Browse Topic: Vegetable oils
This SAE Recommended Practice presents recommendations for test fuels and fluids that can be used to simulate real world fuels. The use of standardized test fluids is required in order to limit the variability found in commercial fuels and fluids. Commercial fuels can vary substantially between manufacturers, batches, seasons, and geographic location. Further, standardized test fluids are universally available and will promote consistent test results for materials testing. Therefore, this document: a Explains commercial automotive fuel components b Defines standardized components of materials test fluids c Defines a nomenclature for test fluids d Describes handling and usage of test fuels e Recommends fluids for testing fuel system materials The test fluid compositions specified in Section 7 of this document are recommended solely for evaluating materials. They are not intended for other activities, such as engine development, design verification, or process validation unless agreed
The move away from fossil fuels and the diversification of the primary energy sources used are imperative both in terms of mitigating global warming and ensuring the political independence of the Western world. For the industries of agriculture and forestry, it is possible to secure the basic energy supply through their own yield. The use of vegetable oil is a possibility to satisfy the energy requirements for agricultural machines both autonomously and sustainably. Up to now, rapeseed has been the most important plant for oil production in Western Europe. In the EU, rapeseed oil is currently credited with up to 60% fossil CO2 savings compared to conventional diesel fuel. As a result, since 2018, rapeseed oil is no longer considered as biofuel in the EU. However, if cultivation and processing are completely based on renewable energy sources, up to 90% of fossil CO2 emissions can be saved in the future. This also applies to rapeseed oil, which is a by-product of animal feed production
Currently, alternative fuels produced from waste resources are gaining much attention to replace depleting fossil fuels. The disposal of waste plastic poses severe environmental problems across the globe. The energy embodied in waste plastics can be converted into liquid fuel by pyrolysis. The present work explores the possibility of utilizing waste plastic oil (WPO) produced from municipal plastic wastes and waste cooking oil (WCO) biodiesel produced from used cooking oil in a dual fuel reactivity-controlled compression ignition (RCCI) mode. A single-cylinder light-duty diesel engine used for agricultural water pumping applications is modified to run in RCCI through suitable intake and fuel injection systems modifications. Alternative fuel blends, viz. WPO and WCO biodiesel with 20 vol. % in gasoline and diesel is used as a port and direct-injected fuels in RCCI. The premixed ratio and direct-injected fuel timings are optimized to achieve maximum thermal efficiency. The engine
This document describes the materials, equipment, and processing techniques utilized in the fabrication of polyimide printed wiring boards. Included are recommendations for both double-sided and multilayer boards.
The energy demand of the world is keep increasing, major share of the demand is compensated by non-renewable fossil fuels. Automotive sector consumes a huge amount of fossil fuels, as majority of the segment use internal combustion as a prime mover. In the present era researches are carried to figure out the suitable replacements for fossil fuels to attain sustainable environment. One of the major challenge and keen interest of everyone is on waste management, several researches are aimed to bridge the gap between energy demand and waste management. In such way biofuels came into limelight a decade ago, still numerous works are carried in the area for creating socio economic friendly environment. Enormous studies have been carried out to assess their performance in the internal combustion engines, here in the present study performance of the working material against the biodiesel is studied. In order to optimize the material and its composition, there is need for characterization
Items per page:
50
1 – 50 of 359