Browse Topic: Crash prevention
We present DISRUPT, a research project to develop a cooperative traffic perception and prediction system based on networked infrastructure and vehicle sensors. Decentralized tracking and prediction algorithms are used to estimate the dynamic state of road users and predict their state in the near future. Compared to centralized approaches, which currently dominate traffic perception, decentralized algorithms offer advantages such as greater flexibility, robustness and scalability. Mobile sensor boxes are used as infrastructure sensors and the locally calculated state estimates are communicated in such a way that they can augment local estimates from other sensor boxes and/or vehicles. In addition, the information is transferred to a cloud that collects the local estimates and provides traffic visualization functionalities. The prediction module then calculates the future dynamic state based on neurocognitive behavior models and a measure of a road user's risk of being involved in
Letter from the Guest Editors
This SAE Standard provides minimum requirements and performance criteria for devices to prevent runaway snowmobiles due to malfunction of the speed control system.
Provizio promises its 5D Perception stack can safely compete with expensive lidar sensors at a fraction of the cost. “Safety first” is more than a catchphrase. For sensing company Provizio, it's the only way the transportation industry should introduce autonomous vehicles. In Provizio's view, using AV building blocks - technology such as automatic emergency braking and lane-keep assist - can be valuable in ADAS systems, but they should not be used to drive vehicles until the perception problem has been solved. “It's not that we're skeptical about autonomous driving, it's just that we strongly believe that the industry has taken this wrong path,” Dane Mitrev, machine learning engineer at Provizio, told SAE Media at September 2023's AutoSens Brussels conference. “The industry has looked at things the other way around. They tried to solve autonomy first, without looking at accident prevention and simpler ADAS systems. We are building a perception technology which will first eliminate road
ABSTRACT In order to expedite the development of robotic target carriers which can be used to enhance military training, the modification of technology developed for passenger vehicle Automated Driver Assist Systems (ADAS) can be performed. This field uses robotic platforms to carry targets into the path of a moving vehicle for testing ADAS systems. Platforms which are built on the basis of customization can be modified to be resistant to small arms fire while carrying a mixture of hostile and friendly pseudo-soldiers during area-clearing and coordinated attack simulations. By starting with the technology already developed to perform path following and target carrying operations, the military can further develop training programs and equipment with a small amount of time and investment. Citation: M. Bartholomew, D. Andreatta, P. Muthaiah, N. Helber, G. Heydinger, S. Zagorski, “Bringing Robotic Platforms from Vehicle Testing to Warrior Training,” In Proceedings of the Ground Vehicle
Volvo calls its all-new EX90 SUV the safest and most technically adept model in the company's 95-year history, which includes such achievements as the world's first three-point automotive seat belt in 1959. Even before this luxury EV logs its first mile on global roads that take more than 1 million human lives every year, Volvo asserts the EX90 will eliminate up to one in five serious injury accidents, and one in 10 accidents overall. That claim is based not on fuzzy math, said Lotta Jakobsson, a 33-year company veteran and specialist in injury protection, but on Volvo's industry-unique accident database that's been a wellspring of company safety innovations since the 1970s.
Recent researches in autonomous driving mainly consider the uncertainty in perception and prediction modules for safety enhancement. However, obstacles which block the field-of-view (FOV) of sensors could generate blind areas and leaves environmental uncertainty a remaining challenge for autonomous vehicles. Current solutions mainly rely on passive obstacles avoidance in path planning instead of active perception to deal with unexplored high-risky areas. In view of the problem, this paper introduces the concept of information entropy, which quantifies uncertain information in the blind area, into the motion planning module of autonomous vehicles. Based on model predictive control (MPC) scheme, the proposed algorithm can plan collision-free trajectories while actively explore unknown areas to minimize environmental uncertainty. Simulation results under various challenging scenarios demonstrate the improvement in safety and comfort with the proposed perception-aware planning scheme.
Items per page:
50
1 – 50 of 120