Browse Topic: Fuel systems

Items (7,224)
To meet the International Maritime Organization’s (IMO) short-term greenhouse gas (GHG) reduction targets, partial decarbonization of the existing fleet, often powered by medium-speed diesel engines, is required. One approach for reducing CO2 emissions is to enrich the charge air with hydrogen to substitute diesel. However, hydrogen’s high reactivity can lead to combustion abnormalities such as backfire, pre-ignition, and knocking, thus limiting the feasible admixture rates. These challenges are particularly relevant in medium-speed diesel engines designed for high power output and efficiency at low rpm. While hydrogen fuel-share has previously been tested in small-bore engines at moderate loads, this study investigates the influence on combustion and achievable hydrogen admixture rates in a medium-speed, 4-stroke diesel engine operating with up to 30 bar net indicated mean effective pressure (net IMEP). To minimize retrofitting efforts and to preserve diesel performance, the
Achenbach, TobiasMeinert, RobertMahler, KayKunkel, ChristianRösler, SebastianPrager, MaximilianJaensch, Malte
This document recommends and sets forth a set of symbols representing the components making up aircraft fuel and oil systems. The intended result is uniformity in system schematics so that they may be easily understood throughout the aerospace industry.
AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
In order to control the engine performance which is driven by the strict emission regulations and customer request for the improved fuel economy, precise air intake measurement and fuel control system are essential. In the modern engines, the mass air flow sensor (MAF) acts an important role which provides a precise estimation of air flow from the clean side ducting of air intake system to engine control unit module (ECU). The hot wire mass air flow sensor are mounted on the clean side of the air intake system in order to protect the sensing element from the contamination and to extend their lifespan as well as maintain its accuracy. It is essential to maintain a steady and a uniform airflow at the sensing element of the MAF sensor for reliable sensor reading at different engine speeds and varying engine load. However, the physical limitations of engine packaging inside the engine bay, limits the sensor placement. Incorrect sensor mounting can lead to errors in the airflow estimation
Sonone, Sagar DineshZope, MaheshKale, VishalPadmawar, HarshadSridhar, SKolhe, Vivek MPanwar, Anupam
This study presents a comprehensive 1D simulation approach of an automotive solenoid-based diesel fuel injector and a common rail injection system for a marine engine using Simcenter AMESim. The injector model was developed to analyse the injection rate and total injected fuel at various solenoid actuation durations (1.2 ms and 2.0 ms) and common rail pressures. The experimental results from a well-established research study are used for validating the simulation results of the solenoid-based injector. Overall error in total fuel injected ranges from -6.14 percent to 1.93 percent, while timing errors for the start of injection vary from 1.7° crank angle (CA) to 0.08° CA and the end of injection from 2.8° CA to 0.20° CA at 1200 rpm demonstrating strong agreement at higher rail pressures (above 1000 bar) and solenoid actuation times. Building on this validated injector model, a detailed marine common rail system was developed incorporating key hydraulic components: a check valve to
Bhoware, YashPise, UdaySaha, DiptaGaikwad, Nilesh
Today, passenger car makers around the world are striving to meet the increasing demand for fuel economy, high performance, and silent engines. Corporate Average Fuel Economy (CAFE) regulations implemented in India to improve the fuel efficiency of a manufacturer's fleet of vehicles. CAFE goal is to reduce fuel consumption and, by extension, the emissions that contribute to climate change. CNG (Compressed Natural Gas) engines offer several advantages that help manufacturers meet and exceed these standards. The demand for CNG vehicles has surged exponentially in recent years, CNG engine better Fuel efficiency and advantage in CAFÉ norms make good case for OEM & Customer to use more CNG vehicle. CNG is dry fuel compared to gasoline. These dry fuels lack lubricating properties, unlike conventional fuels like petrol, diesel and biofuels, which are wet and liquid. Consequently, the operations and failures associated with these fuels differ. The materials and designs of engine parts, such as
Poonia, SanjayKumar, ChandanSharma, ShailenderKhan, PrasenjitBhat, AnoopP, PrasathNeb, Ashish
The maximum power is recorded with Gasoline than CNG and Hydrogen fuel. The maximum exergy and energy efficiency is with Hydrogen, followed by CNG and then Gasoline. Hydrogen fuel has a maximum potential to convert into energy. The maximum energy destruction of 48.7kW for gasoline fuel at 3000 rpm and followed by CNG and hydrogen. The maximum entropy generation of 85.5 W/K with Gasoline and 60.72 W/K and 29.39W/K for CNG and hydrogen engine respectively at 10000 rpm. The entropy generation rate increase with engine speed. The highest rate of heat release is from hydrogen fuel, followed by Gasoline and CNG.
Shinde, Apurwa BalasahebKadam, Tusharkarunamurthy, KSHINDE, DR BALU
The Government of India has mandated biofuel blending in automotive fuels to reduce crude oil imports and support the national economy. As part of this initiative, Oil Marketing Companies (OMCs) have begun nationwide blending of E20 fuel (20% ethanol in petrol). Ethanol supply is expected to exceed demand by the end of 2025 due to initiatives like the Pradhan Mantri JI-VAN Yojana. Alternative applications for ethanol are being explored; one promising approach is its use as a co-blend with diesel fuel (ED blends). However, ethanol’s low cetane number and poor lubricity pose challenges for direct use in diesel engines without modifications. ED blends demonstrated reduced emissions while maintaining performance comparable to conventional diesel. To further address concerns related to materials compatibility of ED blends with fuel system components, particularly plastomers that may impact engine durability, a detailed study was conducted using elastomers such as FVMQ, FKM, HNBR, and NBR in
Johnpeter, Justin PChakrahari, KiranChakradhar, MayaArora, AjayPrakash, ShantiPokhriyal, Naveen Kumar
Identification of renewable and sustainable energy solutions remains a key focus area for the engine designers of the modern world. An avenue of research and development is being vastly dedicated to propelling engines using alternate fuels. The chemistry of these alternate fuels is in general much simpler than fossil fuels, like diesel and gasoline. One such promising and easily available alternate fuel is compressed natural gas (CNG). In this work, a 3-cylinder, 3-liter naturally aspirated air-cooled diesel engine from the off-highway tractor application is converted into a CNG Diesel Dual fuel (CNG-DDF) engine. Part throttle performance test shows the higher NMHC and CO emissions in CNG-DDF mode which have been controlled by an oxidation catalyst in C1 8-mode emission test. A comparative performance shows that the thermal efficiency is up to 2% lower with CNG-DDF with respect to diesel. However, it has shown the benefit of 44% in Particulate Matter, while retaining the same NOx
Choudhary, VasuMukherjee, NaliniKumar, SanjeevTripathi, AyushNene, Devendra
The CPCB-IV+ emission compliance for genset application is applicable with effect from 1st July 2023 as per as per GSR 804(E). The CPCB-II to CPCB-IV+ changeover in very stringent in emission front by almost 90 % emission reduction. It’s a significant advancement in environmentally sustainable powertrain technology. To meet the CPCB-IV+ Emission, combustion development & ATS technology plays an important role. First is the base engine need to optimize enough with combustion & associated parts. Second is the after treatment system which will carry the battle further to the engine emission with minimum margin of 10 % engineering target. This paper present the systematic approach followed to meet CPCB-IV+ emission norms for upgradation of 21 litre TCIC engine for the power range (56 < P ≤ 560). Here the challenge to avoid major changes in the existing CPCB-II FIE recipe & meet the CPCB-IV+ emission with ECU calibration & ATS system calibration with its potential. Here interesting parts
Rane, VikasJagtap, ShaileshGothekar, SanjeevPawar, Narendra VKhedkar, PrasadKagade, SamadhanKendre, MahadevG Bhat, PrasannaThipse, S
Globally, emission regulations for LDVs (Light Duty Vehicles) are becoming increasingly stringent. In Europe, EU7 regulations will tighten the PN (Particulate Number) requirements by applying PN10 with PN value target 6.0+E11 [#/km] and changing the CF (Conformity Factor) value from 1.5 to 1.34 for RDE (Real Driving Emission). This necessitates the use of GPF (Gasoline Particulate Filter) capable of meeting these PN regulations. Similarly, India is also tightening its PN regulations by referencing European standards. Under the current BS VI Stage 2, in-use compliance test procedures, including RDE measurements using PEMS (Portable Emission Measurement System), necessitate GPFs for GDI (Gasoline Direct Injection) engines. Furthermore, around April 2027, the transition from BS VI Stage 2 to BS VI Stage 3 is expected, with a change of driving cycle from MIDC to WLTC up to Phase 3. Additionally, discussions on BS VII regulations, referencing EU7, have begun, and similar stricter PN
Sugimoto, KentaroOhashi, KenichiMori, ReonMatsumoto, TasukuAoki, TakashiSugiura, SoHibi, Noriyuki
Noise quality at idle condition is an important factor which influences customer comfort. Modern diesel engines with stringent emission norms together with fuel economy requirements pose challenges to noise control. Common rail engine technology has advantage of precise fuel delivery and combustion control which needs optimization to achieve the conflicting requirements of noise, emission and fuel efficiency. Engine noise at low idle condition is dominated by combustion noise which depends on rate of pressure rise inside the cylinder during combustion. The important parameters which influence cylinder pressure rise are fuel injection timing, pilot injection quantity and its separation, rail pressure and EGR valve position. The study on effect of these parameters at varying levels demand large no of experiments. Taguchi design of experiments is a statistical technique which can be used to optimize these parameters by significantly reducing no of experiments needed to achieve the desired
P, PriyadarshanChavan, AmitA, KannanswamyPatil, SandeepChaudhari, Vishal V
India’s commitment to carbon neutrality is significantly shaping the future architecture of commercial vehicle powertrains. While the use of CO₂-free technologies such as battery-electric drivetrains has already been successfully demonstrated across various applications, challenges related to limited range and the lack of high-power charging infrastructure continue to hinder widespread adoption, particularly for productivity-critical commercial vehicles. This has shifted the spotlight toward sustainable fuels, which offer the advantage of fast refueling times. Among these, hydrogen internal combustion engines (H₂ ICE) have gained increasing attention in recent years. In regions such as the European Union, the primary motivation for hydrogen is CO₂ reduction. In contrast, for markets like India, hydrogen also presents a strategic opportunity for reducing dependency on fossil fuel imports. Over the past four years, multiple performance and emission development projects across various H
Arnberger, AntonDanninger, AloisMannsberger, StefanBreitegger, Bernhard
This paper presents the development and evaluation of a passive regeneration Diesel Particulate Filter (DPF) system for a 4-cylinder, 3.18-liter naturally aspirated agricultural tractor engine based on the mDI engine family. The primary objective is to significantly reduce particulate matter (PM) emissions while maintaining optimal engine performance and fuel economy. The passive regeneration DPF system leverages the engine's operating conditions to generate sufficient heat for the oxidation of trapped particulate matter, eliminating the need for active regeneration techniques. The paper details the design process, including the selection of DPF material, filter geometry, and integration into the exhaust system. Rigorous experimental testing was conducted to assess the performance of the DPF system under various engine load and speed conditions. Results demonstrate substantial reductions in PM emissions without compromising engine power, torque, or specific fuel consumption. This
Maddali, Varun SumanJidigonti, ShashankKannan, SRamesh, Natrajan
The Indian automobile industry is experiencing a significant shift, propelled by environmental necessities and national climate obligations set at the CoP26 summit, aiming for a 45% decrease in CO₂ emissions by 2030 and reaching carbon neutrality by 2070 [1]. Transportation continues to be a significant source of air pollution; consequently, India is enhancing its regulatory frameworks with BS VI Stage 2 regulations, CAFE Phase III norms set for 2027, and CAFE Phase IV by 2032 [2]. Furthermore, the transition from MIDC to WLTP driving cycle is meant to increase the accuracy of the efficiency and emissions assessments [2]. To comply to these upcoming regulations, the automotive industry is moving toward producing high efficiency engines in India. A naturally aspirated (NA) 1.5L, 4-cylinder inline gasoline engine was selected from Indian market for this study. Maximum Brake Thermal Efficiency (BTE) of this engine is around 37%. Assessment of new technologies were performed by
Garg, ShivamFischer, MarcusEmran, AshrafJagodzinski, BartoschFranzke, Bjoern
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
Choudhary, Aditya KantPetale, MahendraDutta, SurabhiBagul, Mithilesh
This paper presents an analysis of the Indian patent landscape concerning alternative fuels, with a specific focus on hydrogen fuel cells and hydrogen internal combustion engines (H2 ICEs). The study aims to provide insights into the innovation trends, key players, white spaces and technological advancements, in this evolving sector within the Indian context. The study is based on the granted patents and disclosures in the said area, and also focuses on the key problems and solutions. Based on a review of patent publications from January 2024 to March 2025, it was observed that a significant number of patent records pertain to the broader domain of hydrogen internal combustion engine disclosures. Specifically, 540 extended families patent publications were screened focusing on hydrogen internal combustion engine as a domain of disclosure. Further analysis revealed that greater 75 % of applicants were from the industry sector, indicating a strong commercial interest in these
Nikam, Mahesh SureshSutavane, IlaV, AjayAghav, Yogesh
On the way to net zero emissions and to cut the oil import bills, NITI Aayog, Government of India and Ministry of Petroleum & Natural Gas (MoP&NG) has rolled out roadmap for ethanol blending in India during 2020-2025. Also, National Policy on Biofuels – 2018, provides an indicative target of 20% ethanol blending under the Ethanol Blended Petrol (EBP) Programme by 2030. Considering these Government’s initiatives current studies were performed on BSVI compliant gasoline direct injection vehicle on RDE compliant route (Route formulated by Indian Oil R&D Centre) with different ethanol blended gasoline fuel formulations i.e., E0 (Neat Gasoline), E10 (10% Ethanol in gasoline) & E20 (20% Ethanol in gasoline). The study aims to determine the compliance of Conformity Factor (C.F.) for ethanol blended gasoline fuel on Direct Injection gasoline engine. The conformity factors were calculated in each case for CO, NOx & PN using moving window average evaluation method. For reference CO2
Kant, ChanderArora, AjaySaroj, ShyamsherKumar, PrashantSithananthan, MChakradhar, Dr MayaKalita, Mrinmoy
When the flow of fluid within a high-pressure line is abruptly halted, pressure pulsations are generated. This phenomenon is known as the water hammer effect. This may lead to significant stress and, in the worst-case scenario, results in various types of failures within the highly pressurized system. Similar issues are observed in diesel high pressure fuel line where pressure is well above 1600 bar. Due to multiple injections on-off events, pressure pulsation gets created inside high pressure fuel lines (HPFL) which leads to problems such as high strain on high pressure fuel lines, mechanical damage, uneven fuel injected quantity, vibration beyond specification limits for rail pressure sensors or in worst case extreme noise. This is due to high pressure pulsation which occurs when fluid/fuel natural frequency resonates with structural HPFL natural frequency. In this work, A comparative FEA analysis is conducted to evaluate strain in two distinct high-pressure fuel lines, with pressure
Bawache, Krushna RameshSethy, Girija Kumari
Increasing ethanol blending in gasoline is significant from both financial (reducing dependency on crude oil) and sustainability (overall CO2 reduction) points of view. Flex Fuel is an ethanol-gasoline blend containing ethanol ranging from 20% to 85%. Flex Fuel emerges as an exceptionally advantageous solution, adeptly addressing the shortcomings associated with both gasoline and ethanol. Performance optimization of Flex Fuel is a major challenge as fuel properties like knocking tendency, calorific value, vapour pressure, latent heat, and stoichiometric air-fuel ratio change with varying ethanol content. This paper elaborates on the experimental results of trials conducted for optimizing engine performance with Flex Fuel for a 2-cylinder engine used in a small commercial vehicle. To derive maximum benefit from the higher octane rating of E85, the compression ratio is increased, while ignition timing is optimized to avoid knocking with E20 fuel. For intermediate blends, ignition timing
Kulkarni, DeepakMalekar, Hemant AUpadhyay, RajdipKatkar, SantoshUndre, Shrikant
The transition toward zero-carbon propulsion technologies has highlighted the urgent need for specialized test infrastructure to support hydrogen and alternative fuel research. This paper presents the conceptualization, design, and operation of a High-Pressure Direct Injection (HPDI) Hydrogen Internal Combustion Engine (H2 ICE) test facility with integrated ammonia fuel testing capability, marking a significant advancement in India’s sustainable automotive research efforts. Drawing from practical experience, it outlines crucial technical specifications, safety protocols, and best practices for establishing robust, adaptable, and secure testing environments. Addressing the industry’s need for dedicated infrastructure, it is engineered for adaptability across various engine types including heavy-duty, light-duty, and multi-utility vehicles while aligning with global technical standards. Key technical considerations include a transient dynamometer with an advanced automation system for
Dhyani, VipinKurien, CaneonSubramanian, BalajiKhandai, ChinmayanandaMuralidharan, M
To address the imperative for decarbonizing the heavy-duty transport sector and advancing sustainable energy solutions, this paper presents a novel lean-boosted Direct Injection (DI) Hydrogen Internal Combustion Engine (H2 ICE) combustion system. This system is developed to retrofit existing flat-deck Diesel engines, offering a viable pathway towards drastically reduced emissions. Building on consolidated expertise from prior production-oriented Port Fuel Injection H2 engine development (DUMAREY 6.6ℓ V8), this research focuses on leveraging the distinct advantages of DI for hydrogen. An experimental assessment, supported by 1D and 3D-CFD analyses, demonstrates the system's capability to achieve highly efficient operation in Spark Ignition (SI) mode under ultra-lean and EGR-diluted conditions. The study confirms the elimination of combustion anomalies such as backfiring, pre-ignition, and knock, while achieving ultra-low engine-out NOx emissions and near-zero CO2, HC, CO, and PM. The
Gessaroli, DavideGolisano, RobertoPesce, FrancescoBoretto, GianmarcoAccurso, Francesco
In CPCB-IV+ Emissions regulations NOx & PM are reduced by 90% from CPCB-II limits in the power band 56 < kW ≤ 560. Obvious technology approach adopted by industry to meet this requirement is the introduction of CRDI fuel injection system & DOC+SCR+ASC aftertreatment technology, leading to substantial modifications at both engine & genset level. This result into huge development expenditure, high incremental product cost, timelines and increased total cost of ownership. This paper describes the frugal technology approach to keep development cost, product cost, development time to the minimum using electronically governed, high pressure mechanical fuel injection equipment, with DOC+SCR+ASC without any external thermal management strategy while comfortably achieving target CPCB-IV+ emission levels. This integrated approach also helped in completing the entire development in < 12 months. 1D-thermodynamic & 3D-combustion simulation approach was adopted to predict the engine out emissions
Arde, VasundharaJuttu, SimachalamKadam, AtitGothekar, SanjeevKarthick, KVandana, SuryanarayanaThipse, SKendre, Mahadev
During vehicle launches in 1st gear, a lateral shake (undulation) and a pronounced metallic hitting noise were observed in the underbody. The noise was identified as the propeller shaft's second universal joint (UJ) yoke striking the fuel tank mounting bracket. Sensitivity to these issues varied with acceleration inputs: light pedal input during a normal 1st gear launch on a flat road resulted in minimal undulation, whereas wide open throttle (WOT) conditions in 1st gear produced significant lateral shake and intensified hitting noise. Further investigation revealed that the problem persists across all gears and occurs consistently during normal driving conditions, with continuous impact between the propeller shaft yoke and the fuel tank mounting bracket. Extensive experimental measurements at the vehicle level indicated that these issues were primarily caused by the center-mounted propeller shaft joint deviating from its central position and rotating eccentrically under torque. This
Sanjay, LS, ManickarajaKumar, SarveshKanagaraj, PothirajSenthil Raja, TB, Prem PrabhakarM, Kiran
The automotive industry is continuously evolving at high pace to meet rising customer expectations, reliability, reduced maintenance, and most relevant, compliance with stringent emission norms. Traditionally, the analysis of vehicle emissions relies heavily on periodic inspections and manual checks. These conventional methods are often time-consuming, prone to human error, and lack the ability to provide real-time insights. Also, identifying failures due to non-manufacturing issues require meticulous physical inspections and historical data reviews, which are not always accurate or timely. Telematics or Connected cars technology being one of the major technological innovations in recent times revolutionizes these processes by enabling real-time data exchange between vehicles and external systems. The current study presents an innovative approach to utilizing telematics data for real-time monitoring of vehicle emissions and pinpointing Catalytic converter failures by analyzing vehicle
Dev, TriyambakPrasad, Kakaraparti AgamKalkur, VarunModak, SaikatAGARWAL, ShashankChandra, AnimeshPaul, VarshaGarg, AmitSundararaman, VenkataramanBose, Sushant
There is continuous push from the legislation for stringent fuel economy and emission regulations while the modern customers are demanding more engaging driving experience in terms of performance and refinement. To meet this Tata Motors has developed an advanced 1.2L 3-cylinder turbocharged gasoline direct injection engine. This next-generation powertrain delivers optimum efficiency, reduced emissions, superior performance with refined NVH characteristics. The key features used to enable these demanding requirements includes a 35 MPa fuel injection system, Miller Cycle operation and electrically actuated variable nozzel turbocharger (VNT). A uniquely designed BSVI complaint (WLTP ready) exhaust after-treatment system with Four-Way Conversion Catalyst (FWC+TM) ensures optimum emission control. A centrally mounted variable cam phaser minimizes pumping losses. The lightweight yet rigid all-aluminum engine structure, featuring an integrated structural oil sump, enhances durability and
Hosur, ViswanathaGhadge, Ganesh NarayanJoshi, ManojJadhav, AashishPanwar, Anupam
Hydrogen Internal Combustion Engine (HICE) has the promise of zero carbon solution for the mobility industry. The key beneficiary would be the medium and heavy-duty segment of transportation which are likely to adapt the battery electric or fuel cell electric solution in longer term. This particular segment of engines need high low end torque, peak torque and rated power which cannot be compromised. Additionally, a competitive thermal efficiency w.r.t diesel engines would be advantageous. Direct Injection (DI) of hydrogen gives higher specific power and thermal efficiency as compared to Port Fuel Injection (PFI). This study focuses on the performance characteristics of these technology routes to aid in the HICE development process. Current work involves the use of 1-D thermodynamic simulation using GT-SUITE for modeling the performance of HICE. Both predictive and non-predictive methodologies of modeling the combustion were employed. Initially, the model validation of the PFI engine
Parthiban R, VarunKarthikeyan, K RNarayana Reddy, JParamasivam, PrakashManjunath, MKumar D, KishoreN R, VaratharajSuresh, KG, Yogesh BolarSadagopan, KrishnanPandey, Sunil Kumar
The integration of hydrogen (H2) as a fuel source in internal combustion engines (ICE) necessitates stringent design measures to mitigate leakage risks and ensure operational safety. This study focuses on the design optimization of vanity cover for hydrogen engines. Computational fluid dynamics (CFD) analysis is carried out to assess and control hydrogen leakage through fuel rail connections, injector interfaces and associated high pressure fuel system components. Detailed modelling of hydrogen flow behavior, diffusion characteristics of leaked hydrogen are simulated for worst case scenarios. Design iterations targeted improvement in ventilation pathways, strategic placement of vent holes, and internal flow management to minimize localized hydrogen buildup. The final design achieved hydrogen concentration, which was less than 4% satisfying the Product safety Hazard Analysis (PSHA) threshold for hydrogen engines. This paper validates the critical role of CFD driven design methodology in
Veerbhadra, Swati AshvinkumarSahu, Abhay KumarSingh, Rahul
Items per page:
1 – 50 of 7224