Browse Topic: Accident types

Items (2,576)
Objective: Previous studies have reported disparity in injuries between male and female drivers in the risk of certain types of injuries in frontal crashes that may be due to a myriad of sex-related differences, including body size, shape, anatomy, or sitting posture. The objectives of this study are 1) to use mesh-morphing methods to generate a diverse set of human body models (HBMs) representing a wide range of body sizes and shapes for both sexes, 2) conduct population-based frontal crash simulations, and 3) explore adaptive restraint design strategies that may lead to enhanced safety for the whole population while mitigating potential differences in injury risks between male and female drivers Method: A total of 200 HBMs with a wide range of body sizes and shapes were generated by morphing the THUMS v4.1 midsize male model into geometries predicted by the statistical human geometry models. Ten male and ten female HBMs were selected for population-based simulations. An existing
Sun, WenboHu, JingwenLin, Yang-ShenBoyle, KyleReed, MatthewSun, ZhaonanHallman, Jason
Side crashes are generally hazardous because there is no room for large deformation to protect an occupant from the crash forces. A crucial point in side impacts is the rapid intrusion of the side structure into the passenger compartment which need sufficient space between occupants and door trim to enable a proper unfolding of the side airbag. This problem can be alleviated by using the rising air pressure inside the door as an additional input for crash sensing. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. The crash pulses recorded by the acceleration based crash sensors usually exhibit high frequency and noisy responses. The data obtained from the pressure sensors exhibit lower frequency and less noisy responses. Due to its ability to discriminate crash severities and allow the restraint devices to deploy earlier, the pressure sensor technology has
Bhagat, MilindNarale, NaganathMahajan, AshutoshWayal, VirendraJadhav, Swapnil
The objective of the present study is to examine trends in occupant kinematics and injuries during side impact tests carried out on vehicle models over the period of time. Head, shoulder, torso, spine, and pelvis kinematic responses are analysed for driver dummy in high speed side impacts for vehicle model years, MY2016-2024. Side impact test data from the tests conducted at The Automotive Research Association of India (ARAI) is examined for MY2016-2024. The test procedure is as specified in AIS099 or UNECE R95, wherein a 950kg moving deformable barrier (MDB) impacts the side of stationary vehicle at 50km/hr. An Instrumented 50th percentile male EUROSID-2 Anthropomorphic Test Device is positioned in the driver seat on the impacting side. Occupant kinematic data, including head accelerations, Head Injury Criterion (HIC15), Torso deflections at thorax and abdominal ribs, spine accelerations at T12 vertebra, and pelvis accelerations are evaluated and compared. The “peak” and “time to
Mishra, SatishBorse, TanmayKulkarni, DileepMahajan, Rahul
India has emerged as the world’s largest market for motorized two-wheelers (M2Ws) in 2024, reflecting their deep integration into the country’s transportation fabric. However, M2Ws are also a highly vulnerable road user category as according to the Ministry of Road Transport and Highways (MoRTH), the fatality share of M2W riders rose alarmingly from 27% in 2011 to 44% in 2022, underlining the urgency of understanding the circumstances that lead to such crashes. This study aims to investigate the pre-crash behavior and crash-phase characteristics of M2Ws using data from the Road Accident Sampling System – India (RASSI), the country’s only in-depth crash investigation database. The analysis covers 3,632 M2Ws involved in 3,307 crash samples from 2011 to 2022, representing approximately 5 million M2Ws nationally. Key variables examined include crash configuration, collision partner, road type, pre-event movement, travel speed, and human contributing factors. The study finds that straight
Govardhan, RohanPadmanaban, JeyaJethwa, Vaishnav
Occupant Safety systems are usually developed using anthropomorphic test devices (ATDs), such as the Hybrid III, THOR-50M, ES-2, and WorldSID. However, in compliance with NCAP and regulatory guidelines, these ATDs are designed for specific crash scenarios, typically frontal and side impacts involving upright occupants. As vehicles evolve (e.g., autonomous layouts, diverse occupant populations), ATDs are proving increasingly inadequate for capturing real-world injury mechanisms. This has led to the adoption of computational Human Body Models (HBMs), such as the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS), which offer superior anatomical fidelity, variable anthropometry, active muscle behaviour modelling, and improved postural flexibility. HBMs can predict internal injuries that ATDs cannot, making them valuable tools for future vehicle safety development. This study uses a sled CAE simulation environment to analyze the kinematics of the HBMs
Raj, PavanRao, GuruprakashPendurthi, Chaitanya SagarNehe, VaibhavChavan, Avinash
Real-world crashes involve diverse occupants, but traditional restraint systems are designed for a limited range of body types considering the applicable regulations and protocols. While conventional restraints are effective for homogeneous occupant profiles, these systems often underperform in real-world scenarios with diverse demographics, including variations in age, gender, and body morphology. This study addresses this critical gap by evaluating adaptive restraint systems aligned with the forthcoming EURO NCAP 2026 protocols, which emphasize real-world crash diversity and occupant type. Through digital studies of frontal impact scenarios, we analyze biomechanical responses using adaptive restraints across varied occupant demographics, focusing on head and chest injury (e.g., Chest Compression Criterion [CC]). This study used a Design of Experiments (DOE) approach to optimize occupant protection by timing the actuating of these adaptive systems. The results indicate that activating
satija, AnshulSuryawanshi, YuvrajChavan, AvinashRao, Guruprakash
With the fast development of computational analysis tools and capacities during the past ten years, complex and substantial computer-aided engineering (CAE) simulations are now economically possible. While the cost of crash tests has risen steadily, the fidelity and complexity, which numerical simulations could address, has multiplied keeping the cost of computational analysis more stable. The fundamental goal of CAE is to achieve significant reduction in the number of physical tests conducted during the product development process. However, validating the CAE model with physical tests is essential to ensure accuracy and reliability. Simulations performed using a validated CAE model could be used to make decisions like airbag deployment or high voltage shutdown without an actual physical test being conducted. This paper discusses validating an electric commercial vehicle CAE model during a side impact thus emphasizing the safety of a high voltage battery system. The critical parameters
Upendran, AnoopKnuth, JosephKrishnappa, GiriPunnaiappan, Arunsankar
Human Body Models (HBMs) are increasingly recognized by consumer protection agencies as essential tools for evaluating vehicle safety, complementing the use of traditional Anthropomorphic Test Devices (ATDs). However, HBMs are new for product development and pose challenges in connecting them with the ATDs. These challenges can be overcome if a link is established for the injury metrics between HBMs and ATDs. The study aims to develop a chest deflection mapping function between the HBM Connect® 50M and three ATD models: Hybrid III 50M, THOR-50M and World SID 50M for thoracic assessment in impact scenarios. Several frontal and lateral thorax loading scenarios were selected from the HBM4VT qualification catalogue (Euro NCAP technical bulletin CP 550), including hub impacts and table-top seatbelt loading tests. Matched-pair LS-DYNA simulations were conducted with HBM Connect® 50M and the ATD models recording peak chest deflections for developing the mapping function. In the HBM Connect
Velmurugan, GopinathKumar, DevendraR, Udhaya KumarKulavi, PradeepSoni, AnuragTejero de la Piedra, RicardoFu, StephenLong, TengArora, TusharJagadish, RenukaShah, Chirag
In the realm of automotive safety engineering, the demand for efficient and accurate crash simulations is ever-increasing. As finite element (FE) modeling of components becomes increasingly detailed and the availability of advanced material models improves, crash simulations for full vehicles can become time-consuming. Evaluating the crash performance of any vehicle subsystem requires structural simulations at different levels. While the design and configuration phase deals with a local simulation in representative load cases, full vehicle simulations are required later for a final digital proof of achieved requirements and development targets. This paper introduces a novel methodology for replacing full vehicle crash simulations, as required for a local view on the structural load path development, through segment-models. By adapting segment-model simulations, a significant reduction in computational time and resource usage is achieved, thereby optimizing CPU cluster performance and
Moncayo, DavidMalipatil, AnandPrasad, RakeshKunnath, Allwin
Commercial vehicle sector (especially trucks) has a major role in economic growth of a nation. With improving infrastructure, increasing number of trucks on roads, accidents are also increasing. As per RASSI (Road Accident Sampling System India) FY2016-23 database, commercial vehicles are involved in 42% of total accidents on Indian roads. Involvement of trucks (N2 & N3) is over 25% of total accidents. Amongst all accident scenarios of N2 &N3, frontal impacts are the most frequent (26%) and causing severe occupant injuries. Today, truck safety development for frontal impact is based on passive safety regulations (viz. front pendulum – AIS029) and basic safety features like seatbelts. In any truck accident, it is challenging rather impossible to manage comprehensive safety only with passive safety systems due to size and weight. Accident prevention becomes imperative in truck safety development due to extremely high energy involved in front impact scenarios. The paper presents a unique
Joshi, Kedar ShrikantGadekar, GaneshDate, AtulKoralla, Sivaprasad
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
The proposal of GSR 16(E) in India promotes six airbags in passenger vehicles, aiming to enhance occupant safety. In parallel, the new Bharat New Car Assessment Program (BNCAP) outlines performance protocols that demand robust airbag deployment strategies to achieve a five-star safety rating. One of the critical challenges in meeting both regulatory and consumer safety expectations is the optimal packaging of the airbag Electronic Control Unit (ECU) and its associated impact sensors. These must perform reliably across regulatory tests, BNCAP protocols, and real-world accident scenarios. The location of side acceleration ‘g’ side impact sensors—whether mounted on the side sill, B-pillar, C-pillar, or door structures—is pivotal to achieving consistent and timely side airbag deployment. These sensors must also demonstrate immunity to false triggers or missed events in both static and dynamic misuse and abuse conditions. Ensuring robust sensor performance under these varied conditions is
Kudale, ShaileshRao, Guruprakashwayal, VirendraGoswami, Tarun
With rapid advancements in Autonomous Driving (AD) & Advanced Driver Assistance Systems (ADAS), numerous sensors are integrated in vehicles to achieve higher and reliable level of autonomy. Due to the growing number of sensors and its fusion creates complex architecture which causes challenges in calibration, cost, and system reliability. Considering the need for further ADAS advancements and addressing the challenges, this paper evaluates a novel solution called One Radar - a single radar system with a wide field of view enabled by advanced antenna design. Placing the single radar at the rear of the vehicle eliminates the need for corner radars and ultrasonic sensors used for parking assistance. With rigorous real-world testing in different urban and low-speed scenarios, the single radar solution showed comparable accuracy in object detection with warning and parking assistance to the conventional combination of corner radars and ultrasonic sensors. The simple single sensor-based
Anandan, RamSharma, Akash
Curtain airbags are the most effective protective systems to prevent severe/fatal head injuries in side collisions with narrow objects such as poles or trees. One of the important parameters of curtain airbags is the inflated zone i.e. the coverage area of the airbag, which decides the extent of head protection for occupants with different anthropometries in different seating rows. EuroNCAP first introduced the concept of Head Protection Device Assessment (HPDA) in 2015., In addition to the performance requirements in the dynamic test, EuroNCAP started assessing the deployed curtain airbag/s for its area coverage and verification of inflated zones for various anthropometries over occupant rows. In India, there is now a near total adoption of curtain airbags as standard fitment by the OEMs. Further, introduction of Bharat NCAP (BNCAP), a Perpendicular Pole Side Impact test is conducted for assessing the effectiveness of curtain airbags in a dynamic test, but currently, does not perform
Jaju, DivyanKulkarni, DileepMahajan, Rahul
The Ministry of Road Transport and Highways (MoRTH), Government of India, has established BHARAT NCAP to provide a fair, meaningful, and objective assessment of the crash safety performance of cars. This program evaluates vehicles across three key areas, including Child Occupant Protection (COP). A critical component of the COP assessment involves dynamic testing using Q-series child dummies representing a 1½-year-old (Q1.5) and a 3-year-old child (Q3). As per the BHARAT NCAP protocol, these dummies are placed in the second-row outboard seating position within Child Restraint Systems (CRSs) and subjected to two primary dynamic impact tests: Offset Deformable Barrier (ODB) conducted at a speed of 64 km/hr. and Mobile Deformable Barrier (MDB) Side Impact tests conducted at 50 km/hr. The dynamic assessment of these child dummies is primarily focused on the head, neck, and chest regions to evaluate the effectiveness of the CRSs and overall vehicle safety system in protecting young
Khopekar, MariaLakshminarayana, ApoorvaMohan, PradeepKurkuri, Mahendra
In emerging markets, especially in India and other similar countries, the growing traffic density on the roads leads to different types of accidents, including frontal head-on collisions, rear-end collisions, side-impact collisions, collisions with fixed objects such as electric poles, trees, road guard rails, road dividers, and accidents involving pedestrians, cyclists, and two-wheelers. These accidents could be due to over speeding, distracted driving, violation of traffic rules, and inadequate road infrastructure etc. Providing the necessary safety restraint systems (Airbags and Seat belts) in vehicles and ensuring their robust functionality in different real-world accident scenarios will be challenging for vehicle manufacturers. It is high time to redefine the traditional collision-sensing architecture strategies with a logical approach based on a thorough study of available accident data statistics, types of objects, and scenarios leading to severe accidents. Among these, rear-end
KOVALAM, SUNIL KUMAR
Vehicles with a high center of gravity (CG) and moderate wheel track, like compact Sport Utility Vehicles (SUVs), have a relatively low Static Stability Factor (SSF) and thus are inherently less stable and more susceptible to rollover crashes. Moreover, to be more maneuverable in highly populated urban areas, a smaller Turning Circle Diameter (TCD) is necessary. Here, Variable Gear Ratio (VGR) steering systems have major benefits over traditional Constant Gear Ratio (CGR) systems in terms of enhancing both roll stability and agility. To adapt VGR steering systems to a particular vehicle dynamic, Full Vehicle (FV) and Driver-in-the-Loop (DIL) simulations are utilized. Using this method, exact calibration is possible according to realistic driving conditions so that the VGR steering C-factor curve is properly tuned for optimal handling in on-center, off-centre, and transitional areas of the Steering Wheel Angle (SWA). Primary performance measures—e.g., SWA gradients at different lateral
Rewale, PratikKopiec, JakubKumar, DevaRasal, ShraddheshHussain, InzamamNehal, S B
Addressing the critical need for lightweight and safe energy storage solutions in electric vehicles, this paper presents the design and optimization of a novel Composite Metal Hybrid (CMH) battery pack structure. A computer aided simulation using Abaqus software was performed to optimize the weight of battery pack. The structural integrity and crashworthiness of the optimized lightweight design were rigorously evaluated under various load cases like side impact (crush), shock loading and underfloor impact. Modal analysis and load tests addressed, demonstrate the CMH battery pack as a viable and promising lightweight solution for electric vehicle applications. Manufacturing aspects are also discussed to ensure feasibility and integration.
Shah, Bijay KumarSingh, Pundan KumarG., Manikandan
Severe rear-impact collisions can cause significant intrusion into the occupant compartment when the structural integrity of the rear survival space is insufficient. Intrusion patterns are influenced by impact configuration—underride, in-line, or override—with underride collisions channeling forces below the beltline through the rear wheels as a primary load path. This force concentration rapidly propels the rear seat-pan forward, contacting the rearward-rotating front seatback. The resulting bottoming-out phenomenon produces a forward impulse that amplifies loading on the front occupant’s upper torso, increasing the risk of thoracic injury even when the head is properly supported by the head restraint. This study analyzes a real-world rear-impact collision that resulted in fatal thoracic injuries to the driver, attributed to the interaction between the driver’s seatback and the forward-moving rear seat pan. A vehicle-to-vehicle crash test was conducted to replicate similar intrusion
Thorbole, Chandrashekhar
This paper presents a novel structural solution for side impact protection of high-voltage battery packs in electric trucks. While electric vehicles offer benefits like zero emissions and independence from fossil fuels, in turn present challenges in meeting crashworthiness standards and safety regulations. The device addresses the critical need for effective battery protection & styling of battery electric vehicles. The integration of a hybrid corrugated panel system with plastic side fairings is innovative, combining crashworthiness with aerodynamic and aesthetic benefits. The crash protection features two hat-section steel channels at the top and bottom and corrugated steel sheet with alternating ridges is attached to these channels. Corrugated panels are enforced with help of backing strips. This assembly is mounted on shear plates at both ends, secured to the vehicle's frame rail. During a side impact event, the plastic side fairings absorb the initial impact, crumpling easily. If
Badgujar, PrathameshDevendra, AwachareHansen, Benjamin
Accidents during lane changes are increasingly becoming a problem due to various human based and environment-based factors. Reckless driving, fatigue, bad weather are just some of these factors. This research introduces an innovative algorithm for estimating crash risk during lane changes, including the Extended Lane Change Risk Index (ELCRI). Unlike existing studies and algorithms that mainly address rear-end collisions, this algorithm incorporates exposure time risk and anticipated crash severity risk using fault tree analysis (FTA). The risks are merged to find the ELCRI and used in real time applications for lane change assist to predict if lane change is safe or not. The algorithm defines zones of interest within the current and target lanes, monitored by sensors attached to the vehicle. These sensors dynamically detect relevant objects based on their trajectories, continuously and dynamically calculating the ELCRI to assess collision risk during lane changes. Additionally
Dharmadhikari, MithilS, MrudulaNair, NikhilMalagi, GangadharPaun, CristinBrown, LowellKorsness, Thomas
Frontal crash structures play a vital role in occupant safety, but traditional designs often involve a trade-off between structural strength and weight efficiency. In the pursuit of safer and more sustainable mobility, this study explores a physics-based methodology that leverages the principle of dynamic equilibrium to guide the integration of dissimilar materials in front-end vehicle structures. Specifically, examined a novel configuration wherein aluminum High-pressure die cast (single HPDC part) is introduced which covers swan neck region as well as the base of the front longitudinal member, while retaining steel in the frontal crush zone. This arrangement aims to redistribute crash loads and control deformation mechanisms, enabling improved energy absorption without compromising structural integrity. To evaluate the proposed strategy, a series of detailed finite element simulations were conducted using LS-DYNA, a widely adopted tool for vehicle crash analysis. The results reveal
Revanth, GoshikaBhagat, MilindJoshi, VikasMankhair, AbhijitSudarshan, B.SudarshanKollipara, Jahanavi
Indian passenger car accident data indicates that approximately 44% of crashes are frontal impacts (Refer fig 1). Among the injuries sustained in these crashes, lower leg injuries are notably critical, contributing to nearly 25% of driver occupant injuries (Refer fig 2). To evaluate such injuries, the Bharat New Car Assessment Program (BNCAP) includes lower leg injury metrics as part of the Frontal Offset Deformable Barrier (ODB64) test. While the overall injury performance is assessed at the vehicle level, BNCAP also monitors vehicle interior intrusions—particularly pedal intrusions—as key contributors to lower limb injury severity. A major challenge in frontal crashes is the intrusion of the vehicle's front-end structure into the occupant compartment. Rigid components, particularly the brake pedal assembly, can be displaced rearward during a crash, significantly increasing the risk of lower leg injuries. Therefore, minimizing pedal intrusions into the driver foot-well is critical for
Shetti, Rahul R.Kudale, ShaileshNaik, NagarajBisen, BadalKotak, VijayDudhewar, SwapnilBhagat, AmitDurgaprasad, HNV
Items per page:
1 – 50 of 2576