Browse Topic: Suppliers

Items (10,312)
Conventional tractor transmission systems feature separate Brake and Bull Cage housings, with brakes often being proprietary components and Bull Cage designed by the Original Equipment manufacturer (OE). To optimize design and performance, an innovative integrated system was developed, combining an in-house braking system with a unitized Bull Cage assembly. This robust design reduces part count, eliminates proprietary dependency (except for friction liners), and enhances performance. Virtual simulations performed under RWUP conditions demonstrated enhanced strength and stiffness in the integrated design. In this Integrated Brake & Bull Cage assembly (IBCA), the braking layout was reconfigured from a 4+1 friction design to a 3+2 configuration which improved balancing, enhancing customer braking experience and increasing contact area by 11%. This adjustment extends friction liner life and boosts mechanical advantage by 7.9%, significantly improving tractor stability and performance
Dumpa, Mahendra ReddyDhanale, SwapnilPerumal, SolairajGomes, MaxsonRedkar, DineshSavant, KedarnathV, Saravanan
The exponential growth of connected and autonomous vehicles has significantly escalated cybersecurity threats, compelling automotive Original Equipment Manufacturers (OEMs) to adopt robust and structured Cybersecurity Incident Response (CSIR) capabilities. Current automotive cybersecurity regulations, such as AIS 189 in India and UNECE WP.29 globally, mandate precise frameworks for proactive threat detection, timely response, and comprehensive incident documentation. This research presents an innovative, comprehensive CSIR framework specifically tailored to integrate seamlessly into OEM cybersecurity management processes. Leveraging a combination of real-time monitoring systems, structured threat categorization methodologies, and integrated escalation and communication protocols, the proposed CSIR framework ensures efficient incident handling aligned with stringent regulatory compliance. The framework encompasses advanced methodologies including Vehicle Security Operations Center (VSOC
Chaudhary lng, VikashDesai, ManojChatterjee, AvikChatterjee lng, Avik
With increased deterioration of road conditions worldwide, automotive OEMs face significant challenges in ensuring the durability of structural components. The tyre being the primary point of contact with the road is expected to endure harshest of impacts while maintaining the other performance functions such as Ride & Handling, Rolling resistance, Braking. Thus, it is considered as the most challenging component in terms of design optimization for durability. The current development method relies on physical testing of initial samples, followed by iterative construction changes to meet durability requirements, often giving trade-off in Ride & Handling performance. To overcome these challenges, a frugal simulation-based methodology has been developed for predicting tyre curb impact durability before vehicle-level testing so that corrective action can be taken during the design stage.
Sundaramoorthy, RagasruobanLenka, Visweswara
With the emergence of Software-Defined Vehicles (SDVs), more complex software and connectivity technologies are introduced to support new advanced use cases such as phone as a key, smart parking and vehicle management. However, complex software functionality and external connectivity also increase the attack surface of vehicles and its ecosystem. In this paper, we first perform a classification of recent automotive cybersecurity attacks. We further perform an analysis of these attacks and associated vulnerabilities considering the application of best practices of vulnerability management approaches including Common Vulnerability Scoring System (CVSS), Exploit Prediction Scoring System (EPSS), and Stakeholder-Specific Vulnerability Categorization (SSVC). CVSS is a standardized framework used to assign severity scores to known vulnerabilities and helps organizations prioritize vulnerability remediation based on severity. EPSS is a predictive model that estimates the probability of a
Oka, Dennis KengoVadamalu, Raja Sangili
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
Automotive systems are increasingly adopting data-driven and intelligent functionality in the areas of predictive maintenance, virtual sensors and diagnostics. This has led to a need for the AI models to be directly run on vehicle ECUs. However, most of these ECUs – especially those in cost-sensitive or legacy platforms lack the computational capacity and parallel processing support required for standard AI implementations. Given the stringent real-time and reliability requirements in automotive environments, deploying such models presents a unique challenge. This paper proposes a practical methodology to optimize both the training and deployment phases of AI models for low-computation ECUs that operate without parallelism. Designing lightweight model architectures, using pruning and quantization techniques to minimize resource utilization, and putting in place a strategy appropriate for single-threaded execution are the three main objectives of the developed approach. The goal is to
Sharma, SahilMathew, Melvin John
In recent years many automotive cybersecurity relevant regulations have been released and some have already started to come into effect. Moreover, some other regulations will come into effect in the next few years. These regulations provide requirements and guidance to automotive organizations with different degree of specifics. In this paper, we review a number of different cybersecurity relevant regulations such as UNR 155, UNR 156, AIS 189, AIS 190, GB 44495, GB 44496, EU Cyber Resilience Act, and BIS Final Rule. We break down and categorize these regulations based on their scope and highlight key areas relevant to different teams within the organizations. These key areas include Cybersecurity Management System (CSMS), Software Update Management System (SUMS), secure software development and software supply chain security, continuous cybersecurity activities (monitoring, incident response), and vulnerability disclosure and management. We then map responsibilities from the
Oka, Dennis KengoVadamalu, Raja Sangili
This paper delivers a forward-looking data-driven assessment of the transformative innovation in electric vehicle motor systems with targeting breakthroughs in the power density, energy efficiency, thermal robustness, manufacturability & better intelligent control. A rigorous Multi Criteria Decision Making (MCDM) framework is done to systematically evaluate and defining the rank of emerging motor technologies across eight weighted performance indicators. The findings reveal that which design strategies & material advancements offering the greatest potential for redefine propulsion performance that enabling lighter more compact & more efficient drivetrain capable of sustained high power operation. High ranking solution exhibit strong alignment with the industry's push toward scalable, low cost & rare earth-independent systems while other are identified as high risk/high reward pathway requiring targeted research to overcome critical problems. By integrating engineering performance
Jain, GauravPremlal, PPathak, RahulGore, Pandurang
The US trucking industry heavily relies on the diesel powertrain, and the transition towards zero-emission vehicles, such as battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV), is happening at a slow pace. This makes it difficult for truck manufacturers to meet the Phase 3 Greenhouse Gas standards, which mandate substantial emissions reductions across commercial vehicle classes beginning of 2027. This challenging situation compels manufacturers to further optimize the powertrain to meet stringent emissions requirements, which might not account for customer application specifics may not translate to a better total cost of ownership (TCO) for the customer. This study uses a simulation-based approach to connect customer applications and regulatory categories across various sectors. The goal is to develop a methodology that helps identify the overlap between optimizing for customer applications vs optimizing to meet regulations. To use a data-driven approach, a real
Mohan, VigneshDarzi, Mahdi
Aluminum foils have gained traction with EV battery manufacturers for their pouch cell format. Over the years, it has evolved as a material of choice, but it is still plagued by the issues of stress concentration and swelling due to lower strength and lower stiffness of base aluminum layer. Preliminary investigation revealed that laminates using steel foil material (thickness < 0.1mm) could be a potential candidate for EV pouch cell casing. Thus, steel-based laminate was developed meeting key functional requirements (e.g., barrier performance, insulation resistance, peel strength, electrolyte resistance, formable without cracking at edges, and heat sealing compliant). This innovative patented steel-based laminate [1] was further used to manufacture pouch cell prototypes (up to a maximum capacity of 2.8Ah) for key performance evaluation (e.g., cell cycling and nail penetration). The study paves the way for a low cost, sustainable and flexible yet strong steel-based laminate packaging
Singh, Pundan KumarRaj, AbhishekKumar, AnkitChatterjee, SourabhVerma, Rahul KumarSamantaray, BikashGautam, VikasPandey, Ashwani
In recent years, the global automotive sector has undergone transformation at an unprecedented pace, driven by environmental concerns, rapid technological advancements, government incentives, and evolving consumer expectations. The rapid uptake of electric motors as the main propulsion system in New Energy Vehicles (NEVs) has been a key factor in this change. This study examines the technological development of electric motors in four different vehicle segments: passenger cars, heavy-duty commercial vehicles, three-wheelers, and two-wheelers. It identifies the leading electric motor technologies utilized in each of these segments, along with their prevalence across key globally regulated markets. The study offers a thorough analysis of current e-motor technologies and their market distribution by referencing historical data and existing scholarly literature. A regional analysis is conducted to examine variations in manufacturer preferences and deployment strategies, supported by visual
Singh, AshishRay, Rakesh Kumar
Process mining emerges as a very important tool in the automotive industry to improve processes and increase efficiency. Its use allows the identification of bottlenecks and opportunities for improvement in production processes, contributing to increased productivity and cost reduction. This article aimed to evaluate the benefits of applying the Process Mining tool by conducting a Three-way match analysis in the Procure-to-pay (PTP) process of a company in the auto parts sector, seeking to identify opportunities for improvement. Analysis using process mining in PTP of the organization allowed us to identify significant number of cases of price discrepancies were observed in relation to orders related to services, being 2.5 times higher than orders related to materials. Additionally, quantity discrepancies represented 24% of the cases analyzed, compared to only 1.5% of price discrepancies. Of the materials involved in these price discrepancies, approximately 63% were not registered in
Rosa da Silva, Petterson MaxwellCampos, Renato deFranco, Bruno Chaves
Brazil PL8 regulation has required that manufacturers comply with new emissions levels for all of vehicle life – 0 km up to 160.000 km. On this study, tests found that results between new and used vehicles are remarkably similar except for Aldehydes on Ethanol tests. To better understand this phenomena, two main ideas were considered: first, the engine mileage needed to stabilize aldehydes emissions; and second, the main factors responsible for higher acetaldehyde values on new engines only.
Fernandes, SarahBorsari, MarcioBrondani, Dhouglas
This study presents three methods for obtaining the latency of an indirect injection Electro-Injector as a function of the applied voltage. This parameter is relevant for the linearization of the injected mass in order to model fuel mass delivery on modern ECUs. For this purpose, the authors built a test bench, with the intent of running analysis on the results of tests of mass differential between injections, circulating current, and mechanical vibration. The authors gathered data over the iterative experiments and correlated the mass differential, vibration data and current measurements. The authors observed that with a reduction of supply voltage at the injector’s pins, a greater injector dead time made itself present displaying a need for a compensation of opening time in function of voltage since the injector’s needle takes a longer amount of time in partially open positions. Modern ECU manufacturers broadly use the data obtained by this type of iterative experiment to accurately
Juliatti, Rafael MotterOliveira, Julia Mathias deMorais Hanriot, Sérgio deSilveira, Hairton Júnior Jose daMoreira, Vinicius Guerra
Tire is the only part of the aircraft that contacts the ground, which not only bears the vertical load and lateral load of the whole aircraft, but also provides adequate ground friction to decelerate the aircraft when braking, so the tires are important parts for aircraft take-off and landing. Besides safety concerns, tire physical properties such as vertical, lateral stiffness as static performance and rolling relaxation length, yawed rolling cornering force as dynamic performance are often required by aircraft manufacturers for analyzing aircraft maneuverability. Besides analysis or similarity by experience from other aircraft projects, tires are often qualified by a number of tests, both static and dynamic, to ensure the safety of tires and acquire tire physical performance data.
Ji, Teng
As advanced technologies reshape the medical device landscape, the demands placed on contract manufacturers are evolving. Today’s partners are expected to do more than deliver components — they must anticipate disruptions, adapt quickly, and bring a level of technical and strategic depth that supports faster development without compromising quality.
Over the almost four decades of having a front row seat to the world's most exciting and dynamic industry, this author has witnessed scores of events, influences and secular shifts. These include new trade agreements, vehicle efficiency initiatives, new technology integration, the occasional bankruptcy, and, of course, the rise and fall of various sales and production markets. One secular shift is still apparent today. In the 1980s, several Japanese OEMs entered the North American market from a production perspective. Growing market share in the U.S. and Canada dictated that these OEMs needed to add North American capacity to reduce inventory, equalize currency, and commit to this market. One byproduct of the rise of Japanese OEMs and their methods was a truly influential book. “The Machine That Changed the World” was a mustread for anyone in our industry (still is). This book, led by MIT's James Womack, outlined the lean production methods by Japanese OEMs and their suppliers. Suffice
Finland-based Metos Oy, a manufacturer of professional stainless steel kitchen equipment, needed a welding solution that could deliver flawless, pressure-rated welds for small batches of high-spec products, which feature tubular structures and circular shafts that required continuous, precision welding.
Battery technology is at the center of global innovation. From electric vehicles and off-highway machinery to consumer electronics and grid storage, demand for high-performing, reliable batteries has never been higher. This acceleration creates pressure on manufacturers to scale production while safeguarding quality and throughput.
Automating harvesters started out as a necessary solution to a severe labor shortage in 1990, Trebro Manufacturing states on its website. The Billings, Montana-based manufacturer has been producing turf harvesting machines since 1999, and its automated sod harvesters and entire harvesting process feature self-driving, automated-control functions. The company's tag line, “The Future of Turf Harvesting,” refers to its position of being the first in the industry to offer automated turf harvesting products. Trebro's AutoStack 3 harvester is an automated combine for turf that steers itself while an operator monitors and performs quality control actions when needed. The harvesting process combines several automated control processes.
FEV has a solution to downsize and reduce the complexity of off-highway machines via its electrified planetary gearset architecture. IVT Expo 2025 in Chicago featured a summit where industry professionals presented and discussed the nuts and bolts of the technology that powers the off-highway vehicle industry. Electrification continues to be a centerpiece of these discussions, but OEMs and suppliers are beginning to supply answers to many of the questions that this challenge presents. During the expo, several presentations covered the integration of electric powertrains at the component and architecture level. One presented by Thomas Wellman, chief engineer, drivetrain systems, FEV North America, detailed an EPGS (electrified planetary gear-set) off-highway drivetrain architecture that is modular and scalable for a variety of powertrain configurations.
Wolfe, Matt
For any supplier in the medical device manufacturing industry, sustainable success requires an ability and a willingness to bring customers’ ideas to reality. There are often innovative, potentially life-saving projects that are delayed or even abandoned due to limitations on the manufacturing end. However, many specifications that seem impossible to meet can be achieved with persistence, collaboration, and dedication to customers’ ideas.
As I'm wont to do come December, with work well underway on the first issue of the new year, I like to take stock of upcoming venues for innovative product reveals and thought-provoking presentations on emerging trends and technologies. Come the first week of January, that means CES in Las Vegas. Traditional equipment manufacturers have increasingly used the event to demonstrate to the broader public that they not only deal in metal but also the digital realm. For example, earlier this year at CES, John Deere revealed its second-generation tech stack featuring camera pods, Nvidia Orin purpose-built processors and Deere's VPUs (vision processing units), along with four new autonomous machines including the 9RX 640 tractor for open-field ag operations. The company is exhibiting again this coming year.
Gehm, Ryan
When manufacturers seek to leverage specialized expertise, advanced processing capabilities, or proprietary technologies without assuming the financial burden of acquiring and maintaining dedicated equipment or facilities, they often turn to toll processing.
In this Q&A, Audrey Turley, director of lab operations – biosafety at Nelson Laboratories, spoke with Medical Design Briefs about the critical importance of monitoring and managing material changes in medical devices. Even seemingly minor shifts — such as switching suppliers or altering processing steps — can introduce unknown additives or variations that impact biocompatibility and, ultimately, patient safety. Turley discusses how manufacturers can effectively document and justify changes, maintain regulatory compliance, and strengthen supplier relationships to ensure ongoing device safety. She also shares insights into trends shaping post-pandemic supply-chain strategies and the growing emphasis on proactive risk assessment and communication across the product lifecycle.
This specification covers particle size classifications and corresponding particle size distribution requirements for metal powder feedstock conforming to a classification.
AMS AM Additive Manufacturing Metals
This standard is for use by organizations that procure and integrate EEE Parts. These organizations may provide EEE Parts that are not integrated into assemblies (e.g., spares and/or repair EEE Parts). Examples of such organizations include, but are not limited to, the following: Original Equipment Manufacturers; contract assembly manufacturers; maintenance, repair, and overhaul (MRO) organizations; and suppliers that provide EEE Parts or assemblies as part of a service. These requirements are intended to be applied (or flowed down as applicable) through the supply chain to all organizations that procure and integrate EEE Parts and/or systems, subsystems, or assemblies. The mitigation of Counterfeit EEE Parts in this standard is risk based. These mitigation steps will vary depending on the criticality of the application and desired performance and reliability of the equipment/hardware. The requirements of this document are used in conjunction with the organization’s higher-level
G-19 Counterfeit Electronic Parts Committee
In today’s competitive landscape, industries are relying heavily on the use of warranty data analytics techniques to manage and improve warranty performance. Warranty analytics is important since it provides valuable insights into product quality and reliability. It must be noted here that by systematically looking into warranty claims and related information, industries can identify patterns and trends that indicate potential issues with the products. This analysis helps in early detection of defects, enabling timely corrective actions that improve product performance and customer satisfaction. This paper introduces a comprehensive framework that combines conventional methods with advanced machine learning techniques to provide a multifaceted perspective on warranty data. The methodology leverages historical warranty claims and product usage data to predict failure patterns & identify root causes. By integrating these diverse methods, the framework offers a more accurate and holistic
Quadri, Danishuddin S.F.Soma, Nagaraju
Autonomous negotiation systems, powered by artificial intelligence, are transforming supply chain management by optimizing supplier interactions. This paper proposes a framework for autonomous supplier negotiation using Statistical hypothesis testing to evaluate multiple negotiation strategies under uncertain conditions. Paper models supplier price negotiations with Random simulations, incorporating supplier cost variability and negotiation dynamics. Three strategies—distributive, integrative, and hybrid—are tested across diverse scenarios, with performance measured by negotiated price outcomes. Statistical hypothesis testing is applied to compare strategy effectiveness, identifying the hybrid approach as optimal for balancing cost savings and supplier relationships. The framework offers actionable insights into implementing autonomous negotiation systems in procurement as Agents negotiating with suppliers.
Panda, Dinesh Abhimanyu
This paper introduces an AI-powered mobile application designed to enhance vehicle warranty management through real-time diagnostics, predictive maintenance, and personalized support. The system supports multi-modal inputs (text, voice, image, video), integrates real-time On-Board Diagnostics (OBD) data, and accesses OEM warranty terms via secure APIs. It employs supervised, unsupervised, and reinforcement learning to deliver accurate fault detection, tailored recommendations, and automated claim decisions. Contextual analysis and continuous learning improve precision over time. The application also provides service cost estimates, part availability, and proactive maintenance alerts. This approach improves customer satisfaction, reduces warranty costs, and streamlines aftersales support. Utilizing advanced AI and machine learning algorithms, the application interprets customer queries through multiple input modes—text, voice, video, and image—and retrieves relevant information from the
Ramekar, Vedant MadhavChaudhari, Hemant
The Operator’s Field of Vision (FOV) test, conducted in accordance with IS/ISO 5006:2017, is a vital assessment to ensure the safety and operational comfort of personnel operating Construction Equipment Vehicles (CEVs) / Earth-Moving Machinery. IS/ ISO 5006:2017 defines rigorous guidelines for evaluating the operator’s visibility from the driver's seat, with particular emphasis on the Filament Position Centre Point (FPCP), determined from the Seat Index Point (SIP) coordinates. The test includes assessment of masking areas, focusing on the Visibility Test Circle (a 24-meter diameter ground-level circle around the machine), and on the Rectangular Boundary on which a vertical test object is placed at a height specific to the machine type and its operating mass. These parameters are designed to simulate real-world operating conditions. This paper introduces a portable testing setup developed specifically for conducting the Operator’s FOV test as per IS/ISO 5006:2017. The setup facilitates
Ghodke, Dhananjay SunilTambolkar, Sonali AmeyaBelavadi Venkataramaiah, Shamsundara
This paper introduces a comprehensive solution for predictive maintenance, utilizing statistical data and analytics. The proposed Service Planner feature offers customers real-time insights into the health of machine or vehicle parts and their replacement schedules. By referencing data from service stations and manufacturer advisories, the Service Planner assesses the current health and estimated lifespan of parts based on metrics such as days, engine hours, kilometers, and statistical data. This approach integrates predictive analytics, cost estimation, and service planning to reduce unplanned downtime and improve maintenance budgeting, aligning with SAE expectations for review-ready manuscripts. The user interface displays current part health, replacement due dates, and estimated replacement costs. For example, if air filter replacement is recommended every six months, the solution uses manufacturer advisories to estimate the remaining life of the air filter in terms of days or
Chaudhari, Hemant Ashok
NASA has developed a new technology to track the status of, and changes to, enterprise level programmatic operations. Enterprise decision making and operations rely on management of non-traditional configuration management (CM) components like estimates, agreements, goals, policies, etc. Additionally, enterprise operations have unique and diverse contexts/ environments such as reviews, workshops, fire drills, Office of Management and Budget (OMB) and Congressional actions, procurements, etc.
The high rate of structural changes to the North American Light Vehicle market demands a new approach by the supply base towards strategic planning. A new Supplier Strategy Playbook is in order. First, some historical perspective. For the last several decades, suppliers grew accustomed to a product cadence of approximately five years between all-new platforms and major revisions. In North America, we were constantly pressed to continue improving vehicle efficiency and reduce emissions. Improved powertrain efficiency, vehicle lightweighting, and the advent of enhanced aerodynamics helped an industry that required constant innovation. Additionally, many programs were global in scope, requiring production and tooling in the major regions to launch in close sequence with global scale in tow. Wash, Rinse, Repeat. The textbook for suppliers was complex, though relatively predictable.
Celebrating its 35th year, the National Aerospace Defense Contractors Accreditation Program (Nadcap) continues to advance quality assurance and regulatory compliance for aviation, defense, and space OEMs and suppliers. This article summarizes how Nadcap accreditation works, its benefits for manufacturers, and its role in expanding additive manufacturing through industry-wide consensus. The Nadcap program was first established in 1990 by a small group of aerospace and defense OEMs. Their goal was to create an accreditation initiative that provides a common approach to auditing the manufacturing and production processes used by companies supplying parts, components, structures, and services to major aerospace and defense OEMs. This foundation set the stage for Nadcap's continued focus on quality assurance and regulatory compliance in the industry.
This paper investigates the portability of custom embedded Real-Time Operating System images. The limitations of these images, including vendor-locking, are addressed through the use of VirtIO. We create a series of experiments demonstrating the compatibility of VirtIO with different processors, peripherals, OS vendors, image environments, and processor updates in line with the Department of Defense’s open standards such as MOSA. The experiments reveal that VirtIO-enabled systems can easily migrate between processors and Operating Systems without the need for new drivers, eliminating vendor-locking and increasing system adaptability.
Studer, NathanGuikema, ChristopherSpidle, EricLarson, Aaron
While the Department of Defense’s transition to model-based deliverables promises numerous benefits, it presents a formidable challenge for acquisition program offices struggling to acquire the requisite skill sets. A critical deficiency in experience with Systems Modeling Languages (e.g., SysML) and essential modeling tools (e.g., Cameo Systems Modeler) has resulted in a preference for traditional document-based deliverables. This paper explores how Model-Based Systems Engineers can address this gap by leveraging data-driven insights to support design reviews and enhance stakeholder communication. To overcome the challenge of limited Model-Based Systems Engineering expertise, we introduce a model-based design review tool that simplifies complex vendor system architecture models, making the information readily usable for Subject Matter Experts. The tool’s ”indirect commenting method” and heuristics facilitate effective model evaluation and increase confidence in vendor designs beyond
Connor, ZacharyScheithauer, SarahKoduru, RohithNardone, TannerLambert, Patrick
With the introduction of the Euro 7 regulation, non-exhaust emissions – particularly those arising from brake and tire abrasion – will be regulated and subject to emission limits for the first time. This presents significant challenges not only for OEMs striving to meet these targets within the given timeframe, but also for suppliers, who must develop innovative solutions for the precise measurement, analysis, and mitigation of these emissions. To address this, it is essential to establish and industrialize new testing methodologies as structured, scalable, and cost-efficient processes. Beyond pure measurement capability, service providers in this domain are increasingly expected to serve as feedback mechanisms – identifying process limitations, proposing targeted improvements, and thereby enabling continuous development in line with evolving technical and regulatory requirements. In this context, AVL is pursuing a holistic development strategy that integrates brake emission
Grojer, Bernd
Li-ion battery performance is highly dependent on the electrode materials. The composition of the negative and positive electrodes influences crucial aspects of the Li-ion cell, including energy density, ageing behavior and thermal stability. Recent Li-ion technologies include the use of composite graphite-silicon negative electrodes to improve the energy storage capacity of the otherwise graphite-only negative electrode. This article evaluates the impact of negative electrode composition (standard graphite vs. Si-Gr) on the performance of two recent technologies of Li-ion batteries from the same manufacturer, focusing on electrical performance and safety behavior. The studied technologies are the LG M50LT and LG M58T, the latest one introducing a considerable increase of capacity, passing from 4.80 to 5.65 in nominal capacity. This article abords the comparison of both technologies in electric performance, electrode composition, cell design and thermal stability. Electrical
Cruz Rodriguez, Jesus ArmandoLecompte, MatthieuRedondo-Iglesias, EduardoPelissier, SergeAbada, Sara
Items per page:
1 – 50 of 10312