Browse Topic: Advanced driver assistance systems (ADAS)
The off-highway industry witnesses a vast growth in integrating new technologies such as advance driver assistance systems (ADAS/ADS) and connectivity to the vehicles. This is primarily due to the need for providing a safe operational domain for the operators and other people. Having a full perception of the vehicle’s surrounding can be challenging due to the unstructured nature of the field of operation. This research proposes a novel collective perception system that utilizes a C-V2X Roadside Unit (RSU)-based object detection system as well as an onboard perception system. The vehicle uses the input from both systems to maneuver the operational field safely. This article also explored implementing a software-defined vehicle (SDV) architecture on an off-highway vehicle aiming to consolidate the ADAS system hardware and enable over-the-air (OTA) software update capability. Test results showed that FEV’s collective perception system was able to provide the necessary nearby and non-line
Exactly when sensor fusion occurs in ADAS operations, late or early, impacts the entire system. Governments have been studying Advanced Driver Assistance Systems (ADAS) since at least the late 1980s. Europe's Generic Intelligent Driver Support initiative ran from 1989 to 1992 and aimed “to determine the requirements and design standards for a class of intelligent driver support systems which will conform with the information requirements and performance capabilities of the individual drivers.” Automakers have spent the past 30 years rolling out such systems to the buying public. Toyota and Mitsubishi started offering radar-based cruise control to Japanese drivers in the mid-1990s. Mercedes-Benz took the technology global with its Distronic adaptive cruise control in the 1998 S-Class. Cadillac followed that two years later with FLIR-based night vision on the 2000 Deville DTS. And in 2003, Toyota launched an automated parallel parking technology called Intelligent Parking Assist on the
ABSTRACT The transportation industry annually travels more than 6 times as many miles as passenger vehicles [1]. The fuel cost associated with this represents 38% of the total marginal operating cost for this industry [8]. As a result, industry’s interest in applications of autonomy have grown. One application of this technology is Cooperative Adaptive Cruise Control (CACC) using Dedicated Short-Range Communications (DSRC). Auburn University outfitted four class 8 vehicles, two Peterbilt 579’s and two M915’s, with a basic hardware suite, and software library to enable level 1 autonomy. These algorithms were tested in controlled environments, such as the American Center for Mobility (ACM), and on public roads, such as highway 280 in Alabama, and Interstates 275/696 in Michigan. This paper reviews the results of these real-world tests and discusses the anomalies and failures that occurred during testing. Citation: Jacob Ward, Patrick Smith, Dan Pierce, David Bevly, Paul Richardson
ABSTRACT The Army has identified an operational need for a Robotic Convoy capability for its tactical vehicle fleets. The Department of Defense (DoD), with a fleet of over several hundred thousand tactical vehicles, must identify an approach with supporting technology and supply base to procure and support a Robotic Convoy solution at the lowest possible cost. While cost is a key driver, the selected system approach must be proven and robust to ensure the safety of our soldiers and the supply chain. An effective approach is to integrate and adapt the advanced automotive technologies, components and suppliers currently delivering advanced safety technologies into the automotive market. These advanced automotive technologies merged with DoD robotics enhancements in tactical behaviors, autonomous driving, command & control and unmanned systems collaboration will advance the operational utility of robotic convoy application in manned and unmanned modes. Figure 1 Military Application The
ABSTRACT Popularity of Advanced Driver Assistance Systems (ADAS) in the passenger car industry has seen an explosive growth in recent years. Some ADAS that are becoming ubiquitous are Lane Departure Warning (LDW), Blind Spot Detection (BSD) and automatic parking or parking assistance systems. In many cases, such systems had been developed specifically to handle the most demanding driving conditions at very high speeds, which typically require very sophisticated software and high-power hardware. However, in the other application areas or geographical regions, such sophistication often hinders adoption of the technology. An alternate approach is to use off-the-shelf (OTS) component as much as possible so that similar systems with an appropriate subset of functions can be developed cheaply and quickly. The approach similar to the NASA’s “PhoneSats” program is discussed in this paper
Items per page:
50
1 – 50 of 1205