Browse Topic: Total quality management

Items (42)
ABSTRACT Reliability Physics simulations for electronic assemblies has matured to become best practice during specification and design. However, the potential advantages of these simulations to programs and integrators are more far reaching. This paper will explore how the simulations can be used for virtual qualification, reliability assurance, maintenance scheduling and obsolescence management. Citation: Ed Dodd, “Reliability Simulations for Electronic Assemblies: Virtual Qualification, Reliability Assurance, Maintenance Scheduling and Obsolescence Mitigation”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Dodd, Ed
The main purpose of this research is to identify how the established quality methodologies, known worldwide as TQC (Total Quality Control) and TQM (Total Quality Management) are supported by the tools of the Quality 4.0 concept that similarly received influence from the disruptive technologies of Industry 4.0 in the last decade. In order to crosscheck the relationship among TQC and TQM and how Quality 4.0 supports these quality systems a qualitative investigation method was adopted through a survey questionnaire applied to one of the most important worldwide automobile company, based also in Brazil, Toyota of Brazil. Based on a literature review and relationship of concepts and synergy among them it was possible analyse and find out conclusions of this research work. The main results were identified as TQC and TQM are very well established concepts of quality and Quality 4.0 concepts and tools have been implemented on a path according to the markets importance prioritization, so then
da Silva Bento, NelsonCavalcanti Bortoleto, WilliamIbusuki, Ugo
The purpose of this Interim Standard is to support the development and improvement of systems engineering capability
G-47 Systems Engineering
This Assessment Guide is applicable to any assessment technique that wishes to embrace the principles and concepts presented in the EIA-599 National Electronic Process Certification Standard
Systems Management Council
Supply Chain Risk Management (SCRM), defined in this guideline, can be applied proactively for the protection of all procured products and services; both flying and non-flying through all levels of the supply chain. The guideline focuses on Quality as a key risk assessment factor taking into account elements from all aspects of the business having a direct link to global quality management. This concept/model is shown in Figure 1. While traditional “small q” Quality is a key element to be assessed, from a company business point of view, other elements play an important part in minimizing risk. This guideline defines such risk factors for consideration. SCRM as a business protection tool will be most effective when used to identify, and reduce risks when generating new business with new and existing suppliers. However, the tools and techniques described hereafter can also be applied to evaluate the existing supply chain network and determine the level of control required. The SCRM can
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This document discusses a recommended new approach to integrate probabilistic methodologies with design practices, procedures, and software codes currently being used. In addition to complementing design methods currently in use, this new procedure will permit the designer to quantify the amount of conservatism that exists for a particular design due to the large amount of additional information which is provided to the designer. This additional information will allow the designer to make better decisions when faced with tradeoffs between cost, reliability, performance, and weight. Although the methodologies described herein can be used heavily in the design process, their applicability is much more encompassing. They can be used from product concept to customer delivery
G-11 Probabilistic Methods and Uncertainty Quantification
Medical device manufacturers are experiencing an ever-increasing emphasis on process accountability. ADAM (Advanced Data Analysis Monitor) is a technology developed for resistance welding that gives manufacturers the information they need to support process development and production monitoring. It also supplies the data necessary to document quality requirements contained in ISO (International Organization for Standardization), good manufacturing practice (GMP), and total quality management (TQM) programs. The instrument monitors not only what happens after the trigger point of a typical weld monitor, but also before the trigger point, giving a 360-degree view of the process
Supply Chain Risk Management (SCRM), defined in this guideline, can be applied proactively for the protection of all procured products and services; both flying and non-flying through all levels of the supply chain. The guideline focuses on Quality as a key risk assessment factor taking into account elements from all aspects of the business having a direct link to global quality management. This concept/model is shown in Figure 1. While traditional "small q" Quality is a key element to be assessed, from a company business point of view, other elements play an important part in minimizing risk. This guideline defines such risk factors for consideration. SCRM as a business protection tool will be most effective when used to identify, and reduce risks when generating new business with new and existing suppliers. However, the tools and techniques described hereafter can also be applied to evaluate the existing supply chain network and determine the level of control required. The SCRM can
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This Aerospace Standard (AS) documents the requirements for implementing NADCAP industry consensus-based accreditation programs
Nadcap Management Council
Current design and development practices leading to formal liquid rocket engine qualification (USAF) or certification (NASA) will not achieve the specific reliability objectives of future programs. New rocket engine programs are dictating quantified requirements for high reliability in parallel with a cost-constrained procurement environment. These specified reliability levels cannot be validated with the necessary confidence in a timely or cost-effective manner by present methods. Therefore, a new improved process is needed and has been developed. This new reliability certification methodology will be discussed in detail in the five sections that comprise this document. Primary purposes of this report are to: a Define and illustrate this process b Point out its strengths and weaknesses c Provide guidelines for its application on programs which have specified reliability requirements Increased emphasis on rocket engine reliability and cost has prompted the Liquid Rocket Certification
G-11 Probabilistic Methods and Uncertainty Quantification
This Aerospace Standard establishes the minimum requirements necessary for NADCAP accreditation of a General Quality System the meets, at a minimum, MIL-Q-9858. These requirements may be supplemented by additional requirements at the discretion of the NADCAP General Quality Systems Task Group. It is the intent of this standard to provide a harmonized quality standard that meets MIL-Q-9858, MIL-STD-45662, and the relevant portions of MIL-STD-1520. In addition to meeting these requirements as a minimum, an attempt has been made to harmonize the requirements of MIL-Q and the ISO9000 series of standards. Where similar requirements existed between these two standards, the more stringent requirement was imposed
Nadcap Management Council
This Aerospace Standard establishes the minimum requirements necessary for NADCAP accreditation of an Inspection System that meets, at a minimum, MIL-I-45208. These requirements may be supplemented by additional requirements at the discretion of the NADCAP General Quality Systems Task Group. It is the intent of this standard to provide a harmonized quality standard that meets MIL-I-45208, MIL-STD- 45662, and the relevant portions of MIL-STD-1520. In addition to meeting these requirements as a minimum, an attempt has been made to harmonize the requirements of MIL-Q and the ISO9000 series of standards. Where similar requirements existed between these two standards, the more stringent requirement was imposed
Nadcap Management Council
This AIR by the G-11AT (Automation and Tools) subcommittee, examines the failure mode, effects and criticality analysis (FMECA) requirements and procedures as performed on current and earlier vintage engineering programs. The subcommittee has focused on these procedures in relation to the concurrent engineering (CE) environment to determine where it may be beneficial, to both FMECA analysts and users, to automate some or all of the FMECA processes. Its purpose is to inform the reader about FMECAs and how the FMECA process could be automated in a concurrent engineering environment. There is no intent on the part of the authors that the material presented should become requirements or specifications imposed as part of any future contract. The report is structured to include the following subjects: a A FMECA overview b The current FMECA process c FMECA in the concurrent engineering environment d FMECA automation e The benefits of automation
G-41 Reliability
This SAE Aerospace Recommended Practice (ARP) is a system guide for Engine Monitoring System (EMS) definition and implementation. This keystone document addresses EMS benefits, capabilities, and requirements. It includes EMS in-flight and ground applications consisting of people, equipment, and software. It recommends EMS requirements that are a balance of selected benefits and available capabilities. This ARP purposely addresses a wide range of EMS architecture. The intent is to provide an extensive list of possible EMS design options. NOTE: a Section 3 describes an EMS. b Sections 4 and 5 outline benefits and capabilities that should be considered for study purposes to define EMS baselines for how much engine monitoring is required. c Section 6 provides implementation requirements that should be considered for an EMS after study baseline levels of EMS complexity are selected
E-32 Aerospace Propulsion Systems Health Management
This Aerospace Standard (AS) documents the operating instructions, rules, policies, and practices of the Performance Review Institute (PRI), an affiliate of SAE. Covered in this standard are the operations of NADCAP committees, headquarters and field personnel, requirements for ongoing relations with suppliers, and procedures for conducting audits, continuing surveillance and accreditation. Supporting SAE NADCAP Aerospace Standards provide supplier requirements for complying with each individual accreditation process
Nadcap Management Council
Items per page:
1 – 42 of 42