Browse Topic: Logistics
Earthmoving machines are equipped with a variety of ground-engaging tools that are joined by bolted connections to improve serviceability. These tools are made from heat-treated materials to enhance their wear resistance. Attachments on earthmoving machines, including buckets, blades, rippers, augers, and grapples, are specifically designed for tasks such as digging, grading, lifting, and breaking. These attachments feature ground-engaging tools (GET), such as cutting bits or teeth, to protect the shovel and other earthmoving implements from wear. Torquing hardened plates of bolted joint components is essential to ensure uniform load distribution and prevent premature failure. Therefore, selecting the proper torque is an important parameter. This study focuses on analyzing various parameters that impact the final torque on the hardened surface, which will help to understand the torque required for specific joints. Several other parameters considered in this study include hardware
Large farms cultivating forage crops for the dairy and livestock sectors require high-quality, dense bales with substantial nutritional value. The storage of hay becomes essential during the colder winter months when grass growth and field conditions are unsuitable for animal grazing. Bale weight serves as a critical parameter for assessing field yields, managing inventory, and facilitating fair trade within the industry. The agricultural sector increasingly demands innovative solutions to enhance efficiency and productivity while minimizing the overhead costs associated with advanced systems. Recent weighing system solutions rely heavily on load cells mounted inside baling machines, adding extra costs, complexity and weight to the equipment. This paper addresses the need to mitigate these issues by implementing an advanced model-based weighing system that operates without the use of load cells, specifically designed for round baler machines. The weighing solution utilizes mathematical
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Producing 3D models of cooling water passages of outboard motors, and calculating distribution of electric potential on the water passage surfaces using BEM, we have developed the new method for simulation of electric potential distribution. The outboard motor is a propulsion system attached to the transom of the boat with steering function. As the water around the boat is drawn in for cooling of the engine, the engine parts are susceptible to severe corrosion. As a means to help prevent corrosion, a part referred to as the anode metal, which has a lower natural potential, is provided. Such a method is called the sacrifice protection because the anode metal corrodes before the engine parts due to the difference of electric potential. Since anti-corrosion currents occur preferentially to areas close to the anode metal, the anode metal is required to be located at the most effective place for corrosion protection. However, there are certain restrictions in the layout of anode metal from
Cargo Routing Problem or Container Allocation Problem is key decision-making challenge in the maritime industry at operational level. Existing research focus on static environment or planning decisions, ignoring the dynamic arrival property of shipping request in practical world. In this paper, we introduced the Online Cargo Routing problem and formulation the path-based models under a space-time network. We proposed an online algorithm under the online primal-dual scheme: re-solving strategy. We further conducted simulation experiments under different demand distributions to demonstrate the performance of the proposed algorithm over the offline baselines.
This study focuses on analyzing the impact of the Francis Scott Key Bridge collapse on traffic flow and the traffic network in Baltimore City. By employing the processing of publicly available datasets, the construction of a traffic network model and a comprehensive scoring method and an improved K-means clustering algorithm based on the idea of the rotational method, the following conclusions have been drawn in this study. First, the bridge collapse significantly changed the distribution of traffic flow. According to the AADT data of 17 key traffic nodes, after the bridge collapse, the AADT of all nodes generally increased except for the nodes closest to the tunnel and bridge. For example, traffic nodes around the city center (e.g., nodes with OSMID numbers 37831627 and 602433660) experienced an increase in AADT, suggesting that traffic flows we Second, the 17 key nodes selected represent the major nodes of the Baltimore City traffic system and provide accurate data to support
The study investigated the fluid dynamics characteristics of a navigational body during emerging from water. It focus on the patterns of pressure and velocity changes in the flow field. Using numerical simulation methods, we explored the fluid-structure interaction between the navigational body and the surrounding water. It revealed the phenomenon of decreasing impact forces on the object’s surface over time and the resulting changes in surface pressure distribution. Additionally, the study demonstrated the dynamic evolution of the velocity field during emergence. This further elucidated the impact of flow state changes on the navigational body’s motion performance and stability. These findings would provide important theoretical foundations and technical support for optimizing the design of navigational bodies.
Items per page:
50
1 – 50 of 6938