Browse Topic: Suppliers

Items (10,301)
With the introduction of the Euro 7 regulation, non-exhaust emissions – particularly those arising from brake and tire abrasion – will be regulated and subject to emission limits for the first time. This presents significant challenges not only for OEMs striving to meet these targets within the given timeframe, but also for suppliers, who must develop innovative solutions for the precise measurement, analysis, and mitigation of these emissions. To address this, it is essential to establish and industrialize new testing methodologies as structured, scalable, and cost-efficient processes. Beyond pure measurement capability, service providers in this domain are increasingly expected to serve as feedback mechanisms – identifying process limitations, proposing targeted improvements, and thereby enabling continuous development in line with evolving technical and regulatory requirements. In this context, AVL is pursuing a holistic development strategy that integrates brake emission
Grojer, Bernd
Li-ion battery performance is highly dependent on the electrode materials. The composition of the negative and positive electrodes influences crucial aspects of the Li-ion cell, including energy density, ageing behavior and thermal stability. Recent Li-ion technologies include the use of composite graphite-silicon negative electrodes to improve the energy storage capacity of the otherwise graphite-only negative electrode. This article evaluates the impact of negative electrode composition (standard graphite vs. Si-Gr) on the performance of two recent technologies of Li-ion batteries from the same manufacturer, focusing on electrical performance and safety behavior. The studied technologies are the LG M50LT and LG M58T, the latest one introducing a considerable increase of capacity, passing from 4.80 to 5.65 in nominal capacity. This article abords the comparison of both technologies in electric performance, electrode composition, cell design and thermal stability. Electrical
Cruz Rodriguez, Jesus ArmandoLecompte, MatthieuRedondo-Iglesias, EduardoPelissier, SergeAbada, Sara
September is unofficially known in the industry as a key forecasting month. It's when several suppliers lock in their revenue forecasts for the next year. As we approach 2026, there are still several balls in the air with respect to the trajectory of the light vehicle market. Looming U.S. tariffs, negative economic and geo-political shifts, and the impact of changes to U.S. vehicle emission legislation have all brought with them a cloud of uncertainty that hovers over the industry. An industry that requires greater planning clarity, not less. Let's start with the tariffs. As of this writing, the major vehicle and parts importers outside of North America have agreed to 15% U.S. tariffs for vehicles and parts. In the case of Japan and the European Union, this is 12.5 percentage points higher than 2024 levels. In the case of South Korea, it's 15 points more, as there was a free trade agreement in force. While these framework agreements drive some level of certainty, the final details
Suppliers are learning several new and unwelcome lessons as the dynamics surrounding U.S. light vehicle trade and emissions legislation quickly shifts. Two major issues are at play here. As the industry continues to feel the impact of reduced or eliminated battery electric vehicle incentives in several North American and European jurisdictions and governments are retrenching on light vehicle emissions legislation - OEMs are questioning the size of the near- and mid-term market. Similarly, as of this writing, the saga surrounding future vehicle and parts tariffs between the U.S. and its major automotive trading partners continues. This unfortunate combination has driven OEMs to delay, extend and rescope future product programs. This jams a stick in the financial spokes of the supply base. Some context is in order. Like clockwork, in the highly competitive global light vehicle market, our industry was trained to expect a regular cadence for product renewals and product cycles. The
Bosch bolstered its 3D printing capabilities when it added a new metal 3D printer at its Nuremberg, Germany, plant earlier this year. The NXG XII 600 metal 3D printer from Nikon SLM Solutions met the supplier's need - the need for speed - as well as the non-Top Gun-related precision, flexibility and energy efficiency when manufacturing complex metal parts for its in-house and third-party customers. The Nuremberg plant invested nearly six million euros in the center, including the purchase and installation of the new metal 3D printer. Bosch claims to be the first Tier 1 automotive supplier in Europe to have a facility in this performance class.
Gehm, Ryan
In the pursuit of customizability and evolvability of vehicle functions, manufacturers shift towards software-defined vehicles to enable flexible customization and over-the-air updates. This results in multiple variants and versions of a vehicle model. While shifting to software-defined vehicles (SDVs) adds value and flexibility for customers, manufacturers struggle with homologating new and updated functionality because existing testing processes do not scale for high-frequency release cycles that limit available testing resources. Overcoming this challenge by using a coherent test process designed for testing continuously evolving variant-rich systems will be one of the key enablers. This paper presents an innovative end-to-end pipeline for efficient and comprehensive testing of variant-rich vehicle functionality tailored to an application in continuous development. Our transferable test pipeline employs sample-based variant selection, a software-in-the-loop environment for executing
Hettich, LennardPett, TobiasNägele, Ann-ThereseSchindewolf, MarcEriş, HalitWagner, StefanSax, EricSchaefer, InaWeyrich, Michael
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
While new sustainability efforts aim to curb the carbon footprint of the commercial vehicle industry, old methods continue to be among the most effective. Sustainability has been among the hottest topics for the commercial vehicle industry over the past decade. OEMs, suppliers and various governmental agencies across the globe are touting new advances in clean powertrain tech that reduces the industry's dependence on fossil fuel while also considering the complete carbon footprint of the vehicle from cradle to grave. Though these initiatives have their merits, there are old-school methods of reducing the environmental impact of keeping the world moving. Remanufacturing is decidedly not the sexiest of methods for promoting the concept of sustainability. But recycling existing materials and components is a proven tactic for reducing waste and energy consumption.
Wolfe, Matt
April saw two major tradeshows take place, playing host to numerous advanced vehicle and technology reveals from global OEMs and suppliers - some of which are detailed in these pages. Bauma in Munich, Germany, a leading trade fair for the construction and mining vehicle industries, saw around 600,000 visitors from more than 200 countries and regions, as well as over 3,600 exhibitors from 57 nations. Billed as the largest advanced CV technology show, ACT Expo engaged more than 12,000 stakeholders from at least 54 countries, including over 2,700 fleet operators. But just as present as the technology itself at these shows was the ongoing uncertainty stemming from the Trump administration's volatile trade policy announced on April 2 involving steep tariffs that have been adjusted frequently in the ensuing weeks.
Gehm, Ryan
Much has been written about the challenging operating environment within the North American automotive ecosystem. Suppliers and OEMs alike were never trained in business school or past experiences for the erratic trade and legislative environment that they face today. Since late 2019 and a multi-week strike by the UAW against GM, there has been calamity after calamity impacting our industry. These include the impact of COVID on supply and demand, chip availability, labor shortages, inflation impacts and erratic trade actions that have all suppressed revenue and profits. There is one obvious dynamic impacting the industry: the lack of a stable, expected trade environment is critical to our long-term viability.
When we last heard from MELD Manufacturing, the large-scale 3D printer supplier was taking first place in the Robotics/Automation/Manufacturing category at the 2018 .
This paper discusses a systematic process that was developed to evaluate the acoustic performance of a production dash system. In this case it is for an electric vehicle application. The production dash panel was tested under different configurations to understand the importance of passthroughs in the acoustics of the system. Results show that often the performance of the passthroughs strongly affects the overall performance of the dash system and this may become the limiting factor to increase the system sound transmission loss. To understand the acoustic strength of different passthroughs and their effects on the overall system, the dash with passthroughs underwent extensive testing. Subsequently, a test procedure using flat panels was developed to quantify the performance of individual passthroughs on a part level. This data can be used by the OEM to develop STL targets that can be considered in the grommet design early in the vehicle development process.
Saha, PranabBaack, GregoryGeissler, ChristianKaluvakota, SrikanthPilz, Fernando
Tires have a significant impact on vehicle road noise. The noise in 80~160Hz is easily felt when driving on rough roads and has a great relationship with the tire structural design. How to improve the problem through tire simulation has become an important issue. Therefore, this paper puts forward the concept of virtual tire tuning to optimize the noise. An appropriate tire model is crucial for road noise performance, and the CDtire (Comfort and Durability Tire) model was used in the article. After conducting experimental validation to get an accurate tire model, adjust the parameters and structure of the tire model to generate alternative model scenarios. The transfer function of the tire center was analyzed and set as the evaluation condition for tire NVH (Noise, vibration, and harshness) performance. This enabled a comparison among various model scenarios to identify the best-performing tire scenario in focused frequency whose transfer function needed to be lowest. Manufacture the
Zhang, BenYu Sr, JingChen, QimiaoLiu, XianchenGu, Perry
There is no need to recall how the electrification trend of transport facilities has tightened the requirements around acoustic comfort. Within the automotive industry, these targets are more challenging for Heating, Ventilation and Air Conditioning systems for which passengers are in the frontline of noise emissions inside the car cabin. The complexity of the requirements and specifications set by car manufacturers and suppliers stems from a dual aspect. First is quantitative based on the sound pressure level, whether it's the overall level or 1/3 octave band spectra. The second is purely subjective, based on the perceived noise quality by stakeholders and final customers worldwide. During development phases, low tonal noises are frequently encountered on these systems which might induce discomfort to the passengers. The experimental investigations usually point to an aerodynamic origin, which prompted this research activity. The purpose of this work is to analyze and understand the
Bennouna, SaadAlaoui, MohamedHenner, Manuel
There is an increasing effort to reduce noise pollution across different industries worldwide. From a transportation standpoint, pass-by regulations aim to achieve this and have been implementing increasingly stricter emissions limits. Testing according to these standards is a requirement for homologation, but does little to help manufacturers understand why their vehicles may be failing to meet limits. Using a developed methodology such as Pass-by Source Path Contribution (SPC, also known as TPA) allows for identification of dominant contributors to the pass-by receivers along with corresponding acoustic source strengths. This approach is commonly used for passenger vehicles, but can be impractical for off-highway applications, where vehicles are often too large for most pass-by-suitable chassis dynamometers. A hybrid approach is thereby needed, where the same techniques and instrumentation used in the indoor test are applied to scenarios in an outdoor environment. This allows for
Freeman, ToddEngels, BretThuesen, Ben
Wheel Force Transducers (WFT) are precise and accurate measurement devices that seamlessly integrate into any vehicle. They can be applied in numerous vehicle applications for both on-road and in laboratory settings. The instrumentation requires replacing an original equipment manufacturer (OEM) wheel with a custom WFT system which is specific to the wheel hub design. An ideal design will minimally impact a vehicle's dynamics, but the vehicle system is inherently modified from the mass of the measurement device. Research and technical documentation have been published which provide conclusions explaining reduction in the unsprung mass reduces dynamic wheel load. However, there doesn’t appear to be clear compensation techniques for how a modified unsprung mass can be related to the original system, thus allowing the WFT signals to be more accurate to the OEM wheel forces. An experimental study was performed on a prototype motorcycle to better understand these differences. An
Frisco, JacobLarsen, WilliamRhudy, ScottOosting, NicholasLaurent, Matthew
As India’s economy expands and road infrastructure improves, the number of car owners is expected to grow substantially in the coming years. This market potential has intensified competition among original equipment manufacturers (OEMs) to position their products with a focus on cost efficiency while delivering a premium user experience. Noise and Vibration (NV) performance is a critical differentiator in conveying a vehicle's premiumness, and as such, NV engineers must strategically balance the achievement of optimal acoustic performance with constraints on cost, mass, and development timelines. Traditionally, NV package optimization occurs at the prototype or advanced prototype stage, relying heavily on physical testing, which increases both cost and time to market. Furthermore, late-stage design changes amplify these challenges. To address these issues, this paper proposes the integration of Hybrid Statistical Energy Analysis (HSEA) into the early stages of vehicle development
Rai, NiteshMehta, MakrandRavindran, Mugundaram
The frequency and amplitude content of powertrain noise is motor torque and speed dependent and tends to influence the driver’s subjective perception of the vehicle. This provides manufacturers with an opportunity to drive product differentiation through consideration of powertrain noise in early stages of the development cycles for electric vehicles (EVs). This paper focuses on the evaluation of customer preference and perception of acoustic feedback from different powertrain design options based on targeted powertrain orders and expected wind and road masking during high acceleration maneuvers. A jury study is used to explore customer feedback to a two-stage gearbox design with AC permanent magnet motor order combinations. The subjective influence of order spacing, dominant frequency content and the number of audible orders is studied to understand aural perspective product differentiation opportunities.
Joodi, BenjaminJayakumar, VigneshConklin, ChrisPilz, FernandoIyengar, ShashankWeilnau, KelbyHodgkins, Jeffrey
At a time when medical technology is advancing rapidly, the demand for precision in manufacturing has never been greater. The medical device industry is pushing the boundaries of design, requiring components that are not only smaller and more intricate but also biocompatible, reliable, and capable of meeting stringent regulatory standards. To address these challenges, manufacturers are increasingly turning to photochemical etching (PCE) — a process that is proving indispensable in high-precision medical applications.
Manufacturers in all industries rely on networks of specialized suppliers to effectively source the components they need to serve their customers. Trust, reliability, and consistency are important — and for producers of medical devices, these qualities are especially critical, given the often life-saving nature of their end-use products.
This SAE Aerospace Standard (AS) establishes supplemental requirements for 9100 and 9145 and applies to any organization receiving it as part of a purchase order or other contractual document from a customer. AS13100 also provides details of the reference materials (RM13xxx) developed by the SAE G-22 AESQ committee and listed in Section 2 that can also be used by organizations in conjunction with this standard.
G-22 Aerospace Engine Supplier Quality (AESQ) Committee
Bendix® EC-80™ and certain EC-60™ ABS control units contain an event data recorder called the Bendix® Data Recorder (BDR). Raw BDR data is obtained using commercially available software, however, the translation of the raw data into an event report has only been performed by the manufacturer. In this paper, the raw data structures of the commercially available datasets are examined. It is demonstrated that the data follows uniform and repeatable patterns. The raw BDR data is converted into a conventional report and then validated against translation reports performed by the manufacturer. The techniques outlined in this research allow investigators to access and analyze BDR records independently of the manufacturer and in a way previously not possible.
DiSogra, MatthewHirsch, JeffreyYeakley, Adam
Perkins details range of development efforts to power future off-highway machines, from clean-sheet diesel to hybrid-electric and hydrogen combustion. Many manufacturers in the construction and mining vehicle sectors have tabbed the Bauma trade show in April as the venue for major product debuts. Perkins is one of those, though it provided select media an overview of its latest powertrain developments and projects at a pre-Bauma briefing in early February. Hydrogen and hybrids were a large part of the discussion at the London media event, but Perkins began the day expounding on good old diesel-engine development. The company's engineers are still working hard to strengthen - and streamline - its diesel portfolio, all while readying new platforms for other fuels and applications.
Gehm, Ryan
Los Angeles-based plastics contract manufacturer Kal Plastics deployed UR10e trimming cobot for a fraction of the cost and lead time of a CNC machine, cut trimming time nearly in half, and reduced late shipments to under one percent — all while improving employee safety and growth opportunities.
Mesekon Oy, a Finnish welding manufacturer that produces complex welded steel structures for the marine, energy, and paper industries, needed a flexible and collaborative solution to improve efficiency, reduce defects, and enhance workplace ergonomics by automating repetitive and physically demanding welding operations.
In an era where technological advancements are rapid and constant, the U.S. Army will need a more agile and efficient approach to modernizing systems on succeeding generations of Army vehicles. Legacy platforms like Abrams, Stryker, and Bradley vehicles use multiple mission computers tied to individual sensors that often required the addition of “boxes” to accommodate new capabilities, which could take years to deploy and drove sustainment costs up due to vendor lock. In addition, this antiquated approach doesn't leverage data to converge effects across the formation in a multi-domain environment. Centralized, common computing as detailed in GCIA would help solve this problem, potentially linking all major subsystems and providing higher-speed processing to assess large datasets in real time with AI and ML algorithms. By using a common, open architecture computer, the Army will be able to rapidly integrate new capabilities inside one box, versus adding multiple boxes. This pivotal
Time Sensitive Networking (TSN) Ethernet is a real-time networking capability that is being developed by a growing number of embedded computing companies for the earliest stages of adoption by aerospace and defense manufacturers and their suppliers. According to the Institute of Electrical and Electronics Engineers (IEEE) TSN working group, it is a set of standards that provides deterministic connectivity within IEEE 802-aligned networks. Nigel Forrester is the Director of Product Strategy for Concurrent Technologies, a UK-based provider of high performance embedded computing solutions for aerospace, defense and many other industries. Check out our interview with Forrester about the potential impact of TSN Ethernet on new and legacy aerospace and defense applications, and how it is being adopted by manufacturers and system integrators below.
A lighter, colorable and fully recyclable thermoplastic body seal from Cooper Standard won the annual Innovations in Lightweighting Award given by the Society for Automotive Analysts. At the society's December meeting, Jay Murdock, senior product development engineer for Cooper Standard, accepted the award and said its FlexiCore product was designed with an eye on strong trends in what OEMs want from suppliers: sustainability, carbon neutrality, lightweighting and recyclability.
Clonts, Chris
For my nearly 60-year lifetime, I have had the benefit of being part of a North American Automotive Industry that was, from a production perspective, completely rationalized and optimized. Given the unprecedented political events of the last couple of months, maybe we should all consider ourselves fortunate. Strong competition and a free market allowed for components, systems and vehicles to be produced in the optimal location with an optimized supply chain, all structured to serve markets in the U.S., Canada and Mexico with some exports mixed in. Consumers, dealers, suppliers and vehicle manufacturers all benefit from this optimized structure.
In an era where technological advancements are rapid and constant, the U.S. Army will need a more agile and efficient approach to modernizing systems on succeeding generations of Army vehicles. Legacy platforms like Abrams, Stryker, and Bradley vehicles use multiple mission computers tied to individual sensors that often required the addition of “boxes” to accommodate new capabilities, which could take years to deploy and drove sustainment costs up due to vendor lock. In addition, this antiquated approach doesn’t leverage data to converge effects across the formation in a multi-domain environment. Centralized, common computing as detailed in GCIA would help solve this problem, potentially linking all major subsystems and providing higher-speed processing to assess large datasets in real time with AI and ML algorithms. By using a common, open architecture computer, the Army will be able to rapidly integrate new capabilities inside one box, versus adding multiple boxes. This pivotal
Time Sensitive Networking (TSN) Ethernet is a real-time networking capability that is being developed by a growing number of embedded computing companies for the earliest stages of adoption by aerospace and defense manufacturers and their suppliers. According to the Institute of Electrical and Electronics Engineers (IEEE) TSN working group, it is a set of standards that provides deterministic connectivity within IEEE 802-aligned networks.
Speed and flexibility are increasingly becoming the cornerstones of modern manufacturing, even as their continued adoption must align with existing values of cost and reliability all while keeping up with the demands for smarter, more complex products. This presents many challenges to machine builders since they must keep pace with the complexity of upcoming products while also being ready to meet the demands of the companies that will buy and operate these machines when it comes to efficiency, rapid production line ramp up, small batch sizes and high quality. Artificial intelligence will be a key tool going forward in achieving these results, offering the ability to more rapidly design, prototype, and implement changes and solutions through superior data analytics abilities and improved human-machine interactions.
Competitive companies constantly seek continuous increases in productivity, quality and services level. Lean Thinking (LT) is an efficient management model recognized in organizations and academia, with an effective management approach, well consolidated theoretically and empirically proven Within Industry 4.0 (I4.0) development concept, manufacturers are confident in the advantages of new technologies and system integration. The combination of Lean and I4.0 practices emerges from the existence of a positive interaction for the evolutionary step to achieve a higher operational performance level (exploitation of finances, workload, materials, machines/devices). In this scenario where Lean Thinking is an excellent starting point to implement such changes with a method and focus on results; that I4.0 offers powerful technologies to increase productivity and flexibility in production processes; but people need to be more considered in processes, in a context aligned with the Industry 5.0
Braggio, LuisMarinho, OsmarSoares, LuisLino, AlanRabelo, FábioMuniz, Jorge
Organizations need to maintain their processes at high levels of efficiency to be competitive, asset management and industrial maintenance are extremely important to obtain positive results in optimizing operating costs, saving energy resources, reduction of environmental impacts among other characteristics that are considered differential for organizations. In this scenario, methods are increasingly being sought to assist managers in decision-making processes that contain several alternatives and selection criteria involved. The AHP and TOPSIS methods have been widely associated with prioritization studies, cost evaluation, resource selection, suppliers, among others. Thus, the selection of equipment and industrial elements can be evaluated by means of multicriteria decision methods where the criteria considered important by specialists in the area are inserted into the model. The objective of this article was to present a selection process for spur gears based on stress analysis and
de Oliveira, Geraldo Cesar Rosariode Oliveira, Vania Aparecida RosarioSilva, Carlos Alexis AlvaradoGuidi, Erick SiqueiraSalomon, Valério Antonio PamplonaRosado, Victor Orlando Gamarrade Azevedo Silva, Fernando
A new aviation supply chain integrity coalition has offered 13 recommended actions to prevent the circulation of non-serialized aircraft parts throughout the global aviation industry. Embry-Riddle Aeronautical University, Daytona Beach, FL In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brand-new showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious. Using his safety training, the employee immediately reported the anomaly to TAP Air Portugal management, which raised the issue with the jet engine's manufacturer. Little did the procurement clerk know at the time, but this escalation led to one of the biggest investigations in the history of the aviation supply chain, as reported by Reuters and the British Broadcasting Corporation in
As I write this version of the Supplier Eye column, 2024 has been a critical year for our industry. No matter if you are a supplier, OEM or some other position in the ecosystem, this year has set us up for feast or famine through this decade. Let's explore why this year will go down in the record books as a pivotal one. Editorial timing dictates that this is submitted just before the U.S. elections. While you will read this with the election in the rearview mirror, all indications are for an extremely close political outcome, though the ensuing weeks will be the final arbiter. The outcome nonetheless will impact our industry for years.
Sometimes, I cringe; sometimes, I just listen and wonder. These past few months have given us all a lot to think about in the automotive space, and it's clear now that the coming years will keep the foot down on the accelerator when it comes to the dramatic changes we've experienced this past decade. One thing that stood out to me in various recent conversations is that there's a widening gulf opening between Chinese automakers and the rest of the world. This isn't exactly news, and this column isn't meant to monger any fears. It's just a bit of off-the-cuff reporting that sheds a bit of light on the level of the challenges we face. As you can read in Chris Clonts' excellent report further in this issue about the warning that Voltaiq's CEO gave at The Battery Show this October, the U.S. is in serious danger of falling well behind Chinese competitors in the EV battery race (Michael Robinette tackles similar ground through a tariff lens in this month's Supplier Eye). But that message was
Blanco, Sebastian
In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brandnew showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious.
Design and material choices can have a long-term impact on an original equipment manufacturer’s (OEM) production costs and product quality. When an OEM works together with an experienced contract design manufacturer (CDM) from the start of a project, many negative impacts to cost and quality can be avoided.
Items per page:
1 – 50 of 10301