Browse Topic: Advanced driver assistance systems (ADAS)
This document describes an SAE Recommended Practice for Automatic Emergency Braking (AEB) system performance testing which: Establishes uniform vehicle level test procedures Identifies target equipment, test scenarios, and measurement methods Identifies and explains the performance data of interest Does not exclude any particular system or sensor technology Identifies the known limitations of the information contained within (assumptions and “gaps”) Is intended to be a guide toward standard practice and is subject to change on pace with the technology Focuses on “Vehicle Front to Rear, In Lane Scenarios” expanded to include additional offset impacts This document describes the equipment, facilities, methods, and procedures needed to evaluate the ability of Automatic Emergency Braking (AEB) systems to detect and respond to another vehicle, in its forward path, as it is approached from the rear. This document does not specify test conditions (e.g., speeds, decelerations, clearance gaps
In the domain of advanced driver assistance systems and autonomous vehicles, precise perception and interpretation of the vehicle's environment are not merely requirements they are the very foundation upon which every aspect of functionality and safety is constructed. One prevalent method of representing the environment is through the use of an occupancy grid map. This map segments the environment into distinct grid cells, each of which is evaluated to determine if it is occupied or free. This evaluation operates under the assumption that each grid cell is independent of the others. The underlying mathematical structure of this system is the binary Bayes filter (BBF). The BBF integrates sensor data from various sources and can incorporate measurements taken at different times. The occupancy grid map does not rely on the identification of individual objects, which allows it to depict obstacles of any shape. This flexibility is a key advantage of this approach. Traditional occupancy grid
The integrated bracket is a plastic part that packages functional components such as the ADAS (Advanced Driver Assistance System) camera, rain light sensor, and the mounting provisions of the auto-dimming IRVM (Inner Rear View Mirror). This part is fixed on the windshield of an automobile using double-sided adhesive tapes and glue. ADAS, rain light sensors, and auto-dimming IRVM play an important part in the safety of the driver and everyone present in the automobile. This makes proper functioning of the integrated bracket very integral to occupant safety. Prior to this work, the following literature; Integrated Bracket for Rain Light Sensor/ADAS/Auto-Dimming IRVM with provision of mounting for Aesthetic Cover [1] outlines the design considerations and advantages of mounting several components on the same bracket. It follows the theme where the authors first define the components packaged on the integrated bracket and then the advantages of packaging multiple components on a single
Items per page:
50
1 – 50 of 1257