Browse Topic: Collision intervention systems

Items (484)
Brake failures in the vehicles can cause hazardous accidents so having a better monitoring and emergency braking system is very important. So, this project consists of an autonomous brake failure detector integrated with Automatic Braking using Electromagnetic coil braking which detects the braking failure at the time and applied the combinations of the brakes, to overcome this kind of accidents. So, here the system comprises of IR sensor circuit, control unit and electromagnetic braking system. How it works: The IR sensor monitors the brake wire, and if the wire is broken, the control unit activates the electromagnetic brakes, stopping the vehicle in a safe manner. This system enhances vehicle safety by ensuring immediate braking action without driver intervention. Key advantages include real-time brake monitoring, reduced mechanical wear, quick response time, and an automatic failsafe mechanism. The system’s minimal reliance on hydraulic components also makes it suitable for harsh or
Raja, SelvakumarJohn, GodwinSiddarth, J PSenthilkumar, AkashMathew, AbhayR. S., NakandhrakumarNandagopal, SasikumarArumugam, Sivasankar
A collision avoidance system is an advanced driver assistance system (ADAS) designed to prevent vehicle collisions. The existing system is designed primarily to detect and prevent collisions with humans, vehicles, or other objects on the road, but not specifically designed to address collisions involving animals. When it comes to animals, the collision avoidance rate is low, which is due to low animal detection accuracy, high false positives/negatives and unsuitable methods of mitigating collisions, hence, an enhancement of the system is required. Humans are warned off the road during the approach of a vehicle through the horn sound. In ADAS systems, the vehicle stops as the human behavior is quite predictable on sight or approach of a speeding vehicle, but this is ineffective on animals. Not all animals can hear the honk due to their different hearing ranges, and the unpredictability of their behaviors makes it impossible to predict their next move to avoid an accident; this leads
Arckja, W.
This document describes an SAE Recommended Practice for Automatic Emergency Braking (AEB) system performance testing which: Establishes uniform vehicle level test procedures Identifies target equipment, test scenarios, and measurement methods Identifies and explains the performance data of interest Does not exclude any particular system or sensor technology Identifies the known limitations of the information contained within (assumptions and “gaps”) Is intended to be a guide toward standard practice and is subject to change on pace with the technology Focuses on “Vehicle Front to Rear, In Lane Scenarios” expanded to include additional offset impacts This document describes the equipment, facilities, methods, and procedures needed to evaluate the ability of Automatic Emergency Braking (AEB) systems to detect and respond to another vehicle, in its forward path, as it is approached from the rear. This document does not specify test conditions (e.g., speeds, decelerations, clearance gaps
Active Safety and Driver Support Systems Standards Committee
Testing was conducted in daytime and nighttime conditions to evaluate the performance of the Automatic Emergency Braking and Forward Collision Warning systems present on both a 2020 and 2022 Kia Telluride. The 2022 Kia Telluride was tested during the day at speeds between 35 and 70 miles per hour, while the 2020 Kia Telluride was tested both during the day and at night at speeds between 35 and 60 miles per hour (mph). The daytime testing of both the 2020 and 2022 Kia Telluride utilized a foam stationary vehicle target. The nighttime testing of the 2020 Kia Telluride utilized a live 2006 Chevrolet Tahoe as the target with the brake lights on. Testing measured the Time to Collision (TTC) values of the visual/audible component of the Forward Collision Warning (FCW) that was presented to the driver. Further, testing also quantified the timing and magnitude of the two-phase response of the Automatic Emergency Braking (AEB) system. The results of both sets of testing add higher speed FCW and
Harrington, ShawnPatrick-Moline, PeytonNagarajan, Sundar Raman
About 32% of registered vehicles in the U.S are equipped with automatic emergency braking or forward collision warning (FCW) systems [1]. Retrofitting vehicles with aftermarket devices can accelerate the adoption of FCW, but it is unclear if aftermarket systems perform similarly to original equipment manufacturer (OEM) systems. The performance of four low-cost, user-installable aftermarket windshield-mounted FCW systems was evaluated in various Insurance Institute for Highway Safety (IIHS) rear-end and pedestrian crash avoidance tests and compared with previously tested OEM systems. The presence and timing of FCWs were measured when vehicles approached a stationary passenger car at 20, 40, 50, 60, and 70 km/h, motorcycle and dry van trailer at 50, 60, and 70 km/h, adult pedestrian at 40 and 60 km/h, and child pedestrian crossing the road at 20 and 40 km/h. Equivalence testing was used to determine if FCW performance was similar for aftermarket and OEM systems. OEM systems provided a
Kidd, DavidFloyd, PhilipAylor, David
Test procedures such as EuroNCAP, NHTSA’s FMVSS 127, and UNECE 152 all require specific pedestrian to vehicle overlaps. These overlap variations allow the vehicle differing amounts of time to respond to the pedestrian’s presence. In this work, a compensation algorithm was developed to be used with the STRIDE robot for Pedestrian Automatic Emergency Braking tests. The compensation algorithm uses information about the robot and vehicle speeds and positions determine whether the robot needs to move faster or slower in order to properly overlap the vehicle. In addition to presenting the algorithm, tests were performed which demonstrate the function of the compensation algorithm. These tests include repeatability, overlap testing, vehicle speed variation, and abort logic tests. For these tests of the robot involving vehicle data, a method of replaying vehicle data via UDP was used to provide the same vehicle stimulus to the robot during every trial without a robotic driver in the vehicle.
Bartholomew, MeredithNguyen, AnHelber, NicholasHeydinger, Gary
As Automatic Emergency Braking (AEB) systems become standard equipment in more light duty vehicles, the ability to evaluate these systems efficiently is becoming critical to regulatory agencies and manufacturers. A key driver of the practicality of evaluating these systems’ performance is the potential collision between the subject vehicle and test target. AEB performance can depend on vehicle-to-vehicle closing speeds, crash scenarios, and nuanced differences between various situational and environmental factors. Consequently, high speed impacts that may occur while evaluating the performance of an AEB system, as a result of partial or incomplete mitigation by an AEB activation, can cause significant damage to both the test vehicle and equipment, which may be impractical. For tests in which impact with the test target is not acceptable, or as a means of increasing test count, an alternative test termination methodology may be used. One such method constitutes the application of a late
Kuykendal, MichelleEaster, CaseyKoszegi, GiacomoAlexander, RossParadiso, MarcScally, Sean
Driving safely through urban intersections is quite challenging for self-driving vehicles due to complicated road geometries and the highly dynamic maneuvers of oncoming traffic, which can cause a high risk of collisions. Traditional onboard sensors like cameras, radar, and lidar give limited visibility in this environment. To overcome these limitations, this paper explores implementing a collision avoidance system at urban intersections utilizing vehicle-to-everything (V2X) communication. The system leverages V2X map data to identify warning zones and uses vehicle-to-vehicle (V2V) communication to estimate the maneuver types and paths of approaching vehicles. The system assesses collision risk by calculating the intersection points of predicted paths for the ego vehicle and oncoming traffic. Depending on the level of collision risk, the system generates a collision warning signal to the driver or activates emergency braking when necessary to prevent accidents. We implement the system
Park, Seo-WookSuresh, RaynierAiluri, Anusha
Testing collision avoidance systems on vehicles has become increasingly complex. Robotic platforms called Pedestrian Target Carriers (PTC) typically require Global Positioning System (GPS), network communications, tuning, and ever-increasing scope to the user interface to function. As an alternative to these complicated systems, but as an improvement to a pulley system pedestrian target carrier, a simplistic robotic platform was developed. An open-loop user interface was designed and developed, and a series of tests were performed to evaluate the effectiveness of the robot in performing basic, repeatable straight-line tests with a vehicle in the loop. Based on testing outcomes, the development of further control algorithms, user requirements, and the prototype improvements are analyzed for future work.
Bartholomew, MeredithMuthaiah, PonaravindHeydinger, GaryZagorski, Scott
In order to effectively predict the vehicle safety performance and reduce the cost of enterprise safety tests, a generalized simulation model for active and passive vehicle safety was proposed. The frontal driver-side collision model under the intervention of the Autonomous Emergency Braking (AEB) was created by using the MADYMO software. The collision acceleration obtained from the sled test was taken as the original input of the model to conduct simulation for the working conditions under different sitting postures of the human body. The injury values of various parts of the Hybrid III 50th dummy were read. Based on the correlation between the two, an active and passive simulation model was established through the Back Propagation (BP) neural network. The input of the model was the inclination angle centered on the dummy's waist, and the output was the acceleration of the dummy's head. The results showed that the comprehensive prediction accuracy rate exceeded 80%. Therefore, the
Ge, Wangfengyao, LV
A total of 148 tests were conducted to evaluate the Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) systems in five different Tesla Model 3 vehicles between model years 2018 and 2020. The testing occurred across four calendar years from 2020 to 2024. These tests involved testing against stationary vehicle targets, including a foam Stationary Vehicle Target (SVT), a Deformable Stationary Vehicle Target (DSVT), a live vehicle with brake lights, and a SoftCar360 designed for high-speed impact tests. The evaluations were conducted at speeds of 35, 50, 60, 65, 70, 75, and 80 miles per hour (mph) during both daytime and nighttime conditions. The analysis encompassed comparisons of Time to Collision (TTC) at FCW, TTC at AEB, and emergency braking deceleration magnitudes across the different software versions. Testing of the Traffic Aware Cruise Control (TACC) system was also conducted against a stationary target in the Tesla’s lane at a speed of 80 mph. The findings
Harrington, ShawnNagarajan, Sundar Raman
Testing was conducted to evaluate the performance of the 2020 Jeep Grand Cherokee’s Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) collision mitigation systems at speeds between 35 and 70 miles per hour (mph). Two different 2020 Jeep Grand Cherokee’s were utilized under varying testing conditions in order to evaluate the performance of their collision mitigation systems. A total of 40 tests were conducted: 29 tests were conducted during daytime and 11 tests were conducted at nighttime. Testing measured the Time to Collision (TTC) values of the visual/audible component of the Forward Collision Warning that was presented to the driver. In addition, the testing quantified the TTC response of the Automatic Emergency Braking (AEB) system including the timing and magnitude of the automatic braking response. The results of the testing add higher speed FCW and AEB testing scenarios to the database of publicly available tests for the 2020 Jeep Grand Cherokee.
Harrington, ShawnLieber, VictoriaNagarajan, Sundar Raman
With the widespread application of the Automatic Emergency Braking System (AEB) in vehicles, its impact on pedestrian safety has received increasing attention. However, after the intervention of AEB, the kinematic characteristics of pedestrian leg collisions and their corresponding biological injury responses also change. At the same time, in order to accurately evaluate the pedestrian protection performance of vehicles, the current assessment regulations generally use advanced pedestrian protection leg impactors (aPLI) and rigid leg impactors (TRL) to simulate the movement and injury conditions of pedestrian legs. Based on this, in order to explore the collision boundary conditions and changes in injury between vehicles and APLI and TRL leg impactors under the action of AEB, this paper first analyzes the current passive and active assessment conditions. Secondly, the simulation software LS-DYNA is used to build a finite element model of APLI and TRL impactor-vehicle collisions to
Ye, BinHong, ChengWan, XinmingLiu, YuCheng, JamesLong, YongchenHao, Haizhou
This study numerically investigates ammonia-diesel dual fuel combustion in a heavy-duty engine. Detailed and reduced reaction mechanisms are validated against experimental data to develop injection timing maps aimed at maximizing indicated thermal efficiency (ITE) while mitigating environmental impacts using stochastic reactor model (SRM). The equivalence ratio, ammonia energy share (AES), injection timing, and engine load are varied to optimize combustion efficiency and minimize emissions. The results demonstrate that advancing injection timing reduces ITE due to heightened in-cylinder temperatures, resulting in increased heat losses through walls and exhaust gases. Maximum chemical efficiency is observed at an equivalence ratio near 0.9 but decreases thereafter, influenced by ammonia’s narrow flammability range. Emission analysis highlights significant reductions in Global Warming Potential (GWP) and Eutrophication Potential (EP) with higher AES, driven by decreased CO2 and nitrogen
Karenawar, Shivraj AnandYadav, Neeraj KumarMaurya, Rakesh Kumar
With the increasing prevalence of Automatic Emergency Braking Systems (AEB) in vehicles, their performance in actual collision accidents has garnered increasing attention. In the context of AEB systems, the pitch angle of a vehicle can significantly alter the nature of collisions with pedestrians. Typically, during such collisions, the pedestrian's legs are the first to come into contact with the vehicle's front structure, leading to a noticeable change in the point of impact. Thus, to investigate the differences in leg injuries to pedestrians under various pitch angles of vehicles when AEB is activated, this study employs the Total Human Model for Safety (THUMS) pedestrian finite element model, sensors were established at the leg location based on the Advanced Pedestrian Legform Impactor (APLI), and a corresponding vehicle finite element model was used for simulation, analyzing the dynamic responses of the pedestrian finite element model at different pitch angles for sedan and Sport
Hong, ChengYe, BinZhan, ZhenfeiLiu, YuWan, XinmingHao, Haizhou
Using OEM tools to analyze data available from on-vehicle collision avoidance systems can shed light on the data scope that is available to analyze failures in these systems. In this work, an Advanced Driver Assistance System (ADAS)-equipped vehicle was tested to determine the performance in several collision imminent scenarios. Vehicle Event Data Recorder (EDR) data was pulled and compared to data collected from independent instrumentation to determine the vehicle system accuracy in detecting targets, investigate timings, and understand the scope of data available to an agency investigating a failure. Images and data files are presented as an example of scope of output. Tests included several variable overlap tests, along with several tests specifically chosen due to compare performance across the operating design domain.
Bartholomew, MeredithHeydinger, Gary
Neck injury is one of the most common injuries in traffic accidents, and its severity is closely related to the posture of the occupant at the time of impact. In the current era of smart vehicle, the triggered AEB and the occupant's active muscle force will cause the head and neck to be out of position which has significant affections on the occurrence and severity of neck injury responses. Therefore, it is very important to study the influences of active muscle force on neck injury responses in in frontal impact with Automatic Emergency Braking conditions. Based on the geometric characteristics of human neck muscles in the Zygote Body database, the reasonable neck muscle physical parameters were obtained firstly. Then a neck finite element model (FEM) with active muscles was developed and verified its biofidelity under various impact conditions, such as frontal, side and rear-end impacts. Finally, using the neck FEM with or without active muscle force, a comparative study was
Junpeng, XuGan, QiuyuJiang, BinhuiZhu, Feng
To further optimize the automatic emergency braking for pedestrian (AEB-P) control algorithm, this study proposes an AEB-P hierarchical control strategy considering road adhesion coefficient. First, the extended Kalman filter is used to estimate the road adhesion coefficient, and the recursive least square method is used to predict the pedestrian trajectory. Then, a safety distance model considering the influence factor of road adhesion coefficient is proposed to adapt to different road conditions. Finally, the desired deceleration is converted into the desired pressure and desired current to the requirements of the electric power-assisted braking system. The strategy is verified through the hardware-in-the-loop (HIL) platform; the simulation results show that the control algorithm proposed in this article can effectively avoid collision in typical scenarios, the safe distance of parking is between 0.61 m and 2.34 m, and the stop speed is in the range of 1.85 km/h–27.64 km/h.
Wang, ZijunWang, LiangMa, LiangSun, YongLi, ChenghaoYang, Xinglong
TOC
Tobolski, Sue
Autonomous vehicles utilise sensors, control systems and machine learning to independently navigate and operate through their surroundings, offering improved road safety, traffic management and enhanced mobility. This paper details the development, software architecture and simulation of control algorithms for key functionalities in a model that approaches Level 2 autonomy, utilising MATLAB Simulink and IPG CarMaker. The focus is on four critical areas: Autonomous Emergency Braking (AEB), Adaptive Cruise Control (ACC), Lane Detection (LD) and Traffic Object Detection. Also, the integration of low-level PID controllers for precise steering, braking and throttle actuation, ensures smooth and responsive vehicle behaviour. The hardware architecture is built around the Nvidia Jetson Nano and multiple Arduino Nano microcontrollers, each responsible for controlling specific actuators within the drive-by-wire system, which includes the steering, brake and throttle actuators. Communication
Ann Josy, TessaSadique, AnwarThomas, MerlinManaf T M, AshikVr, Sreeraj
The growing ubiquity of autonomous vehicles (AVs) has introduced a new attack surface for malicious actors: the embedded systems that govern a vehicle's critical operations. Security breaches in these systems could have catastrophic consequences, potentially leading to loss of control, manipulation of sensor data, or even physical harm. To mitigate these risks, robust cybersecurity measures are paramount. This research delves into a specific threat – side-channel attacks – where attackers exploit data leakage through unintentional physical emanations, like power consumption or electromagnetic waves, to steal cryptographic keys or sensitive information. While various software and hardware countermeasures have been proposed, this study focuses on the implementation of masking techniques within the realm of embedded security. Masking techniques aim to obfuscate sensitive data during cryptographic operations, making it significantly harder for attackers to exploit side-channel
Deepan Kumar, SadhasivamR, Vishnu Ramesh KumarM, BoopathiManojkumar, RR, GobinathM, Vignesh
Verifying training datasets in vision-based vehicle safety applications is crucial to understanding the potential limitations of detection capabilities that may result in a higher safety risk. Vision-based pedestrian safety applications with crash avoidance technologies rely on prompt detection to avoid a crash. This research aims to develop a verification process for vulnerable road user safety applications with vision-based detection functionalities. It consists of reviewing the application’s safety requirements, identifying the target objects of detection in the operational design domain and pre-crash scenarios, and evaluating the safety risks qualitatively by examining the training dataset based on the results of pre-crash scenarios classification. As a demonstration, the process is implemented using open-source pedestrian tracking software, and the pre-crash scenarios are classified based on the trajectories of pedestrians in an example training dataset used in a pedestrian
Hsu, Chung-Jen
To address the issues of unreasonable collision avoidance path planning algorithms and inadequate safety in high-speed scenarios, a trajectory prediction-based collision avoidance path planning algorithm has been proposed. First, a trajectory prediction model is constructed using the long–short-term memory (LSTM) network, and the trajectory prediction model is trained and tested with the HighD dataset. Second, the future trajectory of the obstacle car is predicted, the future trajectory information of the two cars is combined to generate the lane-changing decision, and the three-times B-spline curves are used to generate the collision avoidance path clusters. The optimal collision avoidance paths are generated based on the multi-objective optimization function. Finally, build a MATLAB/CarSim simulation platform to verify the reasonableness and safety of the planned paths by taking the three scenarios of the continuous overtaking, preceding car pulling out, and the neighboring car
Liu, Xiao LongZhang, LeiLi, Peng KunXie, RuWang, QingLi, Ran Ran
Cooperation lies at the core of multiagent systems (MAS) and multiagent reinforcement learning (MARL), where agents must navigate between individual interests and collective benefits. Advanced driver assistance systems (ADAS), like collision avoidance systems and adaptive cruise control, exemplify agents striving to optimize personal and collective outcomes in multiagent environments. The study focuses on strategies aimed at fostering cooperation with the aid of game-theoretic scenarios, particularly the iterated prisoner’s dilemma, where agents aim to optimize personal and group outcomes. Existing cooperative strategies, such as tit-for-tat and win-stay lose-shift, while effective in certain contexts, often struggle with scalability and adaptability in dynamic, large-scale environments. The research investigates these limitations and proposes modifications to align individual gains with collective rewards, addressing real-world dilemmas in distributed systems. By analyzing existing
Nidamanuri, JaswanthSathi, VaigaraiShaik, Sabahat
The off-highway industry witnesses a vast growth in integrating new technologies such as advance driver assistance systems (ADAS/ADS) and connectivity to the vehicles. This is primarily due to the need for providing a safe operational domain for the operators and other people. Having a full perception of the vehicle’s surrounding can be challenging due to the unstructured nature of the field of operation. This research proposes a novel collective perception system that utilizes a C-V2X Roadside Unit (RSU)-based object detection system as well as an onboard perception system. The vehicle uses the input from both systems to maneuver the operational field safely. This article also explored implementing a software-defined vehicle (SDV) architecture on an off-highway vehicle aiming to consolidate the ADAS system hardware and enable over-the-air (OTA) software update capability. Test results showed that FEV’s collective perception system was able to provide the necessary nearby and non-line
Feiguel, MatthieuObando, DavidAlzubi, HamzehAlRousan, QusayTasky, Thomas
Automatic emergency braking (AEB) systems play a crucial role in enhancing vehicular safety. Current research predominantly focuses on the longitudinal dynamics of vehicles, utilizing various control algorithms to improve braking effectiveness. However, there has been limited exploration into utilizing wheel deflection as a method to further enhance emergency braking performance. This study aims to contribute by proposing an advanced enhancement of the AEB system through coordinated wheel deflection strategies. In an emergency situation, when the speed of AEB-equipped vehicle drops to the set threshold due to wheel braking, the innovative control system will activate. The vehicle’s coaxial wheels will then execute a counter-deflection maneuver to maximize friction between the tires and the road surface. As a result, this approach reduces braking distance, thereby enhancing vehicle safety. The effectiveness of the proposed control algorithm is validated through combined simulation using
Lai, FeiXiao, HaoHuang, Chaoqun
India is a diverse country in terms of road conditions, road maintenance, traffic conditions, traffic density, quality of traffic which implies presence of agricultural tractors, bullock carts, autos, motor bikes, oncoming traffic in same lane, vulnerable road users (VRU) walking in the same lanes as vehicles, VRU’s crossing roads without using zebra crossings etc. as additional traffic quality deterrents in comparison to developed countries. The braking capacity of such vivid road users may not be at par with global standards due to their maintenance, loading beyond specifications, driver behavior which includes the tendency to maintain a close gap between the preceding vehicle etc. which may lead to incidents specifically of rear collisions due to the front vehicle going through an emergency braking event. The following paper provides a comprehensive study of the special considerations or intricacies in implementation of Autonomous Emergency Braking (AEBS) feature into Indian traffic
Kartheek, NedunuriKhare, RashmitaSathyamurthy, SainathanManickam, PraveenkumarKuchipudi, Venkata Sai Pavan
This article proposes a new model for a cooperative and distributed decision-making mechanism for an ad hoc network of automated vehicles (AVs). The goal of the model is to ensure safety and reduce energy consumption. The use of centralized computation resource is not suitable for scalable cooperative applications, so the proposed solution takes advantage of the onboard computing resources of the vehicle in an intelligent transportation system (ITS). This leads to the introduction of a distributed decision-making mechanism for connected AVs. The proposed mechanism utilizes a novel implementation of the resource-aware and distributed–vector evaluated genetic algorithm (RAD-VEGA) in the vehicular ad hoc network of connected AVs as a solver to collaborative decision-making problems. In the first step, a collaborative decision-making problem is formulated for connected AVs as a multi-objective optimization problem (MOOP), with a focus on energy consumption and collision risk reduction as
Ghahremaninejad, RezaBilgen, Semih
In contrast to passenger cars, whose regulation allowed only a simple trailer combination, the autonomous technologies implementation of Electronic Stability Control (ESC) and Advanced Emergency Braking System (AEBS) for commercial vehicles demands more application and calibration efforts. At this case, the focus is on dynamic control of towing vehicles when applying the service brakes of trailer, in special when complex combination as bi-train and road-train, allowed in North and South America. However, the major risk is present occurrence when an ESC or AEBS equipped towing vehicles is connected to a double or triple trailer combination with a conventional braking system, it means: a system that is not equipped with Anti-lock Braking System (ABS). For instance, if during autonomous control, trailers wheels lock, a jackknifing phenomenon can easily occur. Therefore, in case longer and heavier vehicles (LHV) or megatrucks as called in Europe, the strategy for safety assistance systems
Guarenghi, Vinicius MendesPizzi, Rafael FortunaDepetris, AlessandroPinto, Gustavo Laranjeira NunesCollobialli, Germano
The traditional approach to applying safety limits in electromechanical systems across various industries, including automated vehicles, robotics, and aerospace, involves hard-coding control and safety limits into production firmware, which remains fixed throughout the product life cycle. However, with the evolving needs of automated systems such as automated vehicles and robots, this approach falls short in addressing all use cases and scenarios to ensure safe operation. Particularly for data-driven machine learning applications that continuously evolve, there is a need for a more flexible and adaptable safety limits application strategy based on different operational design domains (ODDs) and scenarios. The ITSC conference paper [1] introduced the dynamic control limits application (DCLA) strategy, supporting the flexible application of diverse limits profiles based on dynamic scenario parameters across different layers of the Autonomy software stack. This article extends the DCLA
Garikapati, DivyaLiu, YitingHuo, Zhaoyuan
New tests for a Truck Safe rating scheme aim to emulate real-world collisions and encourage OEMs to fit collision avoidance technologies and improve driver vision. Euro NCAP has revealed the elements it is considering as part of an upcoming Truck Safe rating, and how it intends to test and benchmark truck performance. The announcement was made to an audience of international road safety experts at the NCAP24 World Congress in Munich, Germany, in April. The action is intended to mitigate heavy trucks' impact on road safety. The organization cited data showing that trucks are involved in almost 15% of all EU road fatalities but represent only 3% of vehicles on Europe's roads. Euro NCAP says the future rating scheme is designed to go further and faster than current EU truck safety regulations. The organization's goal is to drive innovation and hasten the adoption of advanced driver-assistance systems (ADAS) such as automatic emergency braking (AEB) and lane support systems (LSS), while
Gehm, Ryan
AEB systems are critical in preventing collisions, yet their effectiveness hinges on accurately estimating the distance between the vehicle and other road users, as well as understanding road conditions. Errors in distance estimation can result in premature or delayed braking and varying road conditions alter road-tire friction coefficients, affecting braking distances. The integration of advanced sensors like LiDARs has significantly enhanced distance estimation. Cameras and deep neural networks are also employed to estimate the road conditions. However, AEB systems face notable challenges in urban environments, influenced by complex scenarios and adverse weather conditions such as rain and fog. Therefore, investigating the error tolerance of these estimations is essential for the performance of AEB systems. To this end, we develop a digital twin of our test vehicle in the IPG CarMaker simulation environment, which includes realistic driving dynamics and sensor models. Our simulated
Wang, YifanIatropoulos, JannesThal, SilviaHenze, Roman
In the dense fabric of urban areas, electric scooters have rapidly become a preferred mode of transportation. As they cater to modern mobility demands, they present significant safety challenges, especially when interacting with pedestrians. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than pedestrians and bicyclists. Accurate prediction of pedestrian movement, coupled with assistant motion control of scooters, is essential in minimizing collision risks and seamlessly integrating scooters in areas dense with pedestrians. Addressing these safety concerns, our research introduces a novel e-Scooter collision avoidance system (eCAS) with a method for predicting pedestrian trajectories, employing an advanced Long short-term memory (LSTM) network integrated with a state refinement module. This method predicts future trajectories by considering not just past
Yan, XukeShen, Dan
A total of 93 tests were conducted in daytime conditions to evaluate the effect on the Time to Collision (TTC), emergency braking, and avoidance rates of the Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) provided by a 2022 Tesla Model 3 against a 4ActivePA adult static pedestrian target. Variables that were evaluated included the vehicle speed on approach, pedestrian offsets, pedestrian clothing, and user-selected FCW settings. As a part of the Tesla’s Collision Avoidance AssistTM, these user-selected FCW settings change the timing of the issuance of the visual and/or audible warning provided. This testing evaluated the Tesla at speeds of 25 and 35 miles per hour (mph) versus a stationary pedestrian target in early, medium, and late FCW settings. Testing was also conducted with a 50% pedestrian offset and 75% offset conditions relative to the right side of the Tesla. The pedestrian target was clothed with and without a reflective safety vest to account for
Harrington, ShawnNagarajan, Sundar RamanLau, James
While various Advanced Driver Assistance System (ADAS) features have become more prevalent in passenger vehicles, their ability to potentially avoid or mitigate vehicle crashes has limitations. Due to current technological limitations, forward collision mitigation technologies such as Forward Collision Warning (FCW) and Automated Emergency Braking (AEB) lack the ability to consistently perform in many unique and challenging scenarios. These limitations are often outlined in driver manuals for ADAS equipped vehicles. One such scenario is the case of a stationary lead vehicle at the side of the road. This is generally considered to be a challenging scenario for FCW and AEB to address because it can often be difficult for the system to discern this threat accurately and consistently from non-threatening roadway infrastructure without unnecessary or nuisance system activations. This is made more difficult when the stationary lead vehicle is only partially in the driving lane and not
Scally, SeanParadiso, MarcKoszegi, GiacomoEaster, CaseyKuykendal, MichelleAlexander, Ross
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data. This event data includes date and time, GPS location, driver inputs and vehicle
Bare, CleveSkiera, JasonSmyth, BrianBeetham, TommyFloyd, DonaldKoo, WinstonNewell, Devin
The Bendix Wingman Fusion – a radar and camera collision mitigation system (CMS) available on commercial vehicles – was evaluated in two separate test series to determine its performance in simulated rear collision scenarios. In the first series of tests, evaluations were conducted in daytime, nighttime, and rainy conditions between 15 to 58 miles per hour (mph) to evaluate the performance of the audible and visual forward collision warning (FCW) system in a first-generation Bendix Wingman Fusion CMS while approaching a stationary live vehicle target (SLVT) in a 2017 Kenworth T680. A second test series was conducted with a 2017 Kenworth T680 traveling at 50 mph in daytime conditions approaching a decelerating vehicle to evaluate the Bendix Wingman Fusion CMS on the truck. Both test series sought to determine the maximum distance the system would warn prior to the test driver swerving around the SLVT or moving vehicle target. The first test series utilized a 2014 Ford F150 as the SLVT
Harrington, ShawnMartin, NicholasLeiss, Peter
Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration. Furthermore, a lower-level PID-based controller is designed to track the desired acceleration
Guo, ShaozhongGuo, JunZhang, YunqingWu, Jinglai
Robustness testing of Advanced Driver Assistance Systems (ADAS) features is a crucial step in ensuring the safety and reliability of these systems. ADAS features include technologies like adaptive cruise control, lateral and longitudinal controls, automatic emergency braking, and more. These systems rely on various sensors, cameras, radar, lidar, and software algorithms to function effectively. Robustness testing aims to identify potential vulnerabilities and weaknesses in these systems under different conditions, ensuring they can handle unexpected scenarios and maintain their performance. Mileage accumulation is one of the validation methods for achieving robustness. It involves subjecting the systems to a wide variety of real-world driving conditions and driving scenarios to ensure the reliability, safety, and effectiveness of the ADAS features. Following ISO 21448 (Safety of the intended functionality-SOTIF), known hazardous scenarios can be tested and validated through robustness
Almasri, HossamFan, Hsing-HuaMudunuri, Venkateswara Raju
Automatic emergency braking and forward collision warning (FCW) reduce the incidence of police-reported rear-end crashes by 27% to 50%, but these systems may not be effective for preventing rear-end crashes with nonpassenger vehicles. IIHS and Transport Canada evaluated FCW performance with 12 nonpassenger and 7 passenger vehicle or surrogate vehicle targets in five 2021-2022 model year vehicles. The presence and timing of an FCW was measured as a test vehicle traveling 50, 60, or 70 km/h approached a stationary target ahead in the lane center. Equivalence testing was used to evaluate whether the proportion of trials with an FCW (within ± 0.20) and the average time-to-collision of the warning (within ± 0.23 sec) for each target was meaningfully different from a global vehicle car target (GVT). A similar approach was used to determine if FCW performance was reproducible between 3 targets tested by both IIHS and Transport Canada and was equivalent between surrogate car and motorcycle
Kidd, DavidAnctil, BenoitCharlebois, Dominique
Pedestrian Automatic Emergency Braking (P-AEB) is a technology designed to avoid or reduce the severity of vehicle to pedestrian collisions. This technology is currently assessed and evaluated via EuroNCAP and similar procedures in which a pedestrian test target is crossing the road, walking alongside the road, or stationary in the forward vehicle travel path. While these assessment methods serve the purpose of providing cross-comparison of technology performance in a standardized set of scenarios, there are many scenarios which could occur which are not considered or studied. By identifying and performing non-EuroNCAP, non-standardized scenarios using similar methodology, the robustness of P-AEB systems can be analyzed. These scenarios help identify areas of further development and consideration for future testing programs. Three scenarios were considered as a part of this work: straight line approach, curved path approach, and parking lot testing. Exemplar tests were performed for
Bartholomew, MeredithHelber, NicholasHeydinger, GaryZagorski, Scott
Automated driving has become a very promising research direction with many successful deployments and the potential to reduce car accidents caused by human error. Automated driving requires automated path planning and tracking with the ability to avoid collisions as its fundamental requirement. Thus, plenty of research has been performed to achieve safe and time efficient path planning and to develop reliable collision avoidance algorithms. This paper uses a data-driven approach to solve the abovementioned fundamental requirement. Consequently, the aim of this paper is to develop Deep Reinforcement Learning (DRL) training pipelines which train end-to-end automated driving agents by utilizing raw sensor data. The raw sensor data is obtained from the Carla autonomous vehicle simulation environment here. The proposed automated driving agent learns how to follow a pre-defined path with reasonable speed automatically. First, the A* path searching algorithm is applied to generate an optimal
Chen, HaochongAksun Guvenc, Bilin
Starting in 2021 Ducati introduced a radar based adaptive cruise control (ACC) developed by Bosch. It utilizes a single radar unit on the front of the motorcycle to detect the presence of vehicles ahead, as well as the separation distance. The system is not an automatic emergency braking (AEB) system but does have similar features. The Ducati ACC system does have limitations, some of which are explored in the subject research. Initial testing was conducted to document the engine braking in each gear. Following initial testing, several tests were performed at high closing speeds of over 100 kph. It was determined that at a closing speed of approximately 100 kph the ACC system would not react to a moving vehicle ahead. Additionally, the system will not react to a stopped vehicle or a “swerve-around” stopped vehicle that suddenly appears. Another series of tests were performed while actively following a vehicle at various speeds, with the front vehicle suddenly slowing to a stop and
Fatzinger, Edward C.Gonzaga, William
Items per page:
1 – 50 of 484