Browse Topic: Advanced driver assistance systems (ADAS)
Dooring accidents occur when a vehicle door is opened into the path of an approaching cyclist, motorcyclist, or other road user, often causing serious collisions and injuries. These incidents are a major road safety concern, particularly in densely populated urban areas where heavy traffic, narrow roads, and inattentive behavior increase the likelihood of such events. To address this challenge, this project presents an intelligent computer vision based warning system designed to detect approaching vehicles and alert occupants before they open a door. The system can operate using either the existing rear parking camera in a vehicle or a USB webcam in vehicles without such a feature. The captured live video stream is processed by a Raspberry Pi 4 microprocessor, chosen for its compact size, low power consumption, and ability to support machine learning frameworks. The video feed is analyzed in real time using MobileNetSSD, a lightweight deep learning object detection model optimized
Advanced Driver Assistance Systems (ADAS) have become increasingly prevalent in modern vehicles, promising improved safety and reducing accidents. However, their implementation comes with several challenges and limitations. The efficacy of these systems in diverse and challenging road conditions of India, remains as a concern. For deeper understanding of the ADAS feature related concerns in Indian market due to the factors such as unique road conditions, traffic situations, driving patterns, an extensive study was done throughout Indian terrain. The functionality and performance of different ADAS features were evaluated in the real-world scenarios. The objective data of the observations and occurrence conditions were captured with help of data loggers & camera setups inside the vehicle. This research paper represents a comprehensive study on the challenges faced by user while using ADAS enabled cars in Indian road conditions. We captured the performance data of various ADAS features
As vehicles are becoming more complex, maintaining the effectiveness of safety critical systems like adaptive cruise control, lane keep assist, electronic breaking and airbag deployment extends far beyond the initial design and manufacturing. In the automotive industry these safety systems must perform reliably over the years under varying environmental conditions. This paper examines the critical role of periodic maintenance in sustaining the long-term safety and functional integrity of these systems throughout the lifecycle. As per the latest data from the Ministry of Road Transport and Highways (MoRTH), in 2022, India reported a total of 4.61 lakh road accidents, resulting in 1.68 lakh fatalities and 4.43 lakh injuries. The number of fatalities could have been reduced by the intervention of periodic services and monitoring the health of safety critical systems. While periodic maintenance has contributed to long term safety of the vehicles, there are a lot of vehicles on the road
In the Indian context, introduction of ADAS can play a positive role in improving road safety by assisting the driver and preventing unsafe driver behaviour. Technologies like Automated Emergency Braking (AEB), Lane Keep System, Adaptive Cruise Control, Driver Drowsiness Detection, Driver Alcohol detection etc., if deployed safely and used in a safe manner can help prevent many of the current road deaths in India. Safe deployment and safe use of such ADAS technologies require the systems to operate without failure within their operational design domains (ODD) and not surprise the drivers with sudden or unpredictable failures, to help develop their trust in the technology. As a result, identifying test scenarios remain a key step in the development of Advanced Driver Assistance Systems (ADAS). This remains a challenge due to the large test space especially for the Indian context due to the unpredictable traffic behaviour and occasional road infrastructure. In this paper, we introduce a
Items per page:
50
1 – 50 of 1348