Browse Topic: Advanced driver assistance systems (ADAS)
Dooring accidents occur when a vehicle door is opened into the path of an approaching cyclist, motorcyclist, or other road user, often causing serious collisions and injuries. These incidents are a major road safety concern, particularly in densely populated urban areas where heavy traffic, narrow roads, and inattentive behavior increase the likelihood of such events. To address this challenge, this project presents an intelligent computer vision based warning system designed to detect approaching vehicles and alert occupants before they open a door. The system can operate using either the existing rear parking camera in a vehicle or a USB webcam in vehicles without such a feature. The captured live video stream is processed by a Raspberry Pi 4 microprocessor, chosen for its compact size, low power consumption, and ability to support machine learning frameworks. The video feed is analyzed in real time using MobileNetSSD, a lightweight deep learning object detection model optimized
The aim of this study is to develop a validated simulation method that accurately predicts vehicle behavior during a sudden loss of assist while cornering. The method also evaluates the steering effort required to return the vehicle to its intended path during failure scenarios, isolating the impact of uncertainties arising from driver performance. To illustrate the simulation methodology, the study involved testing various vehicles under conditions replicating sudden EPS assist loss during cornering. These tests captured the vehicle’s response, and the steering effort needed to correct its path. Different parameters affecting the vehicle behavior were studied and a validated method of simulation was developed.
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
Items per page:
50
1 – 50 of 1350