayaprakash, BharatEagon, MatthewFakhimi, SetayeshKotz, AndrewNorthrop, William
Hydrogen fuel cell is one of paths to achieve carbon neutrality transportation. In the last two decades, significant improvements have been made in compactness, efficiency and durability of fuel cell systems. For heavy duty truck applications, a life span similar to heavy duty diesel engines is required. As a critical component in the fuel cell system, air compressors play an important role to meet fuel cell systems’ high efficiency and durability requirements. In this paper, a holistic approach has been taken to develop a series of airfoil bearing centrifugal compressors for a wide range of applications from forklift, passenger vehicles to commercial vehicles, and achieve high efficiency and durability of one million start-stops. In the new platform development, cooling circuit was optimized so that the external cooling air circuit for the rotor and air bearings is no longer needed, which resulted in 4% efficiency improvement. Hollow rotor structure was adopted to achieve lightweight
Wang, QianzhenYuan, XixinTao, ZhangFeng, Jin ZengWang, JuanXiao, YongZhou, LeiXin, Jun
This study evaluates the performance of alternative powertrains for Class 8 heavy-duty trucks under various real-world driving conditions, cargo loads, and operating ranges. Energy consumption, greenhouse gas emissions, and the Levelized Cost of Driving (LCOD) were assessed for different powertrain technologies in 2024, 2035, and 2050, considering anticipated technological advancements. The analysis employed simulation models that accurately reflect vehicle dynamics, powertrain components, and energy storage systems, leveraging real-world driving data. An integrated simulation workflow was implemented using Argonne National Laboratory's POLARIS, SVTrip, Autonomie, and TechScape software. Additionally, a sensitivity analysis was performed to assess how fluctuations in energy and fuel costs impact the cost-effectiveness of various powertrain options. By 2035, battery electric trucks (BEVs) demonstrate strong cost competitiveness in the 0-250 mile and 250-500 mile ranges, especially when
Mansour, CharbelBou Gebrael, JulienKancharla, AmarendraFreyermuth, VincentIslam, Ehsan SabriVijayagopal, RamSahin, OlcayZuniga, NataliaNieto Prada, DanielaAlhajjar, MichelRousseau, AymericBorhan, HoseinaliEl Ganaoui-Mourlan, Ouafae
Emerging zero-emission-powertrain concepts are providing opportunities to re-shape heavy trucks for improved aerodynamic performance. To investigate the potential for energy savings through aerodynamic improvements, with a goal to inform operators and regulators of such benefits, a multi-phase project was initiated to design and evaluate aerodynamic improvements for Class 8 tractor-trailer combinations. While the focus was battery-electric and hydrogen-fuel-cell powered trucks, improvements for internal-combustion powered trucks were also examined. Previously-reported activities included a scaled-model wind-tunnel test that demonstrated the potential for up to 9% drag reduction from simple shape adaptations, with a follow-up CFD study providing guidance towards further optimization. This paper presents wind-tunnel-test results using a high-fidelity 30%-scale model of a new aerodynamic tractor concept, with comparison to a conventional North American Class 8 tractor with a modern
Ghorbanishohrat, FaeghehMcAuliffe, BrianO'Reilly, Harrison
Novel experimental and analytical methods were developed with the objective of improving the reliability and repeatability of coast-down test results. The methods were applied to coast-down tests of a SUV and a tractor-trailer combination, for which aerodynamic wind-tunnel data were available for comparison. The rationale was to minimize the number of unknowns in the equation of motion by measuring rolling and mechanical resistances and wheel-axle moments of inertia, which was achieved using novel experimental techniques and conventional rotating-drum tests. This led to new modelling functions for the rolling and mechanical resistances in the equation of motion, which was solved by regression analysis. The resulting aerodynamic drag coefficient was closer to its wind-tunnel counterpart, and the predicted low-speed road load was closer to direct measurements, than the results obtained using conventional methods. It is anticipated that applying the novel techniques to characterize the
Tanguay, Bernardde Souza, Fenella
This work presents a computationally inexpensive but effective method for an initial assessment of component sizing and power-split for fuel cell hybrid electric heavy-duty trucks. As a first step, the proposed method employs a prototypical longitudinal vehicle model to generate power demand at every instant of a representative drive cycle. Subsequently, six fuel cell and battery sizing combinations, each providing a peak continuous system power of 400 kW, are identified based on drive cycle power demands, commercially available fuel cell sizes, and Department of Energy (DOE) sizing targets. Ultimately, for each sizing combination, a proportional-integral (PI) controller with anti-windup is implemented to split power between the fuel cell and battery. In this study, the controller is tuned to reduce hydrogen consumption while meeting the instantaneous power demand and maintaining the battery state-of-charge (SOC) between 0.3 and 0.7. The results indicate that increasing the fuel cell
Mandviwala, AliYesilyurt, SerhatStefanopoulou, Anna
Introducing hydrogen (H2) into the intake air of diesel engines provides a near-term approach to reducing tailpipe CO2 emissions from heavy-duty commercial vehicles. The premixed hydrogen results in a complex H2-Diesel dual fuel (H2DF) combustion process, where H2 can both participate in the non-premixed diesel combustion and result in a propagating H2/air combustion. These interactions influence engine combustion characteristics, including in-cylinder pressure and heat release rate (HRR), as well as emissions. The nature and extent of the impact depends on the amount of H2 introduced as a function of the total fuel energy (H2 energy share ratio - HES), the trapped air mass, and engine operating conditions. To optimize the HES ratio under different conditions, it is crucial to understand how H2DF combustion differs from diesel combustion and how this limits engine operation and impacts emissions. To investigate these effects, a heavy-duty class 8 truck fitted with an H2DF system
Farzam, RezaGuan, MangGmoser, RaineSteiche, PatrickKirchen, PatrickMcTaggart-Cowan, Gordon
Tractor-semitrailers play an important role in the transportation industry. However, global warming and the rapid advancement of energy technologies have driven the transformation of high-emission vehicles, such as tractor-semitrailers, to be powered by new energy sources in order to achieve goals related to energy conservation, emission reduction, and cost savings. By using the motor as the primary driving force, the energy recovered during braking or coasting can be converted into electricity and stored in the battery for later use. While much research has been conducted on braking control and energy recovery for passenger cars, there is limited research on tractor-semitrailers. Additionally, the jackknife is a critical factor to consider under high-speed conditions. To investigate the braking energy recovery of electric tractor-semitrailers, tire and motor models were developed based on the turning and braking conditions of such vehicles. Taking into account the load transfer effect
Chen, RunpingDuan, Yupeng
Effective traffic management and energy-saving techniques are increasingly needed as metropolitan areas grow and traffic volumes rise. This work estimates fuel consumption over three selected routes in an urban context using spatio-temporal modeling essentially building on a previously developed approach in traffic prediction and forecasting. A weighted adjacency matrix for a Graph Neural Network (GNN) is constructed in the original approach which combines graph theory frameworks with travel times obtained from average speeds and distances between traffic count stations. Next, the traffic flow estimate uncertainty is measured using Adaptive Conformal Prediction (ACP) to provide a more reliable forecast. This work predicts fuel consumption under different scenarios by utilizing Monte Carlo simulations based on the expected traffic flows providing insights into energy efficiency and the best routes to take. The study compares passenger vehicles' and heavy-duty trucks' mean fuel
Patil, MayurMoon, JoonHanif, AtharAhmed, Qadeer
This experimental study presents preliminary investigations of prechamber-enabled mixing-controlled combustion (PC-MCC) at −2 bar brake mean effective pressure (BMEP) and 2200 rpm with fuel-grade ethanol (E98). Experimental results are conducted on a prechamber retrofitted single-cylinder Caterpillar C9.3B test engine. First, a series of prechamber-only experiments were conducted with a motored engine to evaluate the salient combustion trends in response to relevant prechamber operating parameters. Under firing conditions, the prechamber operating strategy was assessed with respect to the impact on ignition assistance of direct-injected E98 and overall engine performance. The preliminary results indicate the jet-induced ignition process is robust and prompts diffusion combustion of E98 at diesel-like boundary conditions. The effect of external exhaust gas recirculation (EGR) on the residual tolerance of the prechamber combustion process was also investigated and showed stable
Zeman, JaredDempsey, Adam
The effectiveness of the negative suspension structure (NSS) in isolating the driver’s seat vibrations has been demonstrated based on the seat’s model or vehicle’s one-dimensional dynamic model. To fully assess the effectiveness and stability of the seat’s NSS (S-NSS) on different models of vehicles, the three-dimensional models of the vibratory rollers (VR), heavy trucks (HT), and passenger cars (PC) have been built to assess the effectiveness of S-NSS compared to the seat’s passive suspension (S-PC) and seat’s control suspension (S-CS). The effectiveness of S-NSS is then investigated under all operating conditions of vehicles. The investigation results indicate that under a same simulation condition, S-NSS improves the ride comfort and health of the driver better than both S-PS and S-CS on all VR, HT, and PC. However, the effectiveness of S-NSS on PC is lower than on both VR and HT while the effectiveness of S-CS on PC is better than on both VR and HT. Besides, the effectiveness of S
Su, BeibeiWang, QiangSong, Fengxiang
Parallel hybrid commercial vehicles equipped with automated manual transmissions are extensively utilized in the commercial vehicle sector due to their minimal configuration changes, high energy efficiency, and multi-mode driving capabilities. The key to enhancing the fuel economy of these vehicles lies in the mode switching and gear shift control strategy. To meet the driving requirements of these vehicles and optimize their fuel efficiency, this study introduces a mode switching and gear shift control strategy based on dynamic programming for a parallel hybrid commercial vehicle. First, dynamic programming is applied to the energy management strategy of the hybrid electric vehicle to determine the optimal fuel-efficient power output. Subsequently, the results from dynamic programming simulations are utilized to establish the mode switching boundaries and gear shift patterns. An improved mode switching and gear shift control strategy is then proposed and compared with the control
Zhai, XumaoLi, YujuanJiang, GuangzongYan, ZhengfengYao, MingyaoSun, Yansen
Hydrogen fuel cell trucks have enormous development potential in the pursuit of global carbon neutrality and sustainable development. However, their commercialization and mass production are facing challenges in various aspects, especially the durability problem of fuel cells. This paper is intended to set up a high-power hydrogen fuel cell system (FCS) model, considering the fuel cell degradation factors, and based on this, proposes a two-layer fuzzy energy management strategy (EMS) to optimize the life of fuel cell and the total energy consumption of the vehicle. The first control layer provides real-time energy distribution efficiently from multiple sources and thus allows flexibility in energy supply. The second layer regulates the dynamic adjustment of fuel cell output power with degradation of both fuel cells and batteries considered, to make the prolonging of system lifetime possible. In this respect, the equivalent hydrogen consumption, which incorporates fuel cell degradation
Hou, QuanWang, HanZhu, Dan
Predictive Cruise Control (PCC) is a promising approach for improving fuel efficiency and reducing operational costs in heavy trucks. However, its implementation using conventional Nonlinear Model Predictive Control (NMPC) methods is hindered by computational limitations, often restricting the use of long-horizon slope information. This paper addresses these challenges by proposing a neural network-enhanced slope-adaptive NMPC framework. A Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) architecture is employed to integrate long-horizon slope information and dynamically update control parameters, effectively overcoming computational constraints of traditional NMPC. To further enhance efficiency, an automated simulation scheduling system is developed, leveraging Large Language Models (LLMs) and expert knowledge to optimize parameter tuning and streamline data collection, significantly reducing training overhead. Validation on a high-fidelity simulation platform
Han, XiaoSong, KangLv, Qing FangZhang, YiXie, Hui
In cold environments, it is slow and risky for charging rate of electric heavy-duty trucks due to lithium plating. Common heating-charging methods overlook the complex dynamics between current, temperature, and battery aging, which need to be further improved. This study presents a tailored thermal management strategy for low-temperature battery charging, analyzing heating performance and battery improvement effect on the fast-charging performance. The data-driven multi-tiered power heating strategy based on a customer electro-thermal-aging model was proposed to minimize charging time and costs. The heating power combinations have been optimized by a particle swarm optimization algorithm, which outperforms conventional methods that aim to reach a set temperature. The optimized strategy reduced charging time by 11% and battery life degradation by only 0.0512%, enhanced the efficiency of cold-weather fast charging for electric trucks.
Lin, JieweiJiang, FeifanDai, HuweiSun, LeiLiu, BaoguoLi, ShiboZhang, Junhong
The optimization of gear shifting is a critical process in heavy-duty trucks for adjusting engine operating points, enabling a multi-objective balance between power, fuel efficiency, and comfort. However, this process is challenged by the nonlinear characteristics of engine fuel consumption, power interruptions during AMT (Automated Manual Transmission) shifts, and uncertainties in driving conditions. This study proposes a rolling optimization shift strategy for heavy trucks equipped with AMT, based on a multi-scale prediction of internal combustion engine fuel consumption on the road. Firstly, a predictive model for the energy efficiency and dynamics of heavy-duty trucks with AMT was developed, accounting for the engine’s engine’s operating condition points and power interruptions during shifting. Secondly, a future power demand, vehicle speed, and fuel consumption prediction algorithm was designed, iterating based on accelerator pedal position forecasts and dynamic modeling. Finally
Liu, XingyiZhou, QuanyuZhang, LeiboLv, DongxuanSun, XiaopengGao, JinhaoSong, KangXie, Hui
The electric heavy-duty truck has been receiving much attention due to its low carbon emission characteristic. This paper presents the winterized design of thermal management for an electric heavy-duty truck. The changes of important parameters in the modes of rapid heating from a cold start battery, cabin defrosting, and cabin heating in winter are discussed based on water source heat pumps. It takes 1300 seconds to warm the battery to 5°C from an ambient temperature of -10°C. Under the same heat production condition, the proposed water source heat pump can save 28.2% energy comparing with the air source heat pump, the cabin air conditioner air outlet can stay above 40°C for more than 5 minutes, and the cabin temperature can be stabilized at 20°C to meet the heating demand of the crew in winter.
Yu, BoDai, HuweiLin, JieweiHan, FengJiang, FeifanZhang, Junhong
New-energy vehicles (NEVs) are gaining increasing attention as global efforts focus on reducing carbon emissions and dependence on fossil fuels. The motor drive system, a core technology of electric vehicles, has become a prominent research focus in both academia and industry. This paper investigates a novel matrix-torque-component machine (MTCM) that has been proposed for use in electric vehicles in recent years. First, the paper introduces the topology and torque generation mechanism of MTCM and IPMs. For comparison, an MTCM and a detailed model of the Toyota Prius 2010 interior permanent magnet machine (IPM) are developed. The torque capacity, loss distribution, and operational performance are then compared sequentially. Results indicate that the torque-generating capacity of the MTCM is higher than that of the IPM. Additionally, the MTCM performs better in low-speed, high-torque ranges. Therefore, the MTCM shows promising application potential in electric heavy-duty trucks and as a
Sun, PengchengJia, ShaofengYang, DongxuLiang, Deliang
A significant amount of chemical fuel energy in internal combustion engines is wasted through exhaust heat. Waste heat recovery (WHR) systems can transform the heat into electrical energy using thermoelectric generators (TEG). This work utilizes a 1D CFD model to demonstrate the potential of TEG-WHR in improving the thermal efficiency of mass-production, compressed natural gas (CNG) engines used in commercial 22-ton heavy-duty trucks. First, the TEG with heat exchanger experiments are performed to measure thermal and electrical performance data under different fin pitches and inlet gas conditions (Re number, temperature, gas flow rate). These data are used to develop and validate a TEG model, which considers user-defined functions of heat transfer and flow friction coefficients to reproduce measured thermal/electrical characteristics of the integrated TEG with its heat exchanger. The engine experiments are conducted based on the speed–torque map (51 test conditions) of the JE05 heavy
Sok, RatnakKusaka, Jin
This SAE Recommended Practice describes the test procedures for conducting dynamic frontal strength test for COE and other heavy trucks with forward controls. Its purpose is to establish recommended test procedures which will standardize the procedure for heavy trucks. Descriptions of the test setup, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
In recent years, fuel cell electric vehicles (FCEV) have become a promising alternative to battery electric vehicles in medium- and heavy-duty on-road applications, which specifically require long vehicle range, high payload capacity, and fast refueling times. While FCEVs are more likely to meet these requirements, they come with their own challenges of high upfront system cost, reduced system efficiency at high load, on-board hydrogen storage system packaging, and fuel cell system (FCS) durability. To address these challenges, it is critical to ensure optimal propulsion system component sizing during the concept phase as well as ensure optimal propulsion system energy management during vehicle operation. In a previous publication, authors presented a model-based approach for system sizing and optimization of FCEV propulsion system components for a Class 8 long-haul application. In this study, the authors have evaluated and optimized multiple advanced propulsion system energy
Sadekar, GauravBatool, SadafBaburaj, AdithyaGoyal, VasuJoshi, SatyumFranke, Michael
Chinese battery manufacturer CATL (Contemporary Amperex Technology Co. Ltd.) completed the launch of its TECTRANS battery system for the commercial transport sector at IAA Transportation, which took place in September in Hanover, Germany. CATL added its heavy-duty truck and bus/coach battery ranges to the light-truck range that the company launched in China in July 2024. For heavy-duty trucks, CATL offers two alternatives: the TECTRANS - T Superfast Charging Edition and the TECTRANS - T Long Life Edition. As the name suggests, the Superfast Charging Edition is designed to offer rapid charging capability for operators needing to recharge during a duty cycle. CATL quotes a 4C peak charging rate, which would permit a charge to 70% in 15 minutes.
Kendall, JohnGehm, Ryan
A power steering system helps the heavy-duty operator move the vehicle easily with the hydraulic pump that provides the fluid pressure and facilitating adequate operation. Some failures in the power steering system are due to external and internal factors that can reduce its service life. The external factors could be identified by ocular inspection but normally, due to internal failures, it is necessary to use a hydraulic pressure flow meter. However, this device makes it impossible to detect failures caused by the selected lubricant. This work aims to investigate the causes of power steering system seizure by using the tribological wear examination process and the lubricant characterization under some actual operation conditions. The lubricant characterization was carried out in a four balls tester using fresh and used samples of a re-refined oil based ATF, SAE 15 W40 and synthetic SAE 5 W30 oils at two temperatures. In general, the results showed an unsteady friction profile with
García-Maldonado, MiguelGallardo, EzequielMozqueda-Flores, LuisVite-torres, Manuel
This SAE Recommended Practice describes the test procedures for conducting free-motion headform testing of heavy truck cab interior surfaces and components. A description of the test setup, instrumentation, impact configuration, target locations, and data reduction is included.
Truck Crashworthiness Committee
Achieving sustainable mobility requires the implementation of alternative and carbon-free technologies, especially in the sector of heavy-duty vehicles where powertrain electrification is challenging due to the high loads and long distances involved. In this context, hydrogen proton exchange membrane (PEM) fuel cell technology is considered a promising power source for heavy-duty hybrid electric vehicles. At the fuel cell level, the membrane electrode assembly (MEA) degradation and the system thermal management remain two major areas of research, that can be addressed not only with the development of new materials but also with the implementation of optimal control strategies. Working under operating points that lead to MEA aging and performance degradation can reduce the lifetime of the fuel cell with repercussions on the vehicle’s total cost of ownership. Typical fuel cell powertrains are hybridized in a parallel configuration with a battery, which requires solving an energy
Moratti, GiancarloVillani, ManfrediBeltrami, DanieleUberti, StefanoIora, PaoloTribioli, Laura
The European Union plans to reach net-zero greenhouse gas (GHG) emissions in 2050. In 2020, the transport sector significantly contributed to global energy-related GHG emissions, with heavy-duty vehicles (HDVs) responsible for a substantial portion of road transport emissions in the EU and a notable percentage of the EU’s total GHG emissions. Zero-emission vehicles (ZEVs), including fuel cell (FC) vehicles, are crucial for decarbonizing the transport sector to achieve climate neutrality. This paper aims at quantifying the environmental impacts of a 200kW proton exchange membrane FC system for long-haul HDVs with a 40-ton mass and 750 km driving range. The life cycle assessment (LCA) methodology was applied, and a life cycle model of the FC system was developed with a cradle-to-grave boundary. To ensure reproducibility and scalability, results are reported on a kW basis. A sensitivity analysis was performed on key parameters, including hydrogen production route, FC system production
Gentilucci, GaiaAccardo, AntonellaSpessa, Ezio
A method of overall modeling and step-by-step solution was proposed to verify and analyze the strength of the mount shell. First, a reliable finite element simulation model was established based on testing of the mechanical properties of rubber materials, constitutive model construction, and stiffness tests of the mounts. Second, the displacement of the mount system under preloading and crash loads was calculated separately through the modeling of the powertrain mount simulation, which provided accurate load conditions of the mount for the following work. Finally, the strength calculation and evaluation of the mount shell was completed with the quasi-static solution method. This calculation method could consider the influence of complex factors comprehensively, such as assembly load distribution, large deformation of rubber, and contact nonlinearity on the stress distribution of the mount shell. In addition, the calculation method could solve the problem of balance between solution
Li, KeliangChen, GuozhengSun, WanyuYan, ShanhengLi, MingLiu, Baoguo
In recent decades, it can be noted an advance in new technologies applied to commercial vehicles. This advancement led to the development of new functions making products more efficient and safer, benefiting the society in general. Commercial vehicle manufacturers brought their products to levels higher than those required by current legal resolutions. Among the various resolutions applied to the braking system, in CONTRAN #915/22, which specifies minimum requirements of performance of vehicles brakes, the part 7 of NBR 10966 stands out. This standard determines requirements for compatibility between towing and towed units combined as a vehicle. The purpose of this study was to evaluate the thermal balance between the brakes of a motor vehicle combined with a semi-trailer. The tests were carried out by varying the pneumatic pressure that controls the service brake of towed units during braking. Some of the pressure levels were complying with compatibility requirements, others were not
Dias, Eduardo MirandaTravaglia, Carlos Abílio PassosRodrigues, AndréRudek, CludemirBritto, Danilo
New tests for a Truck Safe rating scheme aim to emulate real-world collisions and encourage OEMs to fit collision avoidance technologies and improve driver vision. Euro NCAP has revealed the elements it is considering as part of an upcoming Truck Safe rating, and how it intends to test and benchmark truck performance. The announcement was made to an audience of international road safety experts at the NCAP24 World Congress in Munich, Germany, in April. The action is intended to mitigate heavy trucks' impact on road safety. The organization cited data showing that trucks are involved in almost 15% of all EU road fatalities but represent only 3% of vehicles on Europe's roads. Euro NCAP says the future rating scheme is designed to go further and faster than current EU truck safety regulations. The organization's goal is to drive innovation and hasten the adoption of advanced driver-assistance systems (ADAS) such as automatic emergency braking (AEB) and lane support systems (LSS), while
Gehm, Ryan
Items per page:
1 – 50 of 1138