Browse Topic: Fuel systems
This document recommends and sets forth a set of symbols representing the components making up aircraft fuel and oil systems. The intended result is uniformity in system schematics so that they may be easily understood throughout the aerospace industry.
India’s commitment to carbon neutrality is significantly shaping the future architecture of commercial vehicle powertrains. While the use of CO₂-free technologies such as battery-electric drivetrains has already been successfully demonstrated across various applications, challenges related to limited range and the lack of high-power charging infrastructure continue to hinder widespread adoption, particularly for productivity-critical commercial vehicles. This has shifted the spotlight toward sustainable fuels, which offer the advantage of fast refueling times. Among these, hydrogen internal combustion engines (H₂ ICE) have gained increasing attention in recent years. In regions such as the European Union, the primary motivation for hydrogen is CO₂ reduction. In contrast, for markets like India, hydrogen also presents a strategic opportunity for reducing dependency on fossil fuel imports. Over the past four years, multiple performance and emission development projects across various H
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
This paper presents an analysis of the Indian patent landscape concerning alternative fuels, with a specific focus on hydrogen fuel cells and hydrogen internal combustion engines (H2 ICEs). The study aims to provide insights into the innovation trends, key players, white spaces and technological advancements, in this evolving sector within the Indian context. The study is based on the granted patents and disclosures in the said area, and also focuses on the key problems and solutions. Based on a review of patent publications from January 2024 to March 2025, it was observed that a significant number of patent records pertain to the broader domain of hydrogen internal combustion engine disclosures. Specifically, 540 extended families patent publications were screened focusing on hydrogen internal combustion engine as a domain of disclosure. Further analysis revealed that greater 75 % of applicants were from the industry sector, indicating a strong commercial interest in these
When the flow of fluid within a high-pressure line is abruptly halted, pressure pulsations are generated. This phenomenon is known as the water hammer effect. This may lead to significant stress and, in the worst-case scenario, results in various types of failures within the highly pressurized system. Similar issues are observed in diesel high pressure fuel line where pressure is well above 1600 bar. Due to multiple injections on-off events, pressure pulsation gets created inside high pressure fuel lines (HPFL) which leads to problems such as high strain on high pressure fuel lines, mechanical damage, uneven fuel injected quantity, vibration beyond specification limits for rail pressure sensors or in worst case extreme noise. This is due to high pressure pulsation which occurs when fluid/fuel natural frequency resonates with structural HPFL natural frequency. In this work, A comparative FEA analysis is conducted to evaluate strain in two distinct high-pressure fuel lines, with pressure
The integration of hydrogen (H2) as a fuel source in internal combustion engines (ICE) necessitates stringent design measures to mitigate leakage risks and ensure operational safety. This study focuses on the design optimization of vanity cover for hydrogen engines. Computational fluid dynamics (CFD) analysis is carried out to assess and control hydrogen leakage through fuel rail connections, injector interfaces and associated high pressure fuel system components. Detailed modelling of hydrogen flow behavior, diffusion characteristics of leaked hydrogen are simulated for worst case scenarios. Design iterations targeted improvement in ventilation pathways, strategic placement of vent holes, and internal flow management to minimize localized hydrogen buildup. The final design achieved hydrogen concentration, which was less than 4% satisfying the Product safety Hazard Analysis (PSHA) threshold for hydrogen engines. This paper validates the critical role of CFD driven design methodology in
Items per page:
50
1 – 50 of 7224