Browse Topic: Advanced driver assistance systems (ADAS)
Brake failures in the vehicles can cause hazardous accidents so having a better monitoring and emergency braking system is very important. So, this project consists of an autonomous brake failure detector integrated with Automatic Braking using Electromagnetic coil braking which detects the braking failure at the time and applied the combinations of the brakes, to overcome this kind of accidents. So, here the system comprises of IR sensor circuit, control unit and electromagnetic braking system. How it works: The IR sensor monitors the brake wire, and if the wire is broken, the control unit activates the electromagnetic brakes, stopping the vehicle in a safe manner. This system enhances vehicle safety by ensuring immediate braking action without driver intervention. Key advantages include real-time brake monitoring, reduced mechanical wear, quick response time, and an automatic failsafe mechanism. The system’s minimal reliance on hydraulic components also makes it suitable for harsh or
Armored vehicles offer limited view to the driver and crew. Two-dimensional vision-based situational awareness (SA) systems provide the driver a view of the area around the vehicle. The addition of distance to objects can offer a more comprehensive understanding of the surroundings assisting the driver with the locations of obstacles and rollover hazards. Methods currently available or under development for depth perception have issues limiting their utility in the field.. Some interfere with crew operations, others are are too costly, are not covert or require excessive processing. We offer a low-cost and computationally efficient approach called Kinetically Enhanced Situational Awareness (KESA) that derives distance to objects using existing SA sensors and processors combined with a knowledge of vehicle kinematics. We demonstrate how range can be used to enhance and supplement AI based driver assistance and threat warnings.
While electric powertrains are driving 48V adoption, OEMs are realizing that xEV and ICE vehicles can benefit from a shift away from 12-volt architectures. In every corner of the automotive power engineering world, there are discussions and debates over the merits of 48V power networks vs. legacy 12V power networks. The dialogue started over 20 years ago, but now the tone is more serious. It's not a case of everything old is new again, but the result of a growing appetite for more electrical power in vehicles. Today's vehicles - and the coming generations - require more power for their ADAS and other safety systems, infotainment systems and overall passenger comfort systems. To satisfy the growing demand for low-voltage power, it is necessary to boost the capacity of the low-voltage power network by two or three times that of the late 20th century. Delivering power is more efficient at a higher voltage, and today, 48V is the consensus voltage for that higher level.
Items per page:
50
1 – 50 of 1292