Browse Topic: Accident reconstruction
The integration of mobile device data in accident/crash/collision reconstruction methodologies offers significant potential in analyzing collision events. This study evaluates the utility of iPhone-recorded data, specifically Global Navigation Satellite System (GNSS) position and speed data, along with Coordinated Universal Time (UTC) based time and date information associated with application usage and device activity events. By conducting controlled tests, the accuracy, precision, and reliability of iPhone GNSS data were compared against high-accuracy reference systems, including a Racelogic VBox Video HD2 25 Hz GPS data logger and VBox Sport 25 Hz GPS data logger. The synchronicity between recorded app events and device activities with physical events was also analyzed to assess the temporal resolution of the data. Results highlight the strengths and limitations of iPhone data for reconstructing crash events, including potential discrepancies in GNSS accuracy under varying
A total of 148 tests were conducted to evaluate the Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) systems in five different Tesla Model 3 vehicles between model years 2018 and 2020 across four calendar years. These tests involved stationary vehicle targets, including a foam Stationary Vehicle Target (SVT), a Deformable Stationary Vehicle Target (DSVT), a live vehicle with brake lights, and a SoftCar360 designed for high-speed impact tests. The evaluations were conducted at speeds of 35, 50, 60, 65, 70, 75, and 80 miles per hour (mph) during both daytime and nighttime conditions and utilized early and medium FCW settings. These settings, part of Tesla's Collision Avoidance AssistTM, modify object detection alerts and the timing of visual and auditory warnings issued to drivers. The 2018 to 2020 vehicles initially utilized cameras, radar and ultrasonic sensors (USS) for object detection. Tesla updated their Autoilot software and detection algorithms to a vision
Theory and principles of occupant protection for automobiles in rear-end collisions have experienced significant evolution over the decades. Performance of the seatback, specifically the stiffness of the structure, during such a collision has been a subject of particular interest and debate among design engineers, accident reconstruction experts, critics, etc. The majority of current seat designs rely on plastic deformation of the seatback structure to protect the occupant from the dynamics of the crash. In attempt to highlight and provide background information for understanding this subject, this work highlights significant events, research, and publications over the past five decades to illustrate how this subject, automobile design, government regulation and public opinion has evolved. It is observed that technology and design for improving rear-impact protection has received less attention than collisions of other principal directions of force. The different types of
Video analysis plays a major role in many forensic fields. Many articles, publications, and presentations have covered the importance and difficulty in properly establishing frame timing. In many cases, the analyst is given video files that do not contain native metadata. In other cases, the files contain video recordings of the surveillance playback monitor which eliminates all original metadata from the video recording. These “video of video” recordings prevent an analyst from determining frame timing using metadata from the original file. However, within many of these video files, timestamp information is visually imprinted onto each frame. Analyses that rely on timing of events captured in video may benefit from these imprinted timestamps, but for forensic purposes, it is important to establish the accuracy and reliability of these timestamps. The purpose of this research is to examine the accuracy of these timestamps and to establish if they can be used to determine the timing
Items per page:
50
1 – 50 of 827