Browse Topic: Logistics

Items (7,008)
This study investigates the tribological behaviour of Sesbania rostrata fiber (SRF) reinforced polycaprolactone (PCL) biocomposites using a pin-on-disc wear couple. The stationary SRF/PCL composite specimen interacted with a rotating EN31 steel disc (64 HRC), establishing the sliding wear interface in accordance with ASTM G99 standards. Composite laminates containing 10, 20, and 30 wt% SRF were evaluated at a sliding velocity of 1 m/s over a fixed distance of 1000 m under varying normal loads. The incorporation of SRF significantly enhanced the wear performance relative to neat PCL, with 20 wt% fiber loading achieving the lowest coefficient of friction and specific wear rate due to improved load transfer, stronger interfacial adhesion, and a more uniform laminate structure. In contrast, the 30 wt% composite exhibited fiber agglomeration, reduced homogeneity, and weakened fiber–matrix interactions, resulting in increased wear. SEM microstructural analysis confirmed the formation of a
Raja, K.Senthil Kumar, M.S.
This study presents a systematic CFD-based investigation of air-cooled lithium-ion battery pack thermal management using a novel U-shaped channel. The U-shaped domain was selected due to its ability to promote recirculation and uniform air distribution, which enhances cooling effectiveness compared to conventional straight and Z-type channels. A systematic parametric optimization of inlet position and airflow velocity was performed to minimize hotspot formation and improve temperature uniformity. Results reveal that shifting the inlet from 30 mm to 20 mm and increasing velocity from 2 m/s to 3 m/s reduced the maximum battery temperature by 3.46 K, from a baseline of 333 K to 329.54 K, while maintaining minimal pressure drop. These findings highlight that strategic control of inlet parameters can yield significant thermal improvements with high cost-effectiveness and geometric simplicity.
PC, MuruganJ, SivasankarW, Beno WincyG, Arun Prasad
This paper presents the virtual prototyping of traction motor in commercial EV to make an early prediction of the performance parameters of the machine without spending an enormous cost in building a physical structure. A 48/8 slot-pole configuration of IPMSM is used to demonstrate the electromagnetic and thermal co-simulation in ANSYS MotorCad. The core dimensions were determined using permanent-magnet field theory. From those, a two-dimensional finite-element (2D FEM) model of the interior permanent magnet (IPM) motor was simulated using Ansys Motor-CAD electromagnetic simulation tool. The influence of geometrical parameters on the performances of traction motor are evaluated based on FEM. The temperature distribution have been analyzed under steady and transient operating conditions. Alongside, the effects of saturation, demagnetization analysis, and the impact of PM flux linkage on inductances are also considered in this paper. At last, the simulation and analytical results of the
Murty, V. ShirishRathod, SagarkumarGandhi, NikitaTendulkar, SwatiKumar, KundanThakar, DhruvSethy, Amanraj
Rear drive vehicles transfer power to the rear wheels through the Gear Carrier Assembly, which is fit at the central section of the Rear Axle. The Gear Carrier Assembly includes hypoid ring and pinion gears, set at the heart of the system. However, one of the common issues with hypoid gears is gear scoring and whine noise, both of which can seriously affect durability and reduce the overall performance of a vehicle. In this study, the focus is on design changes as well as process improvements to address these problems and at the same time improve gear reliability. On the design side, changes such as refining the macro geometry, upgrading materials, and modifying the heat treatment cycle were carried out. These helped in improving properties like contact stress resistance, bending and impact strength, and also reduced motion transmission error (MTE). From the process point of view, careful control over carburizing, hardening, and quenching temperatures, along with adjustments in
Praveen, AbhinavDeshpande, PraveenJain, Saurabh KumarParmar, MayurKarle, NileshKanagaraj, PothirajPagar, Pawan
The BioMap system represents a groundbreaking approach to collaborative mapping for autonomous vehicles, drawing inspiration from ant colony behavior and swarm intelligence. It implements a fully decentralized protocol where vehicles use virtual pheromone trails to mark areas of uncertainty, change, or importance, enabling efficient map consensus without centralized coordination. Key innovations include novel pheromone-based compression algorithms and bio-inspired consensus mechanisms that allow real-time adaptation to dynamic environments. In a simulated urban scenario (Town10HD), three vehicles achieved balanced load distribution (±1.8% variance) and comprehensive coverage of a 253.2m × 217.9m × 22.4m area. The final fused map contained 311 chunks with 72,785 particles and required only 10.4 MB of storage. Approximately 49.2% of map particles exceeded the pheromone significance threshold, indicating active importance marking, while no high-uncertainty regions remained. These results
Bhargav, Anirudh SSubbarao, Chitrashree
This definitive study investigates the variation of churning losses occurring with hypoid ring and pinion gear sets and factors that determine energy dissipation in these mechanisms. An in-depth investigation confirms that viscosity is critical, particularly because of its significant temperature-dependent variations. Furthermore, the study rigorously analyzes the data's experimental parameters to examine churning losses. These losses result from the interaction between the rotating gears and the lubricating oil, contributing to notable inefficiencies in the overall drivetrain. A robust and highly effective model has been developed to address this issue comprehensively. It accounts for variable oil viscosity with temperature and integrates key empirical parameters that reflect observed behaviours in gear systems. The study employs a multidimensional approach to examine how oil density impacts hydrodynamic resistance, which is key to understanding lubricant flow under varying conditions
Khan, Aliya JavidPraveen, AbhinavKanagaraj, PothirajJain, Saurabh KumarAP, Baaheedharan
The global push for clean energy has made hydrogen a central element in decarbonizing transport, industrial processes, and energy systems. Effective hydrogen storage and distribution are critical to supporting this transition, and type IV Composite Overwrapped Pressure Vessels (COPVs) have emerged as the preferred solution due to their lightweight, high pressure capacity, hydrogen embrittlement and corrosion resistance. However, the cascade infrastructure used to house and transport these vessels has lagged behind in innovation. Steel-based cascades, while strong, are heavy prone to corrosion, and unsuitable for mobile deployment. This paper introduces a custom designed aluminium cascade system offering a 65% weight reduction while maintaining structural integrity and safety. Designed for mobile use, the system features modularity, better damping, and enhanced corrosion protection. The paper outlines design methodology, material selection, fabrication process, and comparative
Parasumanna, Ajeet BabuMuthusamy, HariprasadAmmu, Vnsu ViswanathKola, Immanuel Raju
This study focuses on the investigation of wheel rim failures near weld zone during repeated cornering induced by interference between the rim and disc during the wheel manufacturing assembly process. Strain gauges were employed to capture real-time stress and strain distributions at critical zones during interference fitting. The experimental results revealed that improper interference levels lead to significant stress concentrations, often surpassing the material's elastic limit, initiating micro-crack formation and promoting fatigue failure. Detailed strain analysis indicated that both radial and axial stresses contribute to long-term structural degradation. The study highlights the critical role of dimensional tolerances, surface finishes, and assembly forces in minimizing stress-induced failures. Recommendations are provided for optimizing design and assembly practices to enhance the durability and reliability of automotive wheels.
P, PraveenDEsigan, LakshmipathyK, ChandramohanC, Santhosh
In the current automotive design and development of the Electrical Distribution System (EDS), at an earlier stage, before the physical prototyping is largely absent. Traditional methods for verification and validation of EDS are performed with HIL, SIL, MIL, prototype testing or physical vehicle trials reveal design errors at later stages in the development cycle, which may lead to redesign, prolonged timelines and increased failure rates at vehicle integration. Hence, there is a critical need for an early-stage simulation methodology that ensures robustness and reliability of E/E architecture with first-time-right readiness at the design stage itself. In this paper, a digital EDS architecture simulation introduces a mode-based structural behavioural approach where specific vehicle functions, failure conditions and malfunction scenarios are set up in a simulation environment with their corresponding electrical circuits for simulation. A function-specific truth table-based analysis
Jaisankar, GokulnathWarke, UmakantChakra, PipunBorole, Akash
Fleet owners often encounter significant logistical and financial problems when dealing with battery packs of different ages and conditions. The standard industry practice is to replace old batteries with identical new ones. This process is inefficient because it costs a lot, creates too much inventory, and eliminates battery packs that are still useful too soon. The problem worsens when manufacturers stop making older battery models, which can force a vehicle to retire early. This paper puts forward a framework for mixing different types of battery packs to deliver the performance needed for a vehicle’s mission. We show how this works in three everyday service situations: 1) Repair, when a single damaged pack needs replacing; 2) Life Extension, where aged packs are combined with newer ones to meet mission range; and 3) Performance Restoration, which uses next-gen packs when the original parts are obsolete. The study shows that a vehicle can complete its required missions by
Nair, Sandeep R.Ravichandran, Balu PrashanthHallberg, Linus
In heavy-duty tippers, where challenging conditions demand high torque, planet carriers play a crucial role by enabling efficient load distribution and torque transmission while supporting gear ratio and speed variation in space-constrained systems such as automatic transmissions, hybrid drivetrains, and electric vehicles. This paper focuses on the comprehensive durability performance assessment of planet carrier housing (PCH) using duty cycles derived from road load data acquisition (RLDA) measurements for a heavy-duty tipper gearbox development program. The existing Design Validation Plan (DVP) for the planet carrier considers first gear utilization of 10-15% at 40% vehicle overload, in line with historical data. However, recent trends in mining applications revealed vehicle overloads of 55-65%, leading to an increase in first gear utilization (25-35%). This shift presents challenges for original equipment manufacturer (OEM) to enhance design durability while incorporating additional
Bagane, ShivrajPendse, Ameya
Today due to time to market requirements, Original Equipment Manufacturers (OEM) prefers platform modularity for Product Development in Automotive Domain. Money and time being main constraint we need to focus on single platform which can give flavors of different category just by changing Ride height and Tyre and some extra tunable. Taking this as challenge still tyre development for new variant demands lot of time and iterations which can lead to delays in time to market. This study provides a virtual development process using driver in loop Simulator and Multi body dynamics simulation which are real time capable and integrating physical tire models. The proposed alteration introduces ride height changes, weight distribution changes, and center of gravity changes from existing vehicle design. The proposed new vehicle variant also introduces tire change from highway terrain type to all-terrain type as it was intended to deliver some off-roading capabilities, thereby vehicle dynamics
Shrivastava, ApoorvAsthana, Shivam
As the automotive industry moves from conventional function oriented embedded ECU-based systems to Code-driven system, the core electrical and electronic (E&E) architecture is also being redesigned to support more software-driven functionality. Modern and centralized architectures promise scalability and software-driven flexibility, but they also introduce significant challenges in power distribution—an area that remains underexplored despite its critical role in overall vehicle safety and performance. Our paper aims at the adoption of the traditional power distribution approach for Next Gen vehicle architecture. It requires a fresh look at how power is distributed. In a novel E&E architecture, a single power harness supplies battery voltage to each zone. If there's a failure or voltage drop, it can affect multiple functions within that zone at once, and management of voltage regulation, thermal dissipation, and EMI/EMC compliance becomes crucial. Adding to the complexity, safety
Borole, AkashWarke, UmakantChakra, PipunJaisankar, Gokulnath
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
As electric trucks become more central to modern logistics, the need for smarter, more adaptive route planning is growing rapidly. This paper presents a key navigation feature for analyzing and recalibrating such optimized routes in real time. Integrating map features into the navigation mode improves user experience by offering real-time navigation and dynamic route adjustments based on traffic updates, road closures, vehicle coordinates and deviation in expected energy consumption. This study compares the performance of Server sent events (SSE), web sockets, and Application programming interface (API) polling methodologies, focusing on metrics such as data transmission efficiency, latency, resource utilization, scalability, and reliability. Our results demonstrate the advantages and limitations of each method, providing insights into their suitability for real-time route optimization in electric truck logistics. The results highlight the potential of SSE in achieving efficient and
Bhandari, MehulKaur, PrabhjotDadoo, VishalMahendrakar, ShrinidhiRamanaiah, Rachala
Addressing the challenge of optimal strain gauge placement on complex structural joints and pipes, this research introduces a novel methodology combining strategic gauge configurations with numerical optimization techniques. Traditional methods often struggle to accurately capture combined loading states and real-world complexities, leading to measurement errors and flawed structural assessments [9]. For intricate joints, a looping strain gauge configuration is proposed to comprehensively capture both bending and torsional effects, preventing the bypassing of applied loads. A calibration technique is used to create strain distribution matrices and access structural behavior under different loading conditions. Optimization algorithms are then applied to identify gauge placements that yield well-conditioned matrices, minimizing measurement errors and enhancing data reliability. This approach offers a cost-effective solution by reducing the number of gauges required for accurate stress
Shingate, UttamYadav, DnyaneshwarDeshpande, Onkar
The electrification of transportation is revolutionizing the automotive and logistics sectors, with electric vehicles (EVs) assuming an increasingly pivotal role in both passenger mobility and commercial activities. As the adoption of EVs rises, the necessity for precise range estimation becomes essential, especially under diverse operational circumstances, including vehicle and battery characteristics, driving conditions, environmental influences, vehicle configurations, and user-specific behaviors. Among the varying factors, a key fluctuating one is user behavior—most notably, increased payload, which significantly affects EV range. A key business challenge lies in the significant variability of EV range due to changes in vehicle load, which can affect performance, operational efficiency, and cost-effectiveness—especially for fleet-based services. This research aims to tackle the technical deficiency in forecasting electric vehicle (EV) range under various payload conditions
Khatal, SwarajGupta, AnjaliKrishna, Thallapaka
Improving transaxle efficiency is vital for enhancing the overall performance and energy economy of electric vehicles. This study presents a systematic approach to minimizing power losses in a single-speed, two-stage reduction e-transaxle (standalone) by implementing a series of component-level design optimizations. The investigation begins with the replacement of conventional transmission oil with a next-generation low-viscosity transmission fluid. By adopting a lower-viscosity lubricant, the internal fluid resistance is reduced, leading to lower churning losses and improved efficiency across a wide range of operating conditions. Following this, attention is directed toward refining the gear macro-geometry to create a gear set with reduced power losses. This involves adjustments to parameters such as module, helix angle, pressure angle, and tooth count, along with the introduction of a positive profile shift. These modifications improve the contact pattern, lower sliding friction, and
Agrawal, DeveshBhardwaj, AbhishekBhandari, Kiran Kamlakar
In recent years many automotive cybersecurity relevant regulations have been released and some have already started to come into effect. Moreover, some other regulations will come into effect in the next few years. These regulations provide requirements and guidance to automotive organizations with different degree of specifics. In this paper, we review a number of different cybersecurity relevant regulations such as UNR 155, UNR 156, AIS 189, AIS 190, GB 44495, GB 44496, EU Cyber Resilience Act, and BIS Final Rule. We break down and categorize these regulations based on their scope and highlight key areas relevant to different teams within the organizations. These key areas include Cybersecurity Management System (CSMS), Software Update Management System (SUMS), secure software development and software supply chain security, continuous cybersecurity activities (monitoring, incident response), and vulnerability disclosure and management. We then map responsibilities from the
Oka, Dennis KengoVadamalu, Raja Sangili
The tailgate, as the rearmost vehicle opening, plays a pivotal role in defining the rear aesthetic theme while ensuring structural durability and maximizing luggage space. Contemporary automotive design trends highlight an increasing demand for Full width tailgate-mounted tail lamp configurations, which deliver a bold and dynamic visual appeal. Enhanced by animated lighting features, these designs cater to the preferences of Gen Z customers, becoming a decisive factor in purchasing decisions. However, integrating these complex tail lamp structures introduces significant engineering challenges, including increased X-dimension lamp volume, thereby providing reduced design space, and intricate mounting schemes constrained by panel stamping limitations. These factors necessitate the development of innovative joinery strategies and structural definitions to maintain durability targets, including achieving 25,000–30,000 slam cycles without failure, while preserving luggage space. This paper
Beryl, JoshuaMohanty, AbhinabUnadkat, SiddharthSelvan, Veera
This study introduces a novel in-cabin health monitoring system leveraging Ultra-Wideband (UWB) radar technology for real-time, contactless detection of occupants' vital signs within automotive environments. By capturing micro-movements associated with cardiac and respiratory activities, the system enables continuous monitoring without physical contact, addressing the need for unobtrusive vehicle health assessment. The system architecture integrates edge computing capabilities within the vehicle's head unit, facilitating immediate data processing and reducing latency. Processed data is securely transmitted via HTTPS to a cloud-based backend through an API Gateway, which orchestrates data validation and routing to a machine learning pipeline. This pipeline employs supervised classifiers, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) to analyze features such as temporal heartbeat variability, respiration rate stability, and heart rate. Empirical
Singh, SamagraPandya, KavitaJituri, Keerti
Nitrile Butadiene Rubber (NBR), known for its superior resistance to hydrocarbon oil, low gas permeability, and excellent thermal stability, finds extensive use in seals, O-rings, conveyor belts etc. Importantly, these performance attributes are chiefly governed by acrylonitrile content in NBR. Analytical characterization of raw NBR is relatively straightforward using conventional techniques such as elemental analysis (CHNS) and liquid state 13C NMR. In contrast, the analysis of vulcanized NBR presents considerable challenges due to its crosslinked structure, which renders it insoluble in most organic and inorganic solvents, thereby restricting direct molecular-level analysis. While solid-state 13C NMR is an established technique for structural characterization in rubber vulcanizates, its high-cost curbs routine industrial analysis. In this study, Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) technique has been explored as a robust, precise, cost-effective alternative
Samanta, RajyasreeGhosh, DebojitAnjana, KanhaiyaSen, AmitGuria, BiswanathChanda, JagannathSamui, BarunGhosh, PrasenjitMukhopadhyay, Rabindra
Items per page:
1 – 50 of 7008