Browse Topic: Hydrogen fuel

Items (1,690)
The goal of the development of an electric aircraft engine is to create an aircraft system that achieves ultimate efficiency using hydrogen fuel instead of fossil fuels. Therefore, it is necessary to focus on reducing weight as much as possible, and this paper describes the approach to such fuel cell-powered aircraft. The authors have adopted a superconducting coreless rotating electric machine with an integrated hydrogen tank and are pursuing a target of 70kg or less for the main components of a 2MW rotating electric machine. High-temperature superconducting cables have zero electrical resistance and can carry a very high current density, but the alternating current (AC) loss generated when used in AC has been an issue in their application to rotating electric machines. In 2023, The SCSC cable was developed to be a low-AC-loss, robust, and high current cable concept, in which copper-plated multifilament coated conductors are wound spirally on a core. In addition to using this
Oyori, HitoshiSakurai, ShoKusase, ShinYoshida, YukihiroYoshinaga, SeiichiroNose, HiroyukiAmemiya, Naoyuki
Lin, RuiAdas, Camilo Abduch
Muelaner, Jody EmlynMoran, MatthewPhillips, Paul
The use of hydrogen as a sustainable fuel in the short term is hampered by the impossibility of large scale use due low availability. In order to promote decarbonization, complementary solution for a smooth transition is to dilute it in a mixture with methane, in a current Port Fuel Injection (PFI) internal combustion engine (ICE). This can be done as a retrofit after limited structural modifications, such as the introduction of a passive prechamber. Such a solution allows a reduction of the carbon footprint of traditional ICEs through more efficient combustion (both the prechamber technology and the hydrogen fuel properties promote an increase in combustion speed) and a reduced carbon content in the fuel. The present research activity has been carried out through numerical investigation based on three-dimensional CFD analyses to simulate the behavior of a natural gas engine fueled with CH4-H2 blends. The combustion mechanism for the fuel blend was validated against measurements of the
Balduzzi, FrancescoFerrara, GiovanniDi Iorio, SilvanaSementa, Paolo
The use of small 2-stroke crankcase scavenged engines running on hydrogen is very attractive for low power rates, when low cost and compact dimensions are the fundamental design constraints. However, achieving optimal performance with hydrogen fuel presents challenges, including uneven air-fuel mixtures, fuel losses, and crankcase backfiring. This research focuses on a small 50cc 2-stroke loop-scavenged engine equipped with a patented Low-Pressure Direct Injection (LPDI) system, modified for hydrogen use. Experimental results demonstrate performance comparable to the gasoline counterpart, but further optimizations are needed. Consequently, CFD-3D simulations are employed to analyses the injection process and guide engine development. The numerical analysis focuses on a fixed operating condition: 6000 rpm, Wide Open Throttle (WOT), with a slightly lean mixture and injection pressure fixed at 5 bar. A numerical model of the entire engine is set up with the primary objective of improving
Caprioli, StefanoSchoegl, OliverOswald, RolandKirchberger, RolandMattarelli, EnricoRinaldini, Carlo Alberto
Recently, global interest in hydrogen as a powerful, promising and clean source of energy has increased. Green hydrogen production (GHP) is considered one of the most important modern projects worldwide, as it is the way to achieve a clean, healthy and sustainable environment. GHP plays a major role to improve public health. There are several methods for producing or harvesting green hydrogen, the most famous of which are: 1) The electrolysis of water using a proton exchange membrane and metal foam at low temperatures and 2) Flash Joule Heating (FJH) method for heating plastic waste at high temperatures using low-carbon emissions technology. However, both methods still suffer from some difficulties. This calls for the need to search for scientific solutions to make hydrogen available at reasonable prices. While the first method is considered better for producing high-purity hydrogen compared to the second method, it faces challenges in collecting hydrogen on the surface of the negative
Hamed, Maryam SalahAli, Salah H. R.
In cogeneration system, the pre-chamber natural gas engine adopts combustion technologies such as ultra-high supercharged lean burn and Miller cycle to increase the theoretical efficiency by increasing the specific heat ratio and the mechanical efficiency by improving the specific power. In recent years, the use of hydrogen fuel has been attracting attention in order to achieve carbon neutrality, and it is required to operate existing high-efficiency natural gas engines by appropriately mixing hydrogen. For this purpose, it is important to have natural gas and hydrogen co-combustion technology that allows combustion at any mixture ratio without major modifications. The authors mixed hydrogen into the fuel of an ultra-high supercharged lean burn pre-chamber natural gas engine (Bore size: 200mm) that has already achieved high efficiency and performed combustion experiments at BMEP (Brake mean effective pressure) of 2 MPa or more. The engine load and hydrogen mixture ratio were used as
Morikawa, KojiKimura, ShinSakai, ShunyaMoriyoshi, Yasuo
Fuel economy and the ability to maintain the state of charge (SOC) of the battery are two key metrics for the energy management of a full-power fuel cell hybrid vehicle fitted with a small-capacity battery pack. To achieve stable maintenance of SOC and near-optimal fuel consumption, this paper proposes an adaptive equivalent consumption minimization strategy (PA-ECMS) based on power prediction. The strategy realizes demand power prediction through a hybrid deep learning model, and periodically updates the optimal equivalent factor (EF) based on the predicted power to achieve SOC convergence and ensure fuel economy. Simulation results show that the hybrid deep learning network model has high prediction accuracy with a root mean square error (RMSE) of only 0.733 m/s. Compared with the traditional ECMS based on SOC feedback, the PA-ECMS effectively maintains the battery SOC in a more reasonable range, reduces the situation of the fuel cell directly charging the power cell in the high
Gao, XinyuJu, FeiChen, GangZong, YuhuaWang, Liangmo
Decarbonized or low carbon fuels, such as hydrogen/methane blends, can be used in internal combustion engines to support ambitious greenhouse gas (GHG) emission reduction goals worldwide, including achieving carbon neutrality by 2045. However, as the volumetric concentration of H2 in these fuel blends surpasses 30%, the in-cylinder flame propagation and combustion rates increase significantly, causing an unacceptable increase in nitrogen oxides (NOx) emissions, which is known to have substantial negative effects on human health and the environment. This rise in engine-out NOx emissions is a major concern, limiting the use of H2 fuels as a means to reduce GHG emissions from both mobile and stationary power generation engines. In this study, an experimental investigation of the combustion performance and emissions characteristics of a 4th generation Tour split-cycle engine was undertaken while operating on 100% methane and various hydrogen/methane fuel blends (30%, 40%, and 50% by volume
Bhanage, PratikCho, KukwonAnderson, BradleyKemmet, RyanTour, GiladAtkinson, ChrisTour, HugoTour, Oded
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
Yoo, Dong YeonChavare, SudeepViswanathan, SankarMouyianis, Adam
Introducing hydrogen (H2) into the intake air of diesel engines provides a near-term approach to reducing tailpipe CO2 emissions from heavy-duty commercial vehicles. The premixed hydrogen results in a complex H2-Diesel dual fuel (H2DF) combustion process, where H2 can both participate in the non-premixed diesel combustion and result in a propagating H2/air combustion. These interactions influence engine combustion characteristics, including in-cylinder pressure and heat release rate (HRR), as well as emissions. The nature and extent of the impact depends on the amount of H2 introduced as a function of the total fuel energy (H2 energy share ratio - HES), the trapped air mass, and engine operating conditions. To optimize the HES ratio under different conditions, it is crucial to understand how H2DF combustion differs from diesel combustion and how this limits engine operation and impacts emissions. To investigate these effects, a heavy-duty class 8 truck fitted with an H2DF system
Farzam, RezaGuan, MangGmoser, RaineSteiche, PatrickKirchen, PatrickMcTaggart-Cowan, Gordon
Since the 1860 Hippomobile, hydrogen has been a part of powered mobility. Today, most hydrogen storage applications use cylindrical tanks, but other solutions are available. At a recent Bosch-sponsored event, SAE Media noted Linamar's Flexform conformable storage, which the company says uses the same or less material for a given storage volume while delivering anywhere from 5-25% more volumetric efficiency than conventional cylindrical tanks within that volume. “We see space as a regular bounding box where all you're losing is this area around the corners, closer to five to 10% [loss]. Where Flexform really shines and where the value proposition really is, is irregular spaces, such as between frame rails,” said representatives from the Linamar engineering team.
Cannell, Thom
From automakers to companies in the wider mobility industry, hydrogen power is seeing no shortage of investment and research even as some remain unconvinced of its future. Most outsiders to the transportation industry don't know much about rapid developments in hydrogen fuel-cell and hydrogen internal-combustion. There just aren't the large-scale commercial and public efforts to inform the public as exist for the battery-electric vehicle market. Still, 50% of people in a recent Department of Energy survey said they understood that hydrogen has a chance to be a clean alternative source of power for vehicles and even for homes. Spotlight or no, progress is being made. And though much of it is outside the United States, American cities and companies have absolutely not given up on the technology. SAE Media wanted to check in and note recent transportation developments that use the earth's most abundant element.
Clonts, Chris
The growing demand for fossil fuels and the search for alternatives have the potential to reduce emissions and enhance energy security. Karanja oil and tire pyrolysis oil (TPO) are identified as promising substitutes. This study examines the performance and emission characteristics of a 5.2 kW, 1500 rpm, four-stroke single-cylinder compression ignition engine. The engine was tested using diesel, the optimal combination of Karanja oil biodiesel (KOME) and TPO (50:50% volume ratio), and this KOME-TPO blend with hydrogen supplied in dual fuel mode at flow rates of 10 lpm, 20 lpm, and 30 lpm, designated as H10, H20, and H30, respectively. The results indicated that BTE for H30 was the highest, reaching 32.21% compared to 30.52% for diesel at 5.2 kW BP. BSEC for H30 was the lowest at 11.18 MJ/kWh, compared to 11.80 MJ/kWh for diesel at the same BP. Emission analysis showed that smoke and HC emissions were significantly lower for hydrogen-enriched blends. At 5.2 kW BP, HC emissions for H30
Duraisamy, BoopathiStanley Martin, JeromeChelladorai, PrabhuRajendran, SilambarasanMarutholi, MubarakMadheswaran, Dinesh Kumar
Methanol, with its abundant production, mature synthesis process, well-established storage and transportation infrastructure, and no need to return the dehydrogenated product, is considered to be an ideal hydrogen carrier, is expected to play a great role in the energy transition of the transportation sector and the construction of a hydrogen transportation system. This paper focuses on the hydrogen energy supply system using methanol as a carrier, briefly introduces the basics of methanol production and transportation, and then focuses on the different routes of using methanol in hydrogen transportation infrastructure and vehicles from the perspectives of technology, economy, safety, and commercialization process. Finally, the impacts of the different routes of introducing methanol on hydrogen transportation are compared and analyzed, and the role of methanol in the energy supply of hydrogen transportation is elaborated.
Zhao, XinlongHuo, TianqingHuang, YeZheng, HuaanShi, TongqiangZhang, XuYang, FushengWu, ZhenZhang, Zaoxiao
An effective vehicle integrated thermal management system (ITMS) is critical for the safe and efficient operation of proton exchange membrane fuel cell (PEMFC) vehicles. This paper takes a fuel cell vehicle (FCV) as the research object, comprehensively considers the vehicle layout environment and thermal management requirements, and designs a complete thermal management system for FCV. The key components are selected and designed to match the performance and the control strategy of ITMS of fuel cell vehicle is developed. To do that, the ITMS model is established based on the heating principle and heat transfer theory of each key component. Then, the ITMS under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) operating conditions at different ambient temperatures are simulated and analyzed by selecting indicators such as coolant flow rate and temperature. Under the ambient temperature of 40°C, the temperature of PEMFC is basically stable between 78 °C and 83°C, the coolant outlet
Jiang, QiXiong, ShushengWang, YupengZhu, ShaopengChen, Huipeng
The development of hydrogen economy is an effective way to achieve peak carbon emission and carbon neutralization. Therein, the green production of hydrogen is a prerequisite to reach the goal of decarbonization. As an ideal route, water electrolysis has triggered intense responses under the strong support from policies, which further presenting a phenomenon of water electrolysis equipment manufactures competing to enter the market. However, the extensive growth mode is not conducive to a long term healthy development of the water electrolysis hydrogen production market where products can be sold without requiring compulsory inspection or quality inspection process due to the absence of laws and test & evaluation standards. Considering the market status and technology maturity, the main working principles and characteristics of alkaline water electrolysis (AWE) and proton exchange membrane (PEM) hydrogen production systems are summarized, and the test frameworks of the AWE and PEM
Jiao, DaokuanWang, XiaobingHao, Dong
With the global promotion of carbon neutrality policies, internal combustion engine (ICE) of traditional fossil fuel is gradually transitioning to carbon neutral fuel ICE, and hybrid dedicated engines are gradually replacing traditional internal combustion engines in the passenger car market. Ultra-lean combustion supported by active pre-chamber is one of the key technologies for achieving high thermal efficient over 45% BTE. However, there are still issues like cold start and PN emissions caused by impingement of liquid fuel injection in pre-chamber, and there is still room for improvement in thermal efficiency by less energy of pilot ignition fuel. Gaseous fuel such as hydrogen or methane have no wetting issues, and can be more easily controlled in terms of the injection amount in pre-chamber, thereby using a less amount of gaseous fuel as the pilot ignition fuel could be a solution. Due to the above situation, this article conducted experiments on a lean burn gasoline engine by
Liu, YaodongLiu, MingliHe, ZhentaoLi, XianZhao, ChuanQian, DingchaoQu, HanshiLi, Jincheng
Hydrogen fuel cell trucks have enormous development potential in the pursuit of global carbon neutrality and sustainable development. However, their commercialization and mass production are facing challenges in various aspects, especially the durability problem of fuel cells. This paper is intended to set up a high-power hydrogen fuel cell system (FCS) model, considering the fuel cell degradation factors, and based on this, proposes a two-layer fuzzy energy management strategy (EMS) to optimize the life of fuel cell and the total energy consumption of the vehicle. The first control layer provides real-time energy distribution efficiently from multiple sources and thus allows flexibility in energy supply. The second layer regulates the dynamic adjustment of fuel cell output power with degradation of both fuel cells and batteries considered, to make the prolonging of system lifetime possible. In this respect, the equivalent hydrogen consumption, which incorporates fuel cell degradation
Hou, QuanWang, HanZhu, Dan
In order to give full play to the economic and environmental advantages of liquid organic hydrogen carrier(LOHC) technology in hydrogen storage and transportation as well as its technological advantages as a hydrogen source for hydrogen refueling station(HRS) supply, it promotes the change of hydrogen supply method in HRSs and facilitates its technological landing in the terminal of HRSs. In this paper, combining the current commercialization status of organic liquid technology and the current construction status of HRS in China, we establish a traditional long-tube trailer HRS model through Matlab Simulink, carry out modification on the existing process, maximize the use of the original equipment, and introduce the hydrogen production end of the station with organic liquid as an auxiliary hydrogen source. Research and design of the two hydrogen sources of gas extraction strategy and the station control strategy and the formation of Stateflow language model, to realize the verification
Huo, TianqingFeng, TianyuYang, FushengHuang, YeZheng, HuaanWang, BinFang, TaoWu, ZhenZhang, ZaoXiao
The global energy crisis and environmental pollution problems have accelerated the process of the new energy technology revolution. Hydrogen energy is considered as one of the main forces of future green energy. Hydrogen internal combustion engines (H2ICES), as one of the main power forms of hydrogen energy application, have received extensive attention. It is worth noting that the characteristics of hydrogen jet affect the combustion performance and emission performance of hydrogen engines because they are directly related to the mixture formation process. In this paper, for a certain inner-opening direct injection (DI) nozzle, the Computational Fluid Dynamics (CFD) research method is used to explore the jet characteristics of the straight-hole (SH) nozzle, the diverging-tapered-hole (DTH) nozzle, and the stepped-hole (STH) nozzle from aspects such as mass flow rate, hydrogen mass fraction field, velocity field, and pressure field. The results show that for inward-opening DI nozzles
Yan, ChaoLuo, QingheLi, YikaiTang, Hongyang
In recent years, the amount of industrial sewage sludge awaiting treatment has continued to rise steadily, posing serious risks to human health and the ecological environment if mishandled. This study proposes a photothermal-driven supercritical water co-gasification of sludge-coal thermochemical synergistic conversion system for efficient hydrogen production. The main feature is that the medium-low temperature exothermic heating method uses concentrated solar energy to provide reaction heat for the co-gasification process. This approach synergistically converts solar energy into syngas chemical energy while meeting the heat demand of the co-gasification hydrogen production process. The results show that this co-gasification system for hydrogen production can achieve an energy efficiency of 56.82%. The sensitivity analysis shows that the molar flow rate of hydrogen increased from 44.02 kmol/h to 217.51 kmol/h as the gasification temperature increased from 500°C to 700°C. The concluded
Li, GuangyangXue, XiaodongWang, Yulin
Hydrogen fuel cell vehicles are seen as an ideal solution to the issues of energy security and environmental pollution. There is a great need for a comprehensive understanding of the ecological impacts associated with fuel cells throughout their entire life cycle, from fuel extraction through manufacturing, operation, and ultimately to the disposal stage. This paper reviews the progress of research on measuring the emissions of hydrogen fuel cells and focuses on the carbon footprint throughout the fuel cell’s life cycle. The study defines the boundary conditions of the fuel cell system using the PLAC (Process-based life cycle assessment) method, analyzes the proportion of each material in the system, and divides its life cycle into six stages: raw material preparation, manufacturing and assembly, transportation and logistics, utilization, maintenance and repair, and scrap and recycling. This study uses the GREET analysis software to introduce a carbon footprint analysis model for a
Zhang, RuojingZhu, HaominZhou, XiangyangPan, Xiangmin
Hydrogen energy is the best form of energy to achieve "carbon peak, carbon neutrality", and is known as the most promising clean energy in the 21st century because of its diverse sources, clean and low-carbon, flexible and efficient, and wide application sce-narios. Hydrogen internal combustion engine has the advantages of zero carbon emission, high efficiency, high reliability and low cost, and has become one of the important directions of hydrogen energy application. The paper first analyzes the development and application of hydrogen energy industry in recent years, covering many aspects such as laws and regulations, energy structure, realization path, and development status. Then, the research and development process of the hydrogen engine of the technical team of Dongfeng Motor Group Co., Ltd. R&D Institute Department is introduced, and the effective thermal efficiency of 45.04% is achieved. Finally, the future of hydrogen engine is further prospected.
Jin, XiaoyanZhang, SheminDuan, ShaoyuanLiu, CongZhou, Hongli
In recent trends, renewable energy has gained significance in worldwide applications due to avail from nature, low cost, and pollution-free. Based on the world population, a large volume of municipal and sewage water waste affects the environmental water sources, resulting in pollution. To save the earth and maintain a green environment, the present investigation aims to produce bio-hydrogen from municipal and sewage waste through a gasification process with a pyrolysis reactor. The temperature and time of the gasification process were varied by 600-900°C and 60 min. The impact of gasification temperature (600-900°C) and 60 min on molar fraction, gas yield, and gasification efficiency behaviour has to be investigated, and higher temperature (900°) with 60 min gasification process showed the superior molar fraction with 18.4 mol/kg hydrogen yield and improved gasification efficiency of 72%. The gained bio-hydrogen suggested energy storage applications.
De Poures, Melvin VictorVenkatesh, R.Karthikeyan, N.Manivannan, S.Sugadeva Boopathi, M.Baranitharan, BalakrishnanMadhu, S.Kaliyaperumal, GopalSakthi Murugan, V.
Hydrogen fuel is becoming a popular choice in many energy applications because of its innovative green technology, which produces zero carbon emissions. It also offers better efficiency than fossil fuels. Current research focuses on obtaining hydrogen energy from agricultural waste using a gasification process. This process involves heating the waste at gasification temperatures 300, 400, 500, 600, and 700°C, maintaining a residence time of 60 minutes, and applying a gasification pressure of 20 bar. The effects of gasification temperature on the effectiveness of hydrogen production are examined. At a high gasification temperature of 700°C and a residence time of 60 minutes, the processed agro feedstock showed impressive results. It achieved a molar fraction of 12% carbon dioxide (CO2), 31% methane (CH4), and 55% hydrogen (H2), leading to an improved hydrogen yield of 15.2 mol/kg. Additionally, it demonstrated better hydrogen selectivity at 8.1 and a higher gasification efficiency of 61
Venkatesh, R.De Poures, Melvin VictorRaguraman, B.Marimuthu, S.Devanathan, C.Baranitharan, BalakrishnanMadhu, S.Kaliyaperumal, GopalManickaraj, Pethuraj
The (commercial) aviation sector (passenger and freight), which is strongly engaged with the world efforts to mitigate the carbon emissions and their inherent climate change effects, has accounted in 2018 for 2.4 % of global carbon dioxide (CO2) emissions (pre-pandemic levels). Despite the reductions in air travel demand during the 2020 pandemic, with a reduction of up to 80% in passenger travel during the peak pandemic period, the air travel demand has already recovered to around 80% of the pre-pandemic level, with aviation emissions in 2022 reaching around 800 Mt CO2, accounting for 2% of the global energy related CO2 emissions. Moreover, the demand for air travel is expected to double by 2040, growing at an annual average rate of 3.4%, which means that. despite the efficiency improvement trend (average 2%/year), will almost double the aviation’s greenhouse (GHG) emissions, with a significant increase in its relative GHG share, compared to the other transport modes. Meanwhile the
Barbosa, Fábio Coelho
Mobility in Brazil, dominated by road transportation, is responsible for consuming around a third of the energy matrix and for emitting approximately half of the energy-related emissions in the country. Among the alternatives to reduce its greenhouse gas emissions, the use of low-carbon hydrogen has a strong potential for decarbonization and improvement of engine efficiency. Thus, this study experimentally investigated the partial replacement of commercial diesel (with 12% of fatty acids methyl esters (FAME) biodiesel) by hydrogen in a commercial vehicle equipped with a compression-ignition internal combustion engine. To investigate the effects of this substitution on performance and emission profile, the vehicles was adapted for dual-fuel operation and hydrogen was injected together with air into the MB OM 924 LA engine of a Mercedes-Benz Accelo 1016 vehicle. Tests were carried out on a chassis dynamometer with 0%, 2% and 4% slope and at speeds equal to 50, 60 and 70 km/h to simulate
Assis, GuilhermeSánchez, Fernando ZegarraBraga, Sergio LealPradelle, Renata Nohra ChaarSouza Junior, JorgePradelle, FlorianTicona, Epifanio Mamani
A Coventry University design and materials engineer is leading an international team of researchers in the creation of a new material for liquid hydrogen storage tanks that are used to propel rockets into space. Coventry University, Coventry, UK The future of space travel is seemingly changing by the day and a Coventry University academic is doing his bit to stay at the front of the space race. Dr. Ashwath Pazhani along with an international team of researchers have created a new material for storing the liquid hydrogen used to propel rockets into space by the likes of NASA.
There is great recognition regarding the importance of hydrogen as an energy route for the decarbonization of road vehicles. Several countries are making large investments to create products, services, and infrastructures that allow hydrogen to be used as a clean source for propulsion, but there are still many open questions. This complete hydrogen chain involves production, transformation, transport, storage, and use. Although many initiatives are seeking global production, the use of low-carbon hydrogen is not yet economically competitive. Therefore, for this industry to establish itself, and acknowledging the characteristics of each region, there needs to be more intense coordination of efforts between the different industrial and political segments. Low-carbon Hydrogen Use Across Economic Sectors and Global Regions establishes premises for the hydrogen economy and its main environmental aspects. It also includes proposals and scenarios to establish a strategy that relates to
Adas, Camilo Abduch
Recuperated low-pressure-ratio split-cycle engines represent a promising engine configuration for applications like transportation and stand-alone power generation by offering a potential efficiency as high as 60%. However, it can be challenging to achieve the stringent NOx emission standard, such as Euro 6 limit of 0.4 gNOx/kWh, due to the exhaust cylinder high intake temperature. This paper presents experimental investigation of hydrogen-air combustion NOx emissions for such engines for the first time. Experiments are carried out using a simplified constant-volume combustion chamber with glow-plug ignition. Two fuel injection techniques are performed: direct injection and injection via a novel convergent-divergent injector. For the direct injection scenario, NOx levels are unsatisfactory with respect to the Euro 6 standards over a range of operating temperatures from 200 °C to 550 °C. Recorded NOx levels can reach twice the permissible limit which necessitates the implementation of
Eldakamawy, Mohamed HossamPicard, Mathieu
Hydrogen is considered one of the most promising clean energy sources. Hydrogen fuel cells offer high energy conversion efficiency and zero emissions. But the development of hydrogen fuel cells faces many challenges, including the issue of carbon-monoxide (CO) poisoning of the fuel cell electrodes.
Global warming has intensified environmental challenges such as more intense heat waves due to the accumulation of greenhouse gases, primarily carbon dioxide (CO2), which is heavily produced in power generation and transportation sectors, traps heat and raises the Earth’s temperature. Significant measures must be taken to reduce its production and impact on our environment. Hydrogen (H2) enrichment is a promising technology that enables higher thermal efficiencies and lower exhaust emissions. However, various parameters need to be optimized for internal combustion engines (ICE), which increases experimental and computational costs. The main goal of this work is to offer a reliable correlation that can be used as an input parameter for turbulent combustion models to enhance predictions and lower the cost of running simulations. Thus, the laminar burning velocity (LBV) of binary fuel mixtures is investigated numerically over a wide range of initial conditions (300–600 K and 1–11 atm) and
Almansour, Bader
The societies around the world remain far from meeting the agreed primary goal outlined under the 2015 Paris Agreement on climate change: reducing greenhouse gas (GHG) emissions to keep global average temperature rise to well below 20°C by 2100 and making every effort to stay underneath of a 1.5°C elevation. In 2020 direct tailpipe emissions from transport represented around 8 GtCO2eq, or nearly 15% of total emissions. This number increases to just under 10 GtCO2eq when indirect emissions from electricity and fuel supply are added, for a total share of roughly 18%. Following the current trend, direct and indirect emissions in transport could reach above 11 GtCO2eq by 2050. Roughly 76% of transport emissions are related to land-based passenger and freight road transport. Emissions from aviation and shipping account for the remaining 24% of 2020 emissions. Hydrogen (H2) is in this scenario considered to play a key role as a carbon-free and versatile energy carrier. Combustion of hydrogen
Koerfer, ThomasDurand, ThomasVirnich, Lukas
The global push to minimize carbon emissions and the imposition of more rigorous regulations on emissions are driving an increased exploration of cleaner powertrains for transportation. Hydrogen fuel applications in internal combustion engines are gaining prominence due to their zero carbon emissions and favorable combustion characteristics, particularly in terms of thermal efficiency. However, conventional Spark-Ignition (SI) engines are facing challenges in meeting performance expectations while complying with strict pollutant-emission regulations. These challenges arise from the engine's difficulty in handling advanced combustion strategies, such as lean mixtures, attributed to factors like low ignition energy and abnormal combustion events. To address these issues, the Barrier Discharge Igniter (BDI) stands out for its capability to generate non-equilibrium Low-Temperature Plasma (LTP), a strong promoter of ignition through kinetic, thermal, and transport effects. Its surface
Avana, MassimilianoRicci, FedericoPapi, StefanoZembi, JacopoBattistoni, MicheleGrimaldi, Carlo N.
The topic of decarbonisation involves improvements of hybrid vehicles powertrains design, from fuel type, powertrain components sizing and configuration up to control strategies. To reduce the emission of pollutants due to the combustion of traditional fuels, manufacturers are moving towards the use of “green fuels”, such as green hydrogen. In this context, the series hybrid vehicles demonstrate excellent potential: they can be equipped with hydrogen-fuelled combustion engines as range extenders, which can operate at optimal conditions without suffering from extreme transient manoeuvres. A suitable design of the control strategy of vehicle powertrain is mandatory to optimally manage the power split between range extender and battery, considering features and operating limits of both components according to power constraints. This paper proposes an Energy Management Strategy (EMS), derived from an optimal approach suitable for online applications, which accounts for the key points
Cervone, DavideSicilia, MassimoPandolfi, AlfonsoPolverino, PierpaoloSementa, PaoloArsie, IvanPianese, Cesare
FirstElement's station at the Port of Oakland can put 100 kg of hydrogen in up to 200 trucks a day in less than 10 minutes each. It may be missing the food and hospitality trappings of what most would consider a proper “truck stop,” but the nation's first high-volume, rapid-fill hydrogen truck refueling station is a giant leap toward a future in which H2 is the natural and sustainable fuel for the nation's heavy-haul overland transportation needs. FirstElement Fuel recently opened the location under its True Zero brand at the Port of Oakland, where a dedicated fleet of 30 Class 8 Hyundai XCIENT hydrogen-powered trucks will stay fueled as they operate virtually 24/7 moving containers and cargo around Alameda County. The station, which stores liquid H2 on site, has two HD truck fueling positions and four medium- or light-duty positions. Among the station's previously unheard-of numbers: 18,000 kg (39,700 lb) per day of pumping capacity. Can simultaneously support back-to-back fast fills
Clonts, Chris
Liquid hydrogen (LH2) is playing a key role in decarbonization of the global energy landscape. Its large-scale continuous use in the space industry provides a foundation for transitioning state-of-the-art capabilities to other sectors. Key advancements in materials, cryogenics, and system optimization are being applied to reduce costs and increase performance for various mobile and stationary use cases. However, some unsettled topics remain to be addressed related to production, liquefaction, storage, distribution, safety, and economics. The optimal solutions to these unsettled topics will vary depending on the region, industry sector, and application. Decarbonizing Mobility with Liquid Hydrogen provides a brief and balanced assessment of the relevant technologies, established practices, system operations, emerging trends, strategic considerations, and economic drivers. Addressing these unsettled topics is tied to the evolving economic strategies of governmental policies, public and
Moran, Matthew
Society is moving towards climate neutrality where hydrogen fuelled combustion engines (H2 ICE) could be considered a main technology. These engines run on hydrogen (H2) so carbon-based emission are only present at a very low level from the lube oil. The most important pollutants NO and NO2 are caused by the exhaust aftertreatment system as well as CO2 coming from the ambient air. For standard measurement technologies these low levels of CO2 are hard to detect due to the high-water content. Normal levels of CO2 are between 400-500 ppm which is very close or even below the detection limit of commonly used non-dispersive-infrared-detectors (NDIR). As well the high-water content is very challenging for NOx measuring devices, like chemiluminescence detectors (CLD), where it results in higher noise and therefore a worse detection limit. Even for Fourier-transformed-infrared-spectroscopy-analysers (FT-IR) it is challenging to deal with water content over 15% without increased noise. The goal
Jakubec, PhilippRoiser, Sebastian
The study demonstrates the possibility and in particular the method to derive the efficiency of the entire fuel cell power system by measuring specific data of the recirculation path of the anode circuit of a fuel cell system. The results demonstrate the capabilities of the existing test rig and enable investigations on the suitability of auxiliary components. This study focuses on the hydrogen recirculation path equipped with multiple sensors and a needle valve to enable the required operating conditions of the fuel cell. Running a startup load profile without reaching the equilibrium state at all steps, the dynamic of the system and the requirements to the sensor parameters, such as sampling rate and precision, was seen. Additionally, it became obvious that the recirculation pump used is oversized, but a load point shift compensated this artifact. In detail, the stoichiometry and the efficiency of the entire system was evaluated. It was seen that the hydrogen concentration is
Allmendinger, FrankMartin, BenediktSchmidtmann, Marlen
Reducing CO2 emissions is an increasingly important issue. In aviation, approaches such as e-propulsion only represent a solution for special applications due to the low energy density of batteries. Because of the low-cost and robust design of combustion engines, this concept is still the most suitable for general aviation. For defossilization, besides e-fuels and bio-fuels, which represent the so-called sustainable aviation fuels (SAF), hydrogen can serve as a promising energy carrier for CO2 reduction. For this purpose, the combustion process of a dual-fuel hydrogen–kerosene (Jet A-1) engine was developed and investigated for use in small aircrafts. This study explores the influence of hydrogen addition on combustion parameters, emissions, and efficiency. An advantage of this special design as dual-fuel engine (hydrogen and kerosene) is the possibility of redundancy operation in the event of a H2 fuel system failure as well as full operational capability of the aircraft in the event
Reitmayr, ChristianWiesmann, FrederikGotthard, ThomasHofmann, Peter
Hydrogen has gained global recognition as a crucial energy resource, holding immense potential to offer clean, efficient, cost-effective, and environmentally friendly energy solutions. Through water electrolysis powered by green electricity, the production of decarbonized “green hydrogen” is achievable. Hydrogen technology emerges as a key pathway for realizing the global objective of “carbon neutrality.” Among various water electrolysis technologies, proton exchange membrane water electrolysis (PEMWE) stands out as exceptionally promising. It boasts high energy density, elevated electrolysis efficiency, and the capacity for high output pressure, making it a frontrunner in the quest for sustainable hydrogen production. The Application of Proton Exchange Membrane Water Electrolysis delves into the challenges and trends ahead of PEMWE—from fundamental research to practical application—and briefly describes its relative characteristics, key components, and future targets. The cost
Lin, Rui
The global transportation industry, and road freight in particular, faces formidable challenges in reducing Greenhouse Gas (GHG) emissions; both Europe and the US have already enabled legislation with CO2 / GHG reduction targets. In Europe, targets are set on a fleet level basis: a CO2 baseline has already been established using Heavy Duty Vehicle (HDV) data collected and analyzed by the European Environment Agency (EEA) in 2019/2020. This baseline data has been published as the reference for the required CO2 reductions. More recently, the EU has proposed a Zero Emissions Vehicle definition of 3g CO2/t-km. The Zero Emissions Vehicle (ZEV) designation is expected to be key to a number of market instruments that improve the economics and practicality of hydrogen trucks. This paper assesses the permissible amount of carbon-based fuel in hydrogen fueled vehicles – the Pilot Energy Ratio (PER) – for each regulated subgroup of HDVs in the baseline data set. The analysis indicates that a PER
Mumford, David K.Williams, GrahamLeclercq, Nadege
The escalating energy demand in today’s world has amplified exhaust emissions, contributing significantly to climate change. One viable solution to mitigate carbon dioxide emissions is the utilization of hydrogen alongside gasoline in internal combustion engines. In pursuit of this objective, combustion characteristics of iso-octane/hydrogen/air mixtures are numerically investigated to determine the impact of hydrogen enrichment. Simulations are conducted at 400 K over a wide range of equivalence ratio 0.7 ≤ Ф ≤ 1.4 and pressure 1–10 atm. Adiabatic flame temperature, thermal diffusivity, laminar burning velocity, and chemical participation are assessed by varying hydrogen concentration from 0 to 90% of fuel molar fraction. As a result of changes in thermal properties and chemical participation, it is noticed that the laminar burning velocity (LBV) increases with higher hydrogen concentration and decreases as pressure increases. Chemical participation and mass diffusion were found to be
Almansour, Bader
The transportation sector’s growing focus on addressing environmental and sustainable energy concerns has led to a pursuit of the decarbonization path. In this context, hydrogen emerges as a promising zero-carbon fuel. The ability of hydrogen fuel to provide reliable performance while reducing environmental impact makes it crucial in the quest for net zero targets. This study compares gasoline and hydrogen combustion in a single-cylinder boosted direct injection (DI) spark ignition engine under various operating conditions. Initially, the engine was run over a wide range of lambda values to determine the optimal operating point for hydrogen and demonstrate lean hydrogen combustion’s benefits over gasoline combustion. Furthermore, a load sweep test was conducted at 2000 rpm, and the performance and emission results were compared between gasoline and optimized hydrogen combustion. An in-depth analysis was conducted by varying fuel injection time and pressure. This enabled us to explore
Mohamed, MohamedBiswal, AbinashWang, XinyanZhao, HuaHarrington, AnthonyHall, Jonathan
In today’s landscape, environmental protection and nature conservation have become paramount across industries, spurring the ever-increasing aspect of decarbonization. Regulatory measures in transportation have shifted focus away from combustion engines, making way for electric mobility, particularly in smaller engines. However, larger applications like ships and stationary power generation face limitations, not enabling an analogous shift to electrification. Instead, the emphasis shifted to zero-carbon fuel alternatives such as hydrogen and ammonia. In addition to minimal carbon-containing emissions due to incineration of lubricating oil, hydrogen combustion with air results in nitrogen oxide emissions, still necessitating quantification for engine operation compliance with legal regulations. A commonly used multicomponent exhaust gas analyzer on FTIR principle can suffer from higher volumetric water shares in the exhaust gas of the hydrogen engine, influencing the emission analysis
Armbruster, FelinaKraus, ChristophPrager, MaximilianHärtl, MartinJaensch , Malte
Items per page:
1 – 50 of 1690