Browse Topic: Quality control

Items (2,247)
In Automobile manufacturing, maintaining the Quality of parts supplied by vendor is crucial & challenging. This paper introduces a digital tool designed to monitor trends for critical parameters of these parts in real-time. Utilizing Statistical Process Control (SPC) graphs, the tool continuously tracks Quality trend for critical parts and process parameters, predicting potential issues for proactive improvements even before parts are supplied. The tool integrates data from all Supplier partners across value chain into a single ecosystem, providing a comprehensive view of their performance and the parts they supply. Suppliers input data into a digital application, which is then analyzed in the cloud using SPC techniques to generate potential alerts for improvement. These alerts are automatically sent to both Suppliers and relevant personnel at the OEM, enabling proactive measures to address any Quality deviations. 100% data is visualized in an integrated dashboard which acts as a
Sahoo, PriyabrataGarg, IshanRawat, SudhanshuNarula, RahulGupta, AnkitBindra, RiteshRao, Akkinapalli VNGarg, Vipin
High-efficiency manufacturing involves the transmission of copious amounts of data, exemplified both by trends in the automotive industry and advances in technology. In the automotive industry, products have been growing increasingly complex, owing to multiple SKUs, global supply chains and the involvement of many tier 2 / Just-In Time (JIT) suppliers. On top of that, recalls and incidents in recent years have made it important for OEMs to be able to track down affected vehicles based on their components. All of this has increased the need for OEMs to be able to collect and analyze component data. The advent of Industry 4.0 and IoT has provided manufacturing with the ability to efficiently collect and store large amounts of data, lining up with the needs of manufacturing-based industries. However, while the needs to collect data have been met, corporations now find themselves facing the need to make sense of the data to provide the insights they need, and the data is often unstructured
Jan, JonathanPreston, JoshuaJuncker, John
Simulated distillation (SimDis) uses wide bore capillary gas chromatography (GC) to provide a detailed volatility profile of blended gasoline. The boiling point distribution from SimDis analysis is correlated to the hydrocarbon contents of spark ignition fuels and provide the resolution necessary to characterize the compositions of the fuel. Recent publications on simulated distillation applied to spark ignition fuel reveal the merits of indexing a gasoline fuel so that it can be correlated to the tendency of particulate emissions from vehicles. With this in mind, SimDis can be a useful and quick tool in assessing the PM-formation potential of market gasolines. Heavy aromatic compounds are compounds identified as having at least 10 Carbons and 1 aromatic ring. These compounds that are present in spark ignition fuels are major contributors to vehicle particulate emissions. These compounds can be found in the higher boiling portion (T70+) of the distillation profiles. As demonstrated in
Goralski, SarahGeng, PatDozier, JonButler, Aron
In automotive engineering, seam welds are frequently used to join or connect various parts of structures, frames, cradles, chassis, suspension components, and body. These welds usually form the weaker material link for durability and impact loads, which are measured by lab-controlled durability and crash tests, as well as real-world vehicle longevity. Consequently, designing robust welded components while optimizing for material performance is often prioritized as engineering challenge. The position, dimensions, material, manufacturing variation, and defects all affect the weld quality, stiffness, durability, impact, and crash performance. In this paper, the authors present best practices based on studies over many years, a rapid approach for optimizing welds, especially seam welds, by adopting Design For Six Sigma (DFSS) IDDOV (Identify, Define, Develop, Optimization, and Verification) discrete optimization approach. We will present the case testimony to show the approach throughout
Qin, Wenxin (Daniel)
Cam gear is a critical component of the timing system in an internal combustion engine, ensuring the synchronized opening of the engine valves, pistons, and rotating parts, but their unavailability may result in long-term downtime or expensive replacement. Reverse engineering (RE) systems also play an important role in promoting sustainable practices projects in automotive technologies. The study focuses on presenting a proposed method for redesigning damaged parts in engines using image processing technology by creating an-accurate CAD model. In addition to clarifying of the expected causes that led to cam gear damage. The proposed method involves taking a high-resolution image of the damaged part, then applying advanced image processing algorithms to analyze and reconstruct the geometry of the part. The data is then converted into a high-resolution 3D CAD model. This approach aims to address the challenges of replicating worn or broken parts, providing a cost-effective maintenance
Ali, Salah H. R.Ehab, EslamBarakat, EbrahimYounes, AbdelrahmanAli, Amr S.H.R.
Airline passenger satisfaction is important for airline operation service quality management. When airline companies carry out advertisement campaigns or plan a marketing strategy, the resources and budgets are not unlimited. Thus, an airline can only focus on improving a few factors that drive passenger satisfaction. To understand the key satisfies for the young and the old adults, respectively, we leverage five airline passenger satisfaction methods to identify the key factors that explain the airline service satisfaction of different passengers. In particular, we investigate and compare the ridge and the Lasso regularization in terms of the resulting model’s sparsity and computational efficiency. The top three important factors that influence the old’s satisfaction are departure and arrival time convenience, legroom service, and baggage handling. Our findings indicate that the young people place a higher value on entertainment, while the old adults place a higher value on usefulness
Ma, JieHu, SongWang, Haipeng
This study introduces a probabilistic analysis approach to evaluate the gear tooth strength for the hypocycloid engines, which are particularly significant in internal combustion (IC) engine applications due to their unique design and critical requirements for both efficiency and durability. The research utilizes the stress–strength interference (SSI) theory within a “design for reliability” framework to develop a robust methodology for designing the internal gear mechanism required for the hypocycloid gear mechanism (HGM) engine, in accordance with American Gear Manufacturers Association (AGMA) standard gear rating practices. This approach incorporates probabilistic factors to address variations in HGM component parameters, gear material properties, and engine operational conditions. To validate the design and ensure accuracy, a finite element method (FEM)-based verification is employed, to identify potential failure points and enhance the overall reliability of the HGM engine. The
ElBahloul, Mostafa A.Aziz, ELsayed S.Chassapis, Constantin
This paper presents advanced intelligent monitoring methods aimed at enhancing the quality and durability of asphalt pavement construction. The study focuses on two critical tasks: foreign object detection and the uniform application of tack coat oil. For object recognition, the YOLOv5 algorithm is employed, which provides real-time detection capabilities essential for construction environments where timely decisions are crucial. A meticulously annotated dataset comprising 4,108 images, created with the LabelImg tool, ensures the accurate detection of foreign objects such as leaves and cigarette butts. By utilizing pre-trained weights during model training, the research achieved significant improvements in key performance metrics, including precision and recall rates. In addition to object detection, the study explores color space analysis through the HSV (Hue, Saturation, Value) model to effectively differentiate between coated and uncoated pavement areas following the application of
Hu, YufanFan, JianweiTang, FanlongMa, Tao
The objective of this research is to develop an optimization strategy for the Electrochemical Drilling process on Nimonic alloy material, taking into account various performance factors. The optimization strategy relies on the integration of the Taguchi method with Grey Relational Analysis (GRA). Nimonic is extensively utilized in aerospace, nuclear, and marine industries, specifically in situations that are prone to corrosion. The experimental trials are structured based on Taguchi's principle and encompass three machining variables: feed rate, electrolyte flow rate, and electrolyte concentration. This inquiry examines performance indicators like the rate of material removal, surface roughness, as well as geometric parameters such as overcut, shape, and orientation tolerance. Based on the investigation, it is determined that the feed rate is the primary factor that directly affects the intended performance criteria. In order to enhance the accuracy of predictions, multiple regression
Pasupuleti, ThejasreeNatarajan, ManikandanD, PalanisamySilambarasan, RKrishnamachary, PC
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, irrespective of their level of hardness. With the rising demand for superior products and the necessity for quick design modifications, decision-making in the industrial sector becomes increasingly complex. This study specifically examines Titanium Grade 7 and suggests creating prediction models through regression analysis to estimate performance measurements in ECM. The experiments are formulated based on Taguchi's ideas, utilizing a multiple regression approach to deduce mathematical equations. The Taguchi method is utilized for single-objective optimization in order to determine the ideal combination of process parameters that will maximize the material removal rate. ANOVA is a statistical method used to determine the relevance of process factors that affect performance measures. The suggested prediction technique for Titanium Grade 7 exhibits
Natarajan, ManikandanPasupuleti, ThejasreeKumar, VKrishnamachary, PCSomsole, Lakshmi NarayanaSilambarasan, R
The aim of this study is to create an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for the Electrochemical Machining (ECM) process using Nimonic Alloy material, with a specific focus on several performance aspects. The optimization strategy utilizes the combination of the Taguchi method and ANFIS integration. Nimonic Alloy is widely employed in the aerospace, nuclear, marine, and car sectors, especially in situations that are susceptible to corrosion. The experimental trials are designed according to Taguchi's method and involve three machining variables: feed rate, electrolyte flow rate, and electrolyte concentration. This study investigates performance indicators, such as the rate at which material is removed, the roughness of the surface, and geometric characteristics, including overcut, shape, and tolerance for orientation. Based on the analysis, it has been determined that the feed rate is the main component that influences the intended performance criteria. In order to
Natarajan, ManikandanPasupuleti, ThejasreeC, NavyaKiruthika, JothiSilambarasan, R
This research examines the thermal instability of slender beams composed of functionally graded materials (FGMs), with a specific focus on their suitability for engine hood components. The FGM combines the durability of aluminum with the heat tolerance of silicon nitride. The study aims to determine the maximum temperature the beam can withstand without buckling under various support conditions, simulating the uneven heat distribution experienced by engine hoods in actual use. The FGM structure comprises four longitudinally arranged layers, where the ceramic and metallic components gradually shift across the thickness. Finite element modeling software (ANSYS) is utilized to examine the buckling response under diverse temperature conditions. To enhance the thermal performance of the engine hood panel, the Taguchi L9 orthogonal array methodology is employed utilizing Minitab 19 software. The first four layers of the FGM beam are defined as process variables, while the critical buckling
Pawale, DeepakBhaskara Rao, Lokavarapu
Fused Deposition Modeling (FDM) is a highly adaptable additive manufacturing method that is extensively employed for creating intricate structures using a range of materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability, making it well-suited for use in industries such as footwear, automotive, and consumer goods. Hoses, gaskets, seals, external trim, and interior components are just a few of the many uses for thermoplastic polyurethanes (TPU) in the automobile industry. The objective of this study is to enhance the performance of Fused Deposition Modeling (FDM) by optimizing the parameters specifically for Thermoplastic Polyurethane (TPU) material. This will be achieved by employing a Taguchi-based Grey Relational Analysis (GRA) method. The researchers conducted experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeSilambarasan, RD, Palanisamy
This study investigates the thermal buckling behavior of axially layered functionally graded material (FGM) thin beams with potential applications in automotive structures. The FGM beam is constructed from four axially stratified sections, with the proportional amount of metal and ceramic fluctuating through the thickness. The buckling analysis is carried out for three different support configurations: clamped-clamped, simply supported-simply supported, and clamped-simply supported. The primary objective is to identify the optimal thermal buckling temperature of the FGM thin beam using the Taguchi optimization method. Beam arrangements are established using a Taguchi L9 orthogonal array and analyzed using finite element software (ANSYS). Layers 1-4 of the axially layered beam are considered process parameters, while the thermal buckling temperature is the response parameter. Minitab software performs an Analysis of Variance (ANOVA) with a 95% confidence level to identify the most
Pawale, DeepakBhaskara Rao, Lokavarapu
Natural fiber composites (NFC’s) have considerable promise for a wide range of technological applications due to their exceptional features, which include notable weight reduction, high strength, and affordability. The aforementioned materials are also biodegradable and sustainable, which makes them appealing for use in sustainable engineering methods. This research focuses on evaluating the mechanical features of jute fiber and Al₂O₃ particle fortified polymer composites, exploring their potential for advanced engineering uses. The Taguchi technique is used with a L9 orthogonal array, integrating three-level, three-parameter approach, to systematically examine potential combinations of process variables in the manufacturing of these polymer composites. The primary goal is to optimize the mechanical attributes of the composites, which include tensile modulus, tensile stress, and weight percentage increase. Detailed investigations are conducted to interpret the effects of these process
Somsole, Lakshmi NarayanaNatarajan, ManikandanPasupuleti, ThejasreeKatta, Lakshmi NarasimhamuVivekananda, Soma
The intention of this exploration is to evolve an optimization method for the Electrochemical Machining (ECM) process on Haste alloy material, taking into account various performance characteristics. The optimization relies on the amalgamation of the Taguchi method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Haste alloy is extensively utilized in the aerospace, nuclear, marine, and car sectors, specifically in situations that are prone to corrosion. The experimental trials are organized based on Taguchi's principles and involve three machining variables: feed rate, electrolyte flow rate, and electrolyte concentration. This examination examines performance indicators, including the pace at which material is removed and the roughness of the surface. It also includes geometric factors such as overcut, shape, and tolerance for orientation. The results suggest that the rate at which the feed is supplied is the most influential element affecting the necessary performance standards
Pasupuleti, ThejasreeNatarajan, ManikandanRamesh Naik, MudeSomsole, Lakshmi NarayanaSilambarasan, R
The integration of carbon nanotubes (CNT) into composite materials has revolutionized various high-performance industries, including aerospace, marine, and defense, for their exceptional thermal, mechanical, and electrical properties. The critical nature of these applications demands precise control over the manufacturing process to ensure the optimal performance of the CNT-reinforced composites. This study employs the Taguchi approach to systematically investigate and determine the optimal proportion of CNT volume fraction, fiber volume fraction, and stacking sequence in composite materials to achieve the optimal fundamental frequency. The Taguchi method, known for its efficiency in optimizing design parameters with a minimal number of experiments, enables the identification of the most influential factors and their optimal levels for enhancing material properties. Our findings demonstrate that the proper arrangement and proportioning of these components significantly improve the
B, SrivatsanBalakrishna Sriganth, PranavBhaskara Rao, LokavarapuBiswas, Sayan
This study investigates the frequency response characteristics of laminated composite rectangular plates, focusing on the influence of fiber orientation. The composite plates, composed of 12 layers of glass fiber reinforced polymer composites (GFRP), were chosen for their superior mechanical properties and broad applicability in engineering fields, including the automotive sector. In automotive engineering, these composites are valued for their lightweight properties and high strength, contributing to enhanced performance and fuel efficiency. The analysis employed a combination of finite element methods and Taguchi experimental design techniques to understand how fiber orientation affects the dynamic behavior of these plates. To systematically explore the impact of fiber orientation on the frequency response, the study utilized Taguchi's orthogonal array design. Specifically, the L9 (3^3) and L16 (4^4) orthogonal arrays were employed to structure the experimental runs effectively
N, SuhasC V, PrasshanthU, Anish KumarBhaskara Rao, Lokavarapu
The path towards clean mobility points in the direction of battery electric vehicles (BEVs) as a possible transportation solution. Despite a growing market penetration worldwide, emerging countries are struggling to successfully adopt BEV with current vehicle models. The literature presents an embracing discussion about BEV barriers but lacks into suggesting practical actions into BEV design. Based on a product development methodology and value analysis, this research aims to review factors holding back the BEV adoption in developing countries and to apply these factors into BEV features and design specifications. The literature was systematically reviewed based on the Brazilian case scenario to cast customer requirements for numerical evaluation through the Mudge Method. These were later translated into design requirements and ranked according to their relative importance with the quality function deployment (QFD). The results show that vehicle safety, pricing, and range anxiety are
Colpo, Leonardo R.Nora, Macklini DallaRomano, Leonardo N.Glufke, Ronaldo M.Rech, Cassiano
LM (Lean manufacturing) is the manufacturing strategy focused on continuous improvement of manufacturing operations. This study has been carried out in manufacturing industry of northern India to assess important success factors, LM strategies applied, and important benefits of both LM strategies and approach. Questionnaire survey has been performed to achieve the desired objectives. Results indicated that manufacturing organizations have great affinity for LM strategies viz. small incremental improvements (kaizen) for strategic success. Production rates are highly improved after implementing LM approach. Mediating role of every success factor have been measured using regression analysis and structural equation modeling. Moreover, correlation shows the highly significant relations between LM strategies and benefits of the LM approach.
Kumar, RajeshKumar, AshwiniKumar, Rajender
Wire Electrical Discharge Machining (WEDM) is an important method engaged to make intricate shapes in conductive materials like Cupronickel, which is well-known for its ability to resist corrosion and conduct heat. The intention of this exploration is to enhance the effectiveness and accuracy of Wire Electrical Discharge Machining (WEDM) for Cupronickel material by utilizing a Taguchi-based Grey Relational Analysis (GRA). The study examines the impact of WEDM parameters, specifically pulse-on time, pulse-off time, and discharge current, on key machining outcomes such as surface roughness (Ra), material removal rate (MRR). A comprehensive dataset is generated for analysis through a systematic series of experiments designed using the Taguchi method. Grey relational grades are assessed to measure the connections between the input parameters and machining responses, making it easier to determine the best parameter settings. The Taguchi-based GRA approach provides a systematic approach for
Pasupuleti, ThejasreeNatarajan, ManikandanKiruthika, JothiRamesh Naik, MudeSilambarasan, R
Assembly simulation plays a pivotal role in predicting and optimizing the distortion of an assembly, particularly in the automotive industry where precision and efficiency are paramount. In BIW parts assembly, factors such as clamping, mechanical & thermal joining, and loading direction are important. These factors affect the quality of the final assembly. Predicting and optimizing these parameters in the early design stage can help reduce development time, cost and improve the quality of the final product. Currently, LS-DYNA is used for closures like doors, hoods, and fenders. However, the pre-processing, computation and post-processing time is significantly high in LS-DYNA making it challenging to use for the Entire BIW. Employing a comprehensive approach, authors assess the distortion results, preprocessing, calculation, and post-processing time of both simulation techniques. Notably, the study reveals that AutoForm offers over 50%-time savings across all stages compared to LS-DYNA
Talawar, VaishnavchandanNalam, Swaroop RajuDhanajkar, NarendraKumar, AjayPasupathy, VivekanandChava, Seshadri
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has become a highly promising method for creating intricate shapes using different materials. Polyethylene Terephthalate Glycol (PETG) is a highly utilized thermoplastic that is recognized for its exceptional strength, resistance to chemicals, and effortless processing. This study aims to optimize the process parameters of the FDM technique for PETG material using Taguchi Grey Relational Analysis (GRA). An empirical study was carried out to examine the impact of various FDM process parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on important outcome variables like dimensional accuracy, surface quality, and mechanical properties. The Taguchi method was used to systematically design a series of experiments, while GRA was used to optimize the process parameters and performance characteristics. The results unveiled the most effective parameter combinations for attaining
Natarajan, ManikandanPasupuleti, ThejasreeKiruthika, JothiD, PalanisamySilambarasan, R
Wire Electrical Discharge Machining (WEDM) has attracted considerable attention in contemporary manufacturing because of its capacity to accurately form conductive materials. This study aims to optimize the parameters of Wire Electrical Discharge Machining (WEDM) for SAE 1010 material, which is a commonly used low-carbon steel. The Taguchi-based Grey Relational Approach (GRA) is employed for this purpose. The goal is to optimize machining efficiency and quality while minimizing production costs. The research methodology combines the Taguchi method for experimental design with the GRA for multi-response optimization. The Taguchi L27 orthogonal array is utilized to carry out experiments, taking into account three controllable factors: pulse-on time, pulse-off time, and discharge current. In addition, the performance characteristics to be optimized include surface roughness (Ra) and material removal rate (MRR). The experimental results are analyzed using the GRA (Grey Relational Analysis
Natarajan, ManikandanPasupuleti, ThejasreeKiruthika, JothiKrishnamachary, PCSilambarasan, R
Manual installation of vehicle underbody Grommets is tedious task which sometimes results in incomplete & inaccurate installation. Based on process quality guidelines, this comes under potential defect category at End of line inspection area for which few hours of manual efforts are required for identifying location of error & doing rework activity. Existing deep learning & image comparison method falls short in identifying error location. To overcome this challenge, deep learning algorithm with co-ordinate system developed which comprises of identifying class or category of entities present in test and reference image and indexing it as Grommet or Hole. This further comprises of determining 2D position in terms of X and Y co-ordinate of each indexed hole & Grommet between reference & test image. This approach results in precise comparison & identification of error in terms of missing or misplacing of Grommets which also offers significant saving in manual installation and rework
Dhumal, Abhishek TrimbakMishra, JagdishTote, AnujNurukurthi, LakshmiKumar, Prakash
Spot welds are integral to automotive body construction, influencing vehicle performance and durability. Spot welding ensures structural integrity by creating strong bonds between metal sheets, crucial for maintaining vehicle safety and performance. It is highly compatible with automation, allowing for streamlined production processes and increased efficiency in automotive assembly lines. The number and distribution of spot welds directly impact the vehicle's ability to withstand various loads and stresses, including impacts, vibrations, and torsion. Manufacturers adhere to strict quality control standards to ensure the integrity of spot welds in automotive production. Monitoring spot weld count and weld quality during manufacturing processes through advanced inspection techniques such as Image processing by YOLOv8 helps identify the number of spots and quality that could compromise safety. Automating quality control processes is paramount, and machine vision offers a promising
Kadam, Shubham NarayanDolas, AniketMishra, Jagdish
In recent years, battery electric vehicles (BEVs) have experienced significant sales growth, marked by advancements in features and market delivery. This evolution intersects with innovative software-defined vehicles, which have transformed automotive supply chains, introducing new BEV brands from both emerging and mature markets. The critical role of software in software-defined battery electric vehicles (SD-BEVs) is pivotal for enhancing user experience and ensuring adherence to rigorous safety, performance, and quality standards. Effective governance and management are crucial, as failures can mar corporate reputations and jeopardize safety-critical systems like advanced driver assistance systems. Product Governance and Management for Software-defined Battery Electric Vehicles addresses the complexities of SD-BEV product governance and management to facilitate safer vehicle deployments. By exploring these challenges, it aims to enhance internal processes and foster cross
Abdul Hamid, Umar Zakir
In order to reduce the pumping loss of low loads and maximize the lean combustion advantage of hydrogen, the paper proposes a load control strategy based on hydrogen mass, called quality control, for improving thermal efficiency and emissions at low loads. The advantages of quality control and the effect of VVT on the combustion performance of hydrogen internal combustion engines under low loads were discussed. The results show that when the relative air–fuel ratio (λ) increases to more than 2.5, the NOx emissions are reduced to less than 3.5 g/kW · h at the brake mean effective pressure (BMEP) below 8 bar, especially when the BMEP is less than 5 bar, the NOx is within 0.2 g/kW · h. Compared to quantity control based on air mass, the quality control strategy based on hydrogen mass achieves over a 2.0% reduction in pumping loss at BMEP levels lower than 4.4 bar. Furthermore, it enhances thermal efficiency by up to 5% at low loads, while maintaining NOx emissions within 0.2 g/kW · h at
Li, YongChen, HongFu, ZhenDu, JiakunWu, Weilong
An industry-first 3D laser-based, computer-vision system can monitor and control the application of adhesive beads as tiny in width as two human hairs. This unique inspection system for electronic assemblies operates at speeds of 400 to 1,000 times per second, considerably quicker and more effective than conventional 2D systems. “Difficulty in precisely dispensing adhesives or sealants, especially in extremely small or complex electronic assemblies, can lead to over-application, under-application, bubbles, or incorrect location of the adhesive bead,” Juergen Dennig, president of Ann Arbor, Michigan-headquartered Coherix, told SAE Media. Improper application of joining material on electronic control units (ECUs) and power control units (PCUs) can result in poor adhesion, material voids and short circuits.
Buchholz, Kami
Vehicle HVAC noise performance is an important vehicle design validation criterion since it significantly links the brand image of a vehicle. It affects the customer’s buying decision and the business of selling vehicles because it directly affects driving comfort. Customers expect continuous improvement in HVAC noise without compromising cooling performance. The process of cascading vehicle-level acoustic performance to subsystem and component levels becomes an important factor in the vehicle NVH development process. It was found that the component-level [HVAC unit without duct] performance of an HVAC system measured in an anechoic chamber was at par when compared to targets, whereas the subsystem-level performance [HVAC unit with duct and dashboard] was on the higher side of the targets. Advanced NVH tools were used to identify the source of noise at the subsystem level. It helped to locate the source and its transfer path. A design modification done at the transfer path location
Titave, Uttam VasantKalsule, ShrikantNaidu, Sudhakara
To provide a method by which to assess the cleanliness of new hydraulic fluids. The method is applicable to new mineral and synthetic hydraulic fluids - regardless of packaging. This SAE Standard is not intended as a procedure for operating equipment.
CTTC C1, Hydraulic Systems
Designing a brake disc is a very challenging job. Besides to being a key item in vehicle safety, we are referring to a product that goes through several manufacturing processes and during its application it is exposed to extreme conditions of mechanical stress, temperature and vibration. The raw material for a large portion of commercial brake discs is normally gray cast iron with the possibility of adding alloy elements. This material is characterized by having high resistance to wear due to friction and having practically zero plasticity. As it is a material without a plastic working regime, it is very important to properly size the product for use, once the material’s resistance limit is reached, a catastrophic failure in operation may be inevitable. Quality control systems in casting and machining have great importance in the development of the disc, but physical tests are always essential in this type of product. Dynamometer tests are great options for validating brake discs, due
Deckmann, Jardel Luisdo Nascimento, Vagner
This SAE Aerospace Recommended Practice (ARP) covers the requirements for the types of glass to be utilized in the fabrication of cover glasses and lighting wedges used in aerospace instruments. It defines the maximum extent of physical defects and recommends standard methods of inspection and evaluation. Definitions of terminology used in this document are covered in 2.2.
A-20A Crew Station Lighting
A company says that its digital twin alignment system, incorporating a sophisticated AI algorithm and an off-the-shelf camera, has the potential to revolutionize the auto industry, potentially saving it up to a staggering $20 billion in the effort to detect defects on the manufacturing line. Generally, such inspections of spot welds, bolt holes and the like are handled one of three ways: Slow manual inspections that can have high error rates. Even slower inspection with coordinate-measuring machines (CMMs) that can take hours to inspect 150 spot welds. Tremendously expensive technology, such as lasers, that still aren't perfect.
Clonts, Chris
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed. Thus, national production of these fuels in the EU is inefficient in terms of cost and carbon footprint due to the low utilisation rate of renewable energy
Stoll, TobiasKulzer, AndreBerner, Hans-Juergen
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Rittenschober, ThomasKarrer, Rafael
A sensing technology that can assess the quality of components in fields such as aerospace could transform UK industry. University of Bristol, Bristol, UK In a study, published in the Journal Waves in Random and Complex Media, researchers from the University of Bristol have derived a formula that can inform the design boundaries for a given component's geometry and material microstructure. A commercially viable sensing technology and associated imaging algorithm to assess the quality of such components currently does not exist. If the additive manufacturing (3D printing) of metallic components could satisfy the safety and quality standards in industries there could be significant commercial advantages in the manufacturing sector.
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and broader acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, intending to strengthen process control and minimize defects. Optical emission spectroscopy is employed to study the real-time interactions between the laser and powder bed, melt pool dynamics, material
Raju, BenjaminKancherla, Kishore BabuB S, DakshayiniRoy Mahapatra, Debiprosad
In a study, published in the Journal Waves in Random and Complex Media, researchers from the University of Bristol have derived a formula that can inform the design boundaries for a given component’s geometry and material microstructure.
To address the issue of engine jitter at idle conditions in a specific vehicle model, an initial test of the inertial parameters of the powertrain mounting system was conducted. Utilizing the Adams software, a system model was constructed and subjected to modal analysis. The stiffness of the mounting components was selected as the optimization variable. A deterministic multi-objective optimization was performed on the system’s decoupling rate, natural frequencies, and minimum dynamic reaction force, employing the multi-island genetic algorithm. sensitivity analysis regarding the stiffness of the mounts was conducted based on DOE method. The optimized stiffness values were then re-entered into the Adams software. The results of the deterministic optimization indicated a significant enhancement in the decoupling rate of the powertrain mounting system in the primary direction of concern, a reduction in the natural frequencies, and a decrease to 43.5% of the original scheme in the minimum
Zheng, Bao BaoGuo, YimingXiao, LeiZheng, DiLi, GuohongShangguan, Wen-BinRakheja, Subhash
The aviation, space, and defense industries rely on the development and manufacture of complex products comprised of multiple systems, subsystems, and components each designed by individual designers (design activities) at various levels within the supply chain. Each design or manufacturing activity controls various aspects of the configuration and specifications related to the product. When a change to design or process is requested or required, the change is typically required to be evaluated against the impacts to the entire system. Proposed changes to design data/information that the design activity identifies to be minor and have no effect on the product requirements or specifications, have the potential to be implemented and approved, where authorized to do so, but requires notification. Changes that affect customer mandated requirements or specifications shall be approved prior to implementation. In many cases, the design activity is not conducted by the DAH or design authority
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
With globalization, vehicles are sold across the world throughout different markets and their automotive brake systems must function across a range of environmental conditions. Currently, there is no current standardized test that analyzes brake pads’ robustness against severe cold and humid environmental conditions. The purpose of this proposed test method is to validate brake system performance under severe cold conditions, comparing the results with ambient conditions to evaluate varying lining materials’ functional robustness. The goal of this paper is to aid in setting a standardized process and procedure for the testing of automotive brakes’ environmental robustness. Seven candidate friction materials were selected for analysis. The friction materials are kept confidential. Design of experiment (DOE) techniques were used to create a full-factorial test plan that covered all combinations of parameters. The test script involves brake applications at 5, 10, 15, and 20 bar, at both
Passador, Stephen Daniel AustinBoudreau, Douglas BarretCapacchione, Christopher James
Multiple areas in the U.S. continue to struggle with achieving National Ambient Air Quality Standards for ozone. These continued issues highlight the need for further reductions in NOX emission standards in multiple industry sectors, with heavy-duty on-highway engines being one of the most important areas to be addressed. Starting in 2014, CARB initiated a series of technical demonstration programs aimed at examining the feasibility of achieving up to a 90% reduction in tailpipe NOX, while at the same time maintaining a path towards GHG reductions that will be required as part of the Heavy-Duty Phase 2 GHG program. These programs culminated in the Stage 3 Low NOX program, which demonstrated low NOX emissions while maintaining GHG emissions at levels comparable to the baseline engine. Building on that prior program effort, EPA continued to support further Low NOX demonstration efforts in support of the development of new Federal Emissions Standards for heavy-duty highway vehicles and
Sharp, ChristopherNeely, GaryZavala, BryanRao, SandeshMcDonald, JosephSanchez, James L.
The rapid evolution of battery electric vehicle (BEV) development has highlighted the need to develop BEVs that meet customer demands for both high-performance and space-efficiency. This paper explores the optimization opportunities available within the landscape of BEV powertrains, focusing on the power-dense potential of single-axis powertrain systems. The need to adhere to power density requirements to accommodate performance aspirations while simultaneously yielding more cabin or storage space to the customer creates a challenging problem for designers. With this pursuit, these competing interests must strike a harmonious balance to create the best experience for the customer. The subject of this study is an investigation into a leading competitor's powertrain that explores the potential optimization opportunities available within its already compact single-axis electric transmission. The methodology entails a reverse-engineered model of the geartrain, enabling an outsider’s
Villarreal, Jaret
In this paper, in order to obtain the specified communication range, this work provides a novel optimization approach for antenna placement inside a design space of a vehicle is proposed. The design community can undertake antenna design iterations and quickly investigate antenna placement areas with the help of the optimal placement of antenna utilizing computational electromagnetic (CEM) based optimization approach. The design of experiments (DOE) for various antenna positions and orientations was produced using the Taguchi method [5]. To examine the impact of near field E throughout communication range, Quasi-Newtonian gradient technique and high frequency simulation software (HFSS) are employed. Response curves were created from the received near field E in order to examine the mean, large mean, and cost-wise approaches in order to find the antenna's ideal position and orientation for a strong signal across the communication range.
S, Jeyavendeesh KumarSiingh, Abhay
The continuous improvement of spark-ignition direct-injection (SIDI) engines is largely attributed to the enhanced understanding of air-fuel mixing and combustion processes. The intricate interaction between transient spray behavior and the ambient flow field is important to unveil the airflow dynamics during the spray injection process. This study investigates the fuel-spray boundary interactions under different superheated conditions by analyzing the ambient flow field pattern with constraint-based modeling (CBM). In the experimental setup, superheated conditions are facilitated by adjusting different fuel temperatures and ambient pressures. By adding the tracer particles containing Rhodamine 6G to the ambient air, the combined diagnostic of fluorescent particle image velocimetry (FPIV) and Mie-scattering is implemented to measure the velocity distribution and flow trajectory of the air surrounding the spray formation and propagation. For analytical analysis, a data-driven
Zhou, ZimingZhao, FengnianHung, DavidHuang, Qin
The basic needs of people are met by the building, fabric, and farming sectors. In addition, the automobile industry significantly contributes to human mobility and is essential to India’s economic expansion. There are numerous research strategies available to improve the bus body building industries. Several investigative approaches for enhancing bus body building industries are available. However, several of these studies merely look at it from the perspective of shop floor activity. Accordingly, when it comes to the execution of process design approaches, there is little practical evidence for accepting Gemba kaizen’s attitude. Hence, the purpose of this article is to present a continuous improvement redesign framework tailored to a specific bus body building industrial sector. The proposed model is structured after a critical examination of Gemba and Kaizen. The results showed that by implementing the improvement initiatives, the number of process activities decreased from 44 to 25
Balakrishnan, S.Senthilkumar, K.Rajkumar, V.Jerold John Britto , J.
Computed Tomography (CT) has become a potent instrument for non-invasive assessment of battery cell integrity, providing detailed insights into their internal structure. The present study explores the capabilities and advantages of employing CT for cell characterization through a systematic evaluation from various parameters. The evaluation results will be based on real-world experiments conducted on a standard battery cell, assessing the CT system’s ability to provide precise internal measurements, detect defects, and ensure the overall integrity of the cell. We outline a comprehensive framework that includes criteria such as system specifications, image quality, software capabilities, maintenance, service, and cost-effectiveness. This framework serves as a valuable guide for battery researchers and quality control professionals, enabling them to make informed decisions when selecting the most suitable CT solution for battery cell characterization, quality assessment, and failure
Singh, Sathya PrakashBaidya, Kapil KrishnaAdhale, Pratik
The Auto industry has relied upon traditional testing methodologies for product development and Quality testing since its inception. As technology changed, it brought a shift in customer demand for better vehicles with the highest quality standards. With the advent of EVs, OEMs are looking to reduce the going-to-market time for their products to win the EV race. Traditional testing methodologies have relied upon data received from various stakeholders and based on the same tests are planned. The data used is highly subjective and lacks variety. OEMs across the world are betting big on telematics solutions by pushing more and more vehicles with telematics devices as standard fitment. The data from such vehicles which gets generated in high levels of volume, variety and velocity can aid in the new age of vehicle testing. This live data cannot be simply simulated in test environments. The device generates hundreds of signals, frequently in a fraction of seconds. Multiple such signals can
Sahoo, PriyabrataSingh, SaurabhPrasad, Kakaraparti Agam
Items per page:
1 – 50 of 2247