Browse Topic: Fuel tanks
Yamaha Motor Engineering Co., Ltd. provides plastic processing technology based on fuel tank press forming technology, and is developing various plastic processing methods, including forging, and developing mold equipment to realize them. This time, the core parts of the YECVT unit mounted on Yamaha Motor Co., Ltd.'s small premium scooter "NMAX" were not made by welding individual parts to each other, but by integrally forming them from a single thick plate using the cold forming method, resulting in lightweight, compact, high-strength, high-precision parts. By incorporating a composite plastic processing method that takes advantage of the characteristics of the material while making full use of analysis technology and mold technology, we were able to develop a composite plastic processing method (plate forging method) that creates new added value and mass produce it. In addition,this development has made it possible to achieve a thickness increase of 1.7 times the standard material
As an important bridge connecting cities and rural areas, highway transportation has an irreplaceable role in regional economic development [1]. Accompanied by the booming development of long-distance transportation industry, strengthening highway transportation is of great significance to improve people's living standards [2], but because of the special characteristics of truck transportation, fuel theft is frequent, seriously endangering the driver's life and the safety of goods transportation, although the police in the severe crackdown, but fuel theft seems to be in addition to inexhaustible, truck drivers lose oil incidents still occur from time to time, due to the increasingly serious energy problems, the world's countries have Due to the increasingly serious energy problems, countries around the world have formulated strict automotive fuel consumption rate (hereinafter referred to as fuel consumption) regulations [3], in the transportation process to prevent fuel theft is of
This SAE Aerospace Information Report (AIR) is limited to the subject of compatibility of wiring as part of aircraft Electrical Wiring and Interconnect Systems (EWIS) installed in and around aircraft fuel tanks.
This SAE Aerospace Information Report (AIR) includes general information about the various types and styles of flexible tanks and the tank-mounted fittings that adapt the tank to the surrounding structure and fluid-system plumbing. Recommendations are given relative to the dimensional layout of the tank when these recommendations serve to avoid tank fabrication problems and tank/structure interface problems. As a part of these recommendations, critical dimensions of plumbing adapter fittings are discussed and recommendations made. Tank manufacturing tolerances are given. Recommendations are made relative to cavity design and preparation to facilitate a reliable installation. The special installation requirements of nonself-sealing, self-sealing, and crash-resistant tanks are discussed. This document is not intended to replace the information or requirements of the military and commercial procurement specifications listed in Section 2. No attempt has been made, except in a very general
This report lists documents that aid and govern the design of aircraft and missile fuel systems. The report lists the military and industry specifications and standards and the most notable design handbooks that are commonly used in fuel system design. Note that only the principle fuel specifications for the U.S. and Europe (Military Specifications, ASTM, and Def Stan) have been included within this report. The specifications and standards section has been divided into two parts: a master list arranged numerically of all industry and military specifications and standards, and a component list that provides a functional breakdown and a cross-reference of these documents. It is intended that this report be a supplement to specifications ARP8615, MIL-F-17874, and JSSG 2009. Revisions and amendments which are correct for the specifications and standards are not listed. The fuel system design handbooks are listed for fuels and for system and component design.
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
This specification establishes requirements for three types of corrosion-preventative coatings for protection of aircraft integral fuel tanks.
This SAE Aerospace Recommended Practice (ARP) covers a brief discussion of the icing problem in aircraft fuel systems and the different means that have been used to test for icing. Fuel preparation and icing test procedures for aircraft fuel systems and components are proposed herein as a recommended practice to be used for fixed wing and rotary-wing aircraft within their operational environment. This ARP mostly addresses aircraft fuel system level testing and provides a means to address the requirements of FAR 14 CFR § 23.951(c), § 25.951(c), § 27.951(c), and § 29.951(c). In the context of this ARP, the engine and the auxiliary power unit (APU) are not considered to be components of the aircraft fuel system. However, some of the methods described in this document can be applied to the engine, APU, and other aircraft (system or component level) icing tests. This revision does not completely address new developments in ice accretion and release resulting from internal flow in tubing
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
This SAE Recommended Practice was developed primarily for passenger car and truck applications, but it may be used in marine, industrial, and similar applications.
This SAE Recommended Practice was developed primarily for passenger car and truck applications, but it may be used in marine, industrial, and similar applications.
Slosh, a phenomenon occurring in a vehicle's tank during movement, significantly contributes to noise and vibration, often exceeding idle levels. Existing methods for evaluating NVH performance of fuel tanks primarily rely on subjective assessment, highlighting the need for a quantifiable approach to address this dynamic noise. This paper introduces a hybrid methodology to standardize the slosh phenomenon by establishing vehicle-level acceleration, braking, and driving profiles. Noise and vibration data capture, combined with defined boundary conditions, categorizes slosh noise into Impact and Roll noise, differentiated by distinct driving profiles and frequency content. Vehicle level performance is then cascaded down to subsystem level. A dedicated test rig is designed that replicates these conditions at the subsystem level where vehicle speed and braking profiles are translated into rig-specific acceleration and deceleration profiles, enabling consistent data capture for correlation
The future of space travel is seemingly changing by the day and a Coventry University academic is doing his bit to stay at the front of the space race.
This specification covers polythioether rubber fuel-resistant sealing compounds supplied as a two-component system that cures at room temperature.
This specification covers a polysulfide sealing compound with low adhesive strength, supplied as a two-component system that cures at room temperature.
This specification covers fuel-resistant polysulfide (T) sealing compounds supplied as a two-component system.
This SAE Recommended Practice is applicable to two- or three-wheel motorcycles intended for highway use. Unless noted, requirements apply to both metallic and nonmetallic tanks. Accessory or aftermarket tanks as well as original equipment tanks are covered.
SS304 is a type of stainless steel that is well-known for its high ductility and resistance to corrosion; as a result, it is typically utilized in a variety of applications, such as the exhaust systems of automobiles and the springs that are used in seatbelts. Because of its qualities, it will eventually be employed in a variety of body parts, including fuel tanks and chassis, among other things. Due to its properties, SS304 is known to be incredibly difficult to machine using conventional methods. Through a wire electrical discharge machining process, it is easier to cut complex materials with high surface finishes. In this study, a study was conducted on the WEDM process parameters of SS304 to optimize its machining process. The study was carried out using the DoE approach, which involved planning the various experiments. The parameters of the process, such as the pulse on time, peak current, and off time, were analyzed to determine their performance. The various performance measures
Magnesium alloy, known for its high strength and lightweight properties, finds widespread utilization in various technical applications. Aerospace applications, such as fuselages and steering columns, are well-suited for their utilization. These materials are frequently employed in automotive components, such as steering wheels and fuel tank lids, due to their notable corrosion resistance. The performance of magnesium alloy components remains unimproved by normal manufacturing methods due to the inherent characteristics of the material. This work introduces a contemporary approach to fabricating complex geometries through the utilization of Wire-Electro Discharge Machining (WEDM). The material utilized in this study was magnesium alloy. The investigation also considered the input parameters associated with the Wire Electrical Discharge Machining (WEDM) process, specifically the pulse duration and peak current. The findings of the study encompassed the material removal rate and surface
This SAE Recommended Practice pertains to liquid level determination for any fluid compartment of off-road work machines as defined in SAE J1116 and ISO 6165.
Mazda, the automaker with the longest and richest history of using the Wankel rotary engine announced that it resumed mass production of rotary engines for a new variant of the MX-30 compact crossover. Mazda provided little detail about the engine itself, which serves as a generator for the MX-30 e-SKYACTIV R-EV, a plug-in hybrid (PHEV) variant of the MX-30 crossover. Mazda hasn't used the unique powerplant for a production vehicle for more than a decade. The MX-30 e-SKYACTIV R-EV employs the rotary engine in a series-hybrid layout to generate electricity to replenish the vehicle's 17.8-kWh lithium-ion battery, which when fully charged, can provide up to 85 km (31 miles) of driving range on Europe's Worldwide Light Vehicle Test Procedure (WLTP) cycle. Gasoline from a 50-L (13.2-gal.) fuel tank supplies the rotary when its operation is required to provide electricity for extended-range driving. In a release, Mazda explained it “positioned it [the rotary engine] on the same axle as a
Considerable amounts of water accumulate in aircraft fuel tanks due to condensation of vapor during flight or directly during fueling with contaminated kerosene. This can result in a misreading of the fuel meters. In certain aircraft types, ice blocks resulting from the low temperatures at high altitude flights or in winter time can even interfere with the nozzles of the fuel supply pipes from the tanks to the engines. Therefore, as part of the maintenance operations, water has to be drained in certain intervals ensuring that no remaining ice is present. In the absence of an established method for determining residual ice blocks inside, the aircraft operator has to wait long enough, in some cases too long, to start the draining procedure, leading potentially to an unnecessary long ground time. A promising technology to determine melting ice uses acoustic signals generated and emitted during ice melting. With acoustic emissions, mainly situated in the ultrasonic frequency range, a very
This SAE Standard establishes a uniform test procedure and performance requirements for the ventilation system(s) of personal watercraft. This SAE Standard does not apply to outboard powered personal watercraft and jet powered surfboards.
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance. JP-8 fuel is recirculated on the airframe to maintain cooling the oil for AMAD
This SAE Standard establishes a uniform test procedure and performance requirements for personal watercraft floatation. This SAE Standard does not apply to outboard powered personal watercraft and jet powered surfboards.
This SAE Standard establishes a uniform test procedure and performance requirements for permanently installed petrol fuel systems in personal watercraft. This SAE Standard does not apply to outboard powered personal watercraft and jet powered surfboards.
This SAE Recommended Practice covers all electrical devices suitable for use in marine engine compartments and fuel tank spaces.
This specification covers polyurethane (PUR) in the form of two-component sealing compounds.
This specification covers fuel-resistant, two-component polysulfide synthetic rubber compounds which cure at room temperature.
This SAE Aerospace Information Report (AIR) is limited to the subject of aircraft fuel systems and the questions concerning the requirements for electrical bonding of the various components of the system as related to Static Electric Charges, Fault Current, Electromagnetic Interference (EMI) and Lightning Strikes (Direct and Indirect Effects). This AIR contains engineering guidelines for the design, installation, testing (measurement) and inspection of electrical bonds.
This SAE Aerospace Information Report (AIR) presents preferred design, assembly, and repair practices for sealing of aircraft integral fuel tanks, including rework of applied fuel tank seals. It addresses engineering designs for integral fuel tanks as they are currently found in practice and discusses the most practical and conservative methods for producing a reliable, sealed system. Although this AIR presents practices for sealing of integral fuel tanks, the practices presented within this report are practices that are carried throughout sealing that include both pressure and environmental aircraft sealing. Design preferences for optimum sealing are not within the scope of this document. Such discussions can be found in the United States Air Force (USAF) sponsored report AFWAL-TR-87-3078, “Aircraft Integral Fuel Tank Design Handbook.” Key objectives of the fuel tank sealing process are to produce a sealing plane that is leak-free and corrosion resistant, especially at fastener
Items per page:
50
1 – 50 of 964