It is emerging the need to take action to reduce the greenhouse effect, which is one of the major causes of climate change and environmental disasters that has been occurring frequently in recent decades throughout the planet. The burning of fossil fuels for electricity and energy generation are the main concerns and those that have greater incentives for its reduction, as its by-product of the reaction of burning CO2, which among the greenhouse gases is primarily responsible for its aggravation.
The transport sector excels in CO2 emissions, emits about 20% of gas, according to the Intergovernmental Panel on Climate Change (IPCC), a scientific organization linked to the United Nations (UN). A promising solution to reduce the impact of this sector would be the use of hydrogen fuel cell, which if carried out through renewable energies, the electrolysis of hydrogen has zero CO2 emission throughout the cycle. However, one of the biggest challenges to make viable the use of hydrogen as fuel is its storage due to its being very volatile in its gaseous form and necessary to be kept at low temperatures in its liquid form.
In this paper we will explain briefly about the generation cycle of the hydrogen cell in its two forms and put into perspective the physical-chemicals for their storage and use together with the technologies currently used and possible future technologies.