Browse Topic: Fuel filters

Items (241)
ABSTRACT Fuel filters used to remove particulates from liquids are evaluated by OEM’s and filter manufacturers using standardized test protocols that specify simplified conditions that aid in laboratory reproducibility. These test results do not always translate into actual filter performance in application. In military vehicles that experience frequent demands for rapid acceleration and deceleration and extreme vibration, the importance of evaluating fluid filtration performance with these parameters as inputs is significant. This paper discusses an investigation of the performance sensitivity of a diesel particulate filter to structural vibration properties and flow rate fluctuation. After determination of this sensitivity to dynamic inputs, a new test protocol was developed for evaluating competitive fuel filters. The cyclic flow and mechanical vibration inputs for the new protocol were selected to be representative of those that would be seen in a heavy duty diesel application
Hollingsworth, LarryWostarek, PeterExposito, Christian
In recent years, deposit formation in fuel systems for heavy-duty engines, using drop-in fuels, have become increasingly common. Drop-in fuels are particularly appealing because they are compatible with existing engines, allowing for higher proportions of alternative fuels to be blended with conventional fuels. However, the precipitation of insoluble substances from drop-in fuels can result in fuel filter clogging and the formation of internal injector deposits, leading to higher fuel consumption and issues with engine drivability. The precise reasons behind the formation of these deposits in the fuel system remain unclear, with factors such as operating conditions, fuel quality, and fuel contamination all suggested as potential contributors. In order to reproduce and study the formation of internal injector deposits, for heavy-duty engines under controlled conditions and to facilitate a more precise comparison to field trials, a novel injector test rig has been developed. This newly
Pach, MayteHittig, HenrikTheveny, ArnaudKusar, HenrikHruby, Sarah
The evolution of materials technology has provided in recent decades the replacement of the raw material of many parts made of metal by polymers, carbon fibers, ceramics, and composite materials. This process has been driven by the permanent need to reduce weight and costs, which, even after replacing raw materials, still demand permanent improvement and optimization in the sizing process and in the manufacturing process. In the automotive industry, many components have been replaced by fiber-reinforced polymers, from finishing parts to structural components that are highly mechanically stressed and often also subjected to high temperatures. Although they are lighter and have a lower final cost than conventional metallic parts, components made of fiber-reinforced polymers bring great technological challenges to the development project. Within this context, computational modeling is an indispensable ally for obtaining a product capable of meeting the severe conditions required for its
Bueno, Estela Mari RicettiHiga, ArmandoBazaneli, José Augusto
This SAE Standard is intended for all sizes of fuel filters, so a variety of test stands may be required depending upon flow rate. The low contamination level, downstream clean-up filter, and short duration of the test ensure that the particle retention ability of the filter is measured in a single pass, as no appreciable loading or regression will occur
Filter Test Methods Standards Committee
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors. The
Pach, MayteHittig, HenrikCouval, RomainKusar, HenrikEngvall, Klas
There are many anthropogenic climate change mitigation strategies being adopted worldwide. One of these is the adoption of biodiesel FAME (Fatty Acid Methyl Ester), in transportation. The fuel has been widely promoted as replacement for petroleum diesel because of its potential benefits for life cycle greenhouse gas emissions, carbon dioxide reduction and particulate matter improvements. Presently biodiesel may be made from a wide variety of starting materials, including food waste and agricultural materials such as vegetable oils and greases. The number and variety of possible starting materials continues to increase. Though, there is a limiting factor in the use of FAME, and that is cold weather operability. The regional climate can often influence FAME adoption with resultant economic and environmental implications. Often this cold temperature operability manifests itself as in vehicle fuel filter blocking. Several analytical protocols have been produced over the last few years to
Barker, JamesReid, JaquelineWilmot, EdwardCarter, AnastarsiaLangley, JohnHerniman, Julie
The formation of deposits in the fuel systems of heavy-duty engines, using drop-in fuels, has been reported in recent years. Drop-in fuels are of interest because they allow higher levels of alternative fuels to be blended with conventional fuels that are compatible with today’s engines. The precipitation of insolubles in the drop-in fuel can lead to clogging of fuel filters and internal injector deposits, resulting in increased fuel consumption and engine drivability problems. The possible mechanisms for the formation of the deposits in the fuel system are not yet fully understood. Several explanations such as operating conditions, fuel quality and contamination have been reported. To investigate injector deposit formation, several screening laboratory test methods have been developed to avoid the use of more costly and complex engine testing. To further evaluate and understand the formation of internal injector deposits in heavy-duty engines, a thermal laboratory test method has been
Pach, MayteHittig, HenrikScholle, TobiasKusar, HenrikEngvall, Klas
This SAE Standard establishes a uniform test procedure and performance requirements for permanently installed petrol fuel systems in personal watercraft. This SAE Standard does not apply to outboard powered personal watercraft and jet powered surfboards
Personal Watercraft Committee
It is widely known that different factors, such as cold properties of a fuel as well as a vehicle design, affect the cold operability limit of vehicles. In this study, the aim was to get a better understanding of the properties of modern Light Duty Diesel (LDD) vehicles (2014-2020) that define their cold operability temperature limit. Moreover, the aim was to find out what a responsible fuel producer can do, in addition to providing a proper fuel that meets the specification, to ensure that a vehicle stays operable at cold temperatures. Similar study was done 10 years ago by Neste with the LDD vehicles of that time [1]. Therefore there was a need to update the info to concern the modern LDD vehicles. In this study the operability limit difference between the worst and the best operating LDD vehicle was >10°C (nbr of LDD vehicles = 5) with the same fuel. The limits were determined in a cold chamber using a chassis dynamometer. This operability variance indicates a significant effect of
Kari, EetuLehto, KalleKiiski, Ulla
One way to reduce carbon dioxide emissions from the current heavy-duty vehicles fleet is to replace fossil fuel with renewable fuel. This can be done by blending so-called drop-in fuels into the standard diesel fuel. However, problems such as insoluble impurities may arise when the fuels are mixed. These precipitates, known as soft particles, can cause deposits in the fuel system, e.g., injectors and fuel filters, reducing the engine´s performance. The most used drop-in fuel today is biodiesel which, is blended with different concentrations. To better understand how soft particles are formed in the vehicle´s fuel system, the degradation of biodiesel blends in the engine has been investigated. This study explores biodiesel blends´ degradation process by comparing the incoming fuel with the return fuel from a modern diesel engine to investigate how the fuel is affected by this process. The engine was run using different blends of biodiesel fuel. To investigate the degradation of the
Pach, MayteHittig, HenrikRamden, AlidaBernemyr, Hanna
This document describes the initial development, evolution, and use of reticulated polyurethane foam as an explosion suppression material in fuel tanks and dry bays. It provides historical data, design practice guidelines, references, laboratory test data, and service data gained from past experience. The products discussed in this document may be referred to as "Safety Foam," "Reticulated Polyurethane Foam," "Baffle and Inerting Material," or "Electrostatic Suppression Material." These generic terms for the products discussed in this document are not meant to imply any safety warranty. Each individual design application should be thoroughly proof tested prior to production installation
AE-5D Fuel Tank Flammability Reduction Systems Committee
The components of fuel supply system of a methanol fuelled spark ignition engine come in direct contact with the fuel. Corrosive nature of methanol affects the material properties. The present study deals with the compatibility of various materials of the fuel supply system including elastomers (nitrile, polyvinyl chloride (PVC) nitrile, chloroprene, natural rubber and ethylene-propylene-diene monomer (EPDM)), aluminium and fuel filter (outer tin coated circular plate and paper) with methanol. The specimens of the parts of the fuel supply system were immersed in methanol for a period of ninety days under atmospheric conditions. The properties of the specimens such as physical changes using scanning electron microscope (SEM) image of the surfaces and mechanical properties including tensile strength and strain at break were studied. It was observed from the images that the coating over the circular plate of fuel filter eroded while elastomers developed a whitish coat on their surface
Nidhi, NidhiSubramanian, K.A.
Heavy-duty transportation accounts for significant part of the greenhouse gas emissions. Currently the most common powertrain for long-haul trucks is compression-ignited engines. In order to reduce the greenhouse gas emissions of these engines, renewable fuels, such as biodiesel can be used. Today biodiesel is used as a drop-in fuel, however when biodiesel is mixed with conventional diesel, soft particles may form. Soft particles have been identified as a mixture of insoluble impurities and degradation products in the fuel. These soft particles can lead to deposits in the injection and fuel filtration system, leading to reduced engine performance. In this paper, zinc-neodecanoate and soft particles from the degradation of biodiesel is studied. In both cases, the emphasis is on soap type contaminants. Zinc-neodecanoate has shown to lead to nozzle fouling, while soft particles from degradation of biodiesel have been found in diesel fuel filters. This study examines four different type of
Csontos, BotondShinkhede, SaurabhBernemyr, HannaPach, MayteHittig, Henrik
The transportation industry is currently in a transition toward the use of zero-emission vehicles; however, reaching it will take a considerable amount of time. In the meantime, a diesel powertrain will remain the workhorse for most heavy-duty transportation. In order to reduce the engine’s environmental impact, biofuels, such as biodiesel, are used as drop-in fuels or fuel blends. The use of drop-in fuels may create challenges for the fuel system since sticky deposits can precipitate and cause injector malfunctioning or premature fuel filter plugging. It has been concluded in the past that these deposits have been caused by soft particles. In this article, soft particles created through the degradation of biodiesel and their effect on filters are studied. The article aims to analyze fuel filters and investigate the materials responsible for soft particle separation. The study includes three pre filters and three main filters that are commercially available truck filters. Different
Csontos, BotondBernemyr, HannaPach, MayteHittig, Henrik
This SAE Aerospace Information Report (AIR) reviews performance testing parameters for fuel filter elements utilized in gas turbine engine and APU main fuel systems. The scope is limited to main fuel filter elements rated at 35 μm(c), or finer, which constitute the majority of contemporary engine main fuel system filtration. This document does not address icing tests specific to fuel filter elements since they are only required for certain engine designs and are custom test procedures. General information on icing tests for aircraft fuel system components can be found in ARP1401. This document also does not address fuel filter elements utilized in fuel hydraulic systems since it is outside the scope of this document, This document is confined to laboratory testing of filter element performance to qualify the filtration medium and filter element construction as opposed to qualification of the complete fuel filter assembly. The testing discussed here is usually followed by laboratory and
AE-5B Aircraft and Engine Fuel and Lubricant Sys Components
Fuel filter’s precise sizing and specification have been challenging with a Diesel engine, considering the severe operating environment and conditions, especially for off-road applications like agriculture, construction, road-making equipment, etc. The scenario further worsens in countries having the worst fuel cleanliness level (beyond 23/22/19 as per ISO-4406), improper storage, handling, and transportation of fuel. In an attempt to be on the safer side, automotive and fuel filter manufacturers prefer to over-design fuel filters - this resulting in cost addition of product and service and high warranty of the Fuel Injection system if fuel filters are under-designed. Factors and variables affecting fuel filtration efficiency over service and engine life have not been clearly known. Inefficient fuel filtration leads to Fuel injection systems’ premature failure, especially critical injectors’ internal parts, like nozzle, needle valve, and control valve, thus directly impacting engine
Khan, Mohammad SaifullahM Patil, Krishnat
The correct setting and adjustment of fuel injection pumps requires standardized testing conditions. This SAE Standard summarizes the design and operating parameters for test benches so that, using certain information supplied by the pump manufacturer, the pump test schedule, and certain information supplied by the test bench manufacturer, it can be determined whether a particular test bench is suitable for driving a particular injection pump. This document is in most cases a summary of the ISO Standard 4008, Parts 1, 2, and 3 and is intended to provide its critical aspects. Standard ISO 4008 should be referred to for more details
Diesel Fuel Injection Equipment Standards Committee
This SAE Aerospace Information Report (AIR) provides technical information to assist the development of specific cleaning methods for those filter elements which are designated as "cleanable" and cannot be cleaned by simple and obvious procedures
A-6C1 Fluids and Contamination Control Committee
In order to mitigate the effect of fossil fuels on global warming, biodiesel is used as drop in fuel. However, in the mixture of biodiesel and diesel, soft particles may form. These soft particles are organic compounds, which can originate from the production and degradation of biodiesel. Further when fuel is mixed with unwanted contaminants such as engine oil the amount soft particles can increase. The presence of these particles can cause malfunction in the fuel system of the engine, such as nozzle fouling, internal diesel injector deposits (IDID) or fuel filter plugging. Soft particles and the mechanism of their formation is curtail to understand in order to study and prevent their effects on the fuel system. This paper focuses on one type of soft particles, which are metal soaps. More precisely on the role of the short chain fatty acids (SCFA) during their formation. In order to do so, aged and unaged B10 was studied. The fuel matrixes were mixed with a calcium source such as
Csontos, BotondFiorenza, Roberta MariaPach, MayteHittig, HenrikBernemyr, HannaErlandsson, Anders
Ice formation in aircraft fuel systems results from the presence of dissolved and undissolved water in the fuel. Dissolved water or water in solution with hydrocarbon fuels constitutes a relatively small part of the total water potential in a particular system with the quantity dissolved being primarily dependent on the fuel temperature and the water solubility characteristics of the fuel. One condition of undissolved water is entrained water, such as water particles suspended in the fuel as a result of mechanical agitation of free water or conversion of dissolved water through temperature reduction. This can be considered as analogous to an emulsion state. Another condition of undissolved water is free water which may be introduced as a result of refueling or the settling of entrained water which collects at the bottom of a fuel tank in easily detectable quantities separated by a continuous interface from the fuel above. Water may also be introduced as a result of condensation from
AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
Biofuel can enable a sustainable transport solution and lower greenhouse gas emissions compared to standard fuels. This study focuses on biodiesel, implemented in the easiest way as drop in fuel. When mixing biodiesel into diesel one can run into problems with solubility causing contaminants precipitating out as insolubilities. These insolubilities, also called soft particles, can cause problems such as internal injector deposits and nozzle fouling. One way to overcome the problem of soft particles is by filtration. It is thus of great interest to be able to quantify fuel filters’ ability to intercept soft particles. The aim of this study is to test different fuel filters for heavy-duty engines and their ability to filter out synthetic soft particles. A custom-built fuel filter rig is presented, together with some of its general design requirements. For evaluation of the efficiency of the filters, fuel samples were taken before and after the filters. The fuel samples were analyzed with
Csontos, BotondHittig, HenrikPach, MayteBernemyr, HannaErlandsson, Anders
This SAE Recommended Practice is applicable to gasoline and diesel fuel filters installed on fuel dispensing equipment, mobile or stationary. It describes a set of tests used to characterize the structural integrity, filtration performance, and reaction to water contaminant with fuel dispensing filters
Filter Test Methods Standards Committee
Renewable fuels have an important role to create sustainable energy systems. In this paper the focus is on biodiesel, which is produced from vegetable oils or animal fats. Today biodiesel is mostly used as a drop-in fuel, mixed into conventional diesel fuels to reduce their environmental impact. Low quality drop-in fuel can lead to deposits throughout the fuel systems of heavy duty vehicles. In a previous study fuel filters from the field were collected and analyzed with the objective to determine the main components responsible for fuel filter plugging. The identified compounds were constituents of soft particles. In the current study, the focus was on metal carboxylates since these have been found to be one of the components of the soft particles and associated with other engine malfunctions as well. Hence the measurement of metal carboxylates in the fuel is important for future studies regarding the fuel’s effect on engines. The first aim of this study was to create synthetic soft
Csontos, BotondSwarga, ShriharshaBernemyr, HannaPach, MayteHittig, Henrik
Biofuels are expanding continuously in global market as one of renewable options to replace fossil fuels. Biodiesel is the most commonly used biofuel that can be blended into conventional diesels in any proportion. However, higher biodiesel blends may cause problems. One of its problems is precipitation formation arise from biodiesel may clog fuel filter at low temperature. This study focuses on fuel and environment factors on biodiesel precipitation and their influence degree on fuel filter clogging. The results indicate that monoglycerides and temperature have strong correlation with precipitate weight. Moreover, quantitative effect of precipitate weight on filter clogging was clarified
Suwannamit, SareewanNgammoh, JaratpongFunahashi, MinoruTasaki, MamoruKrissanasaeranee, MethiraPorntangjitlikit, SuriyaSilapakampeerapap, SupapWuttimongkolchai, ArunrattChiampradit, Nitiwat
This document describes the major design drivers and considerations when designing a fuel system for a large commercial aircraft. It discusses the design at a system/aircraft level, and is not intended as a design manual for individual system components, though it does refer out to other SAE specifications where more detail on specific components and sub-systems is given. It does include examples of a number of calculations associated with sizing of fuel systems, based on those given in NAV-AIR-06-5-504, as well as an appendix summarizing basic fluid mechanical equations which are key for fuel system design. It is acknowledged that most of these calculations would today be performed by modelling tools, rather than by hand, but it is considered important for the designer to understand the principles. It is intended that later issues of this document will include appendices which give specific considerations for military aircraft, smaller commercial aircraft, and rotorcraft
AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
Bio diesel is one of the most promising fuel which can not only replace the conventional fuels but also environment friendly in terms of Greenhouse gases emission. Adaptation of Bio diesel comes with reduced maintainability and high maintenance cost. Blends of biodiesel and conventional diesel are most commonly used in automotive diesel engines. Biodiesel is most popular choice as an alternate fuel of fossil diesel due to its easy availability, eco-friendly nature and minimum change in existing diesel engine for retro fitment. In this paper efforts have been taken to optimize the life of Fuel filter for bio diesel application. For improving Fuel filter life, modifications carried out in Fuel filter media, size and configuration. Further, Fuel filter tested on Engine test bed and Vehicle to establish the life of filter in real world usage condition. Testing Results were compared with existing diesel fuel filter
Soni, GauravBhargava, AashishGavade, Sujit
This SAE Surface Vehicle Recommended Practice deals with electrostatic charge phenomena that may occur in automotive fuel systems and applies to the following: Fuels that are in a liquid state at ambient temperatures and atmospheric pressures and are contained in vehicle fuel tanks that operate at or near atmospheric pressure. This includes gasoline and diesel fuels, as well as their blends with additives such as alcohols, esters, and ethers, whether the additives are petroleum based or bio-fuel based. The group of components that comprise the fuel system (in contact and not in contact with fuels). Other components in proximity to the fuel system that may be affected by electrostatic fields caused by the fuel system. Electrostatic phenomena that arise from, or are affected by, the following aspects of vehicle or fuel system operation: ○ Flowing fuel in the fuel delivery system. ○ Flowing fuel being dispensed to the vehicle while it is being fueled
Fuel Systems Standards Committee
Fuel filters serve as a safety belt for modern compression ignition engines. To meet the requirements from environmental regulations these engines use the common rail injection system, which is highly susceptible to contamination from the fuel. Furthermore, the public awareness towards global warming is raising the need for renewable fuels such as biodiesel. An increased fuel variety brings a higher requirement for fuel filters as well. To better understand the process of filtration, awareness of the different possible contaminants from the field is needed. This study used several chemical characterization techniques to examine the deposits from plugged fuel filters collected from the field. The vehicle was run with a biodiesel blend available on the market. The characterization techniques included X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR) joined with attenuated total reflectance (ATR) sampling, gas chromatography-mass spectrometry (GC-MS), and lastly
Csontos, BotondBernemyr, HannaErlandsson, Anders ChristiansenForsberg, OscarPach, MayteHittig, Henrik
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls, as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means
Fuel Systems Standards Committee
This SAE Aerospace Recommended Practice (ARP) provides general information on the design and installation of threaded fasteners in high strength and high temperature applications in propulsion systems. Some of the more common definitions of fastener terminology are also provided
E-25 General Standards for Aerospace and Propulsion Systems
In recent years, there has been an impetus in the automotive industry to develop newer diesel injection systems with a view to reducing fuel consumption and emissions. This development has led to hardware capable of higher pressures, typically up to 2500 bar. An increase in pressure will result in a corresponding increase in fuel temperature after compression with studies showing changes in fuel temperatures of up to 150 °C in 1000-2500 bar injection systems. Until recently, the addition of Fatty Acid Methyl Esters, FAME, to diesel had been blamed for a number of fuel system durability issues such as injector deposits and fuel filter blocking. Despite a growing acceptance within the automotive and petrochemical industries that FAME is not solely to blame for diesel instability, there is a lack of published literature in the area, with many studies still focusing on FAME oxidation to explain deposit formation and hardware durability. The majority of studies into diesel degradation are
Gopalan, KesavanChuck, Christopher J.Roy-Smith, ChristopherBannister, Christopher D.
Renewable fuels are essential in the field of heavy duty transportation if we are to reach a fossil-free society in the foreseeable future. However renewable diesel fuels based on fatty acid methyl ester (FAME) might face problems with degradation and with cold flow properties. From the perspective of an engine, this may cause problems in the fuel injection system, such as fuel filter clogging and injector deposits. These phenomena, especially fuel filter clogging, can be connected to gel-like soft particles, which could originate from degradation products as well as from byproducts created during biodiesel refining. In this study, soft particles from the degradation of bio-based diesel fuel were examined. The tested fuels included hydrogenated vegetable oils (HVO), rapeseed methyl ester (RME) and 10% blend of rapeseed methyl ester with standard diesel (B10). To test their potential to increase the formation of soft particles, contaminants such as water, metals and engine oil were
Csontos, BotondAlim, RichardBernemyr, HannaHittig, HenrikPach, Mayte
This SAE Aerospace Information Report (AIR) is limited to the subject of compatibility of wiring as part of aircraft Electrical Wiring and Interconnect Systems (EWIS) installed in and around aircraft fuel tanks
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
Over the years during which fluid filtration systems have been developing, many terms have come into use for descriptions of characteristics of filter media, filter assemblies, test methods, and test materials. Inevitably, some terms have been applied loosely, so that the same term may have different meaning to different people, or in different frames of reference. Recognizing the need for clearly defined terms, which can have only one meaning for all persons in all circumstances, so that documents dealing with standard methods of evaluation of filters will have only one interpretation, the Filter Test methods Subcommittee of the SAE Engine Committee has compiled this Glossary of related terms. No attempt has been made to produce an all-inclusive document, containing definitions of all terms related to all types of fluid filters. Instead, the Glossary is confined to the terms likely to be encountered in relation to filters for lubricating oil and fuels. At the same time, we have
Filter Test Methods Standards Committee
This SAE Aerospace Recommended Practice (ARP) provides general information on the design and installation of threaded fasteners in high strength and high temperature applications in propulsion systems. Some of the more common definitions of fastener terminology are also provided
E-25 General Standards for Aerospace and Propulsion Systems
Engines have well lubricated metallic moving parts protected by oil films. Microscopic airborne particles can easily break down the oil film and change the tight working tolerances of operating components of an engine. In addition to the above requirement, a modern diesel engine requires a highly precise injection system to meet stringent emission norms and it requires an average of 15,000 L of air per unit fuel consumed. Meticulous filtration is key to ensure purity of air and fuel available to engine. A Polyacrylonitrile based nanofiber synthesized using electro-spinning process is an alternative to conventional cellulose media filters. A Scanning Electron Microscope image is analyzed to obtain the fiber diameter and a 2-D modeling is done using this image data. The trend of developing miniaturized model in filtration application and analysis using computational fluid dynamics has limited research till now. The objectives of the paper are to analyze variation of pressure drop and
Malviya, Rajat MalviyaPuthumana, BalasankarHari, Aravind
This SAE Recommended Practice provides guidance for the construction, operation, and maintenance of CNG powered medium and heavy-duty trucks. The intent of this document is to cover TRUCKS (6350 kg (14 001 gvw pounds) and above) and specifically excludes passenger vehicles such as: buses, recreational vehicles, motor homes and/or passenger vehicles which may incorporate a truck chassis in their construction
Truck and Bus Powertrain Committee
This SAE Aerospace Information Report (AIR) is intended as a guide toward standardization of descriptions and specifications of fluid contamination products
AE-5B Aircraft and Engine Fuel and Lubricant Sys Components
Oxygenated fuels like biodiesel and ethanol possess prominent characteristics as an alternative fuel for diesel engines. However, these fuels are corrosive in nature and hygroscopic. This might results in material incompatibility with the fuel supply system of an automobile. The filter consists of a filter membrane that that traps the contaminants from the fuel and prevents them from entering into the combustion chamber. The operational hours of the filter membrane depend on the quality of fuel employed. The conventional filter is designed for fossil diesel operation and hence the filter life might degrade earlier in the case of oxygenated fuels like biodiesel or ethanol. The proposed work focuses on the impact of oxygenated fuels, viz. karanja and ethanol blended karanja biodiesel on the filter membrane and its flow characteristics. Two tests, pressure difference and contaminant retention test are carried out in accordance with Japanese standard D1617:1998. The experimental setup
Parashar, AnantJeyaseelan, Thangaraja
This SAE Standard defines the requirements for fluid to be used in the SAE Fuel Filter Test Procedures
Filter Test Methods Standards Committee
PSA Group, SOLVAY and SOGEFI have teamed-up to produce the first Plastic Diesel Fuel Filter fully made of recycled polyamide 66, ready for mass-production. This has been achieved by using the brand new plastic compound developed by SOLVAY Engineering Plastics. This material is 100% recycled from airbag wastes, providing a premium material able to stand demanding applications requirements supplied through circular economy, which is quite unusual in automotive industry yet. SOGEFI has used this material through its existing plastic injection process, and tested the parts on extensive bench validation tests. It confirmed that this material is fully compatible with standard injection process, and that all the tests have been passed successfully. Finally, PSA Group has driven the choice of the tested parts: DV engine 1.6l Euro6b application, homologated the material grade and evaluated the whole validation process. A Life Cycle Analysis has been conducted also, demonstrating the benefits
Arnault, NicolasBatailley, NicolasMaria, ArnaudBechu, Laurent
Biodiesel contains a variety of compounds, depending on the production and the provenance of the fuel. During the production process and usage, some of these compounds can form deposits (nozzle tip deposits or internal diesel injector deposits: “IDID”), which may lead to severe problems, such as corrosion, filter blockage and other technical issues. To deal with these difficulties, it is essential to exactly determine the components of these deposits. Most analytical methods used before, require complex preparations and result in limited information of the deposit material. Using infrared microscopy (ATR-FTIR: Attenuated-Total-Reflection Fourier-Transform-Infrared-Spectroscopy) or mass spectrometry (TOF-SIMS: Time-of-Flight Secondary-Ion-Mass-Spectrometry), a direct analysis of the original deposit material is possible. In order to analyze the chemical composition of the deposits, samples were taken from affected engine parts and filling stations and examined with a TOF-SIMS instrument
Feld, HerbertOberender, Nadine
The use of biodiesel has risen worldwide in the last decade. Different countries use different biodiesel feedstocks which will depend on the resources available locally. Some problems due to biodiesel content and feedstock quality have been pointed out in the literature, which include cold flow properties issues of several methyl esters, especially Palm Methyl Ester (PME). The present work was carried out on diesel-biodiesel blends from 0 to 30%v/vPME in order to evaluate the impact of crystals formation on fuel filter plugging using a rig test. The fuel was maintained at 5°C and 20°C during soaking. The crystal particles formation was evaluated by the Turbiscan™ technique (based on multiple light scattering with near infra-red light), followed by particles mass weight determination by filtration. The fuel was then evaluated in the test rig until performances degradation in terms of fuel flow rate and filter pressure drop. Results show particles formation and aggregation during soaking
Alves Fortunato, MairaMouret, AurelieDalmazzone, ChrsitineStarck, Laurie
This document describes the initial development, evolution, and use of reticulated polyurethane foam as an explosion suppression material in fuel tanks and dry bays. It provides historical data, design practice guidelines, references, laboratory test data, and service data gained from past experience. The products discussed in this document may be referred to as "Safety Foam," "Reticulated Polyurethane Foam," "Baffle and Inerting Material," or "Electrostatic Suppression Material." These generic terms for the products discussed in this document are not meant to imply any safety warranty. Each individual design application should be thoroughly proof tested prior to production installation
AE-5D Fuel Tank Flammability Reduction Systems Committee
The correct setting and adjustment of fuel injection pumps requires standardized testing conditions. This SAE Standard summarizes the design and operating parameters for test benches so that, using certain information supplied by the pump manufacturer, the pump test schedule, and certain information supplied by the test bench manufacturer, it can be determined whether a particular test bench is suitable for driving a particular injection pump. This document is in most cases a summary of the ISO Standard 4008, Parts 1, 2, and 3 and is intended to provide its critical aspects. Standard ISO 4008 should be referred to for more details
Diesel Fuel Injection Equipment Standards Committee
Items per page:
1 – 50 of 241