Browse Topic: Biofuels

Items (4,246)
The integration of ethanol into gasoline presents compatibility challenges for automotive fuel-system materials. In this study, the degradation of NBR-PVC fuel hoses exposed to ethanol-gasoline blends (E30, E50, E70, and E100) was investigated under dynamic flow conditions. A custom-designed test rig simulates real-time fuel circulation for 1,200 h. FESEM, ATR-FTIR, and elemental mapping analyses revealed ethanol-induced degradation, including dehydrochlorination, plasticizer leaching, and filler detachment. Among the blends, E30 exhibited the least material degradation, whereas E100 showed significant surface damage and chemical alteration. This study recommends multilayered fuel hose structures with ethanol-resistant inner linings for enhanced durability.
PC, MuruganL S, AdhityaG, Arun PrasadW, Beno WincyT, Karthi
In this study, the combustion and emission characteristics of a single-cylinder direct injection (DI) diesel engine fueled with Spirulina biodiesel along with diesel blends were examined using a combined CFD and thermodynamic simulation framework. Three test fuels, including pure diesel (D100), Spirulina biodiesel blends (B20 and B40), and pure Spirulina biodiesel (B100), were analysed at 1500 rpm under full load. In the first stage, CFD simulations were performed in ANSYS Fluent, where the Discrete Phase Model (DPM) was applied to capture spray atomization and droplet evaporation, while a non-premixed combustion model coupled with the RNG k-ε turbulence model was employed to resolve in-cylinder flow and heat release dynamics. Subsequently, the Diesel-RK software was utilised to predict engine performance and exhaust emissions based on compression ratios (18.5) and injection timings. Results from the CFD analysis revealed faster atomization and reduced ignition delay for biodiesel
Kumar, B Varun
This study investigates the potential of using a dual green alternative fuel combination, the one is hydrogen fuel and another one is biodiesel for enhancing the Performance, combustion and emission profile of a compression ignition engine. The kapok oil biodiesel was blended with Diesel in proportions of 20% (K20) and 40% (K40) by volume. The hydrogen gas was supplied at a constant flow of 4 liter per minute (LPM). The experimental fuels are neat diesel D100, K20 (80% Diesel and 20 % kapok methyl ester), K40 (60% Diesel + 40 % Kapok methyl ester), K20 + H4L (K20 with 4 LPM hydrogen) and K40+H4L (K40 with 4 LPM hydrogen). These test blends are investigated in a single cylinder direct injection CI engine under 0% to 100% load conditions at a fixed speed of 1500 rpm combustion, and emissions characteristic were evaluated and compared with base fuel. The outcomes indicated that the use of B20 and B40 blends without hydrogen led to reduced BTE because of their lower cetane number and
Anbarasan, BM, KumaresanBalamurugan, SRajesh, Munnusamy
Rolls-Royce has successfully tested the world's first high-speed marine engine powered exclusively by methanol on its test bench in Friedrichshafen, Germany. The company began this engine-development journey six years ago when it gathered experts to determine what the future fuel of the maritime industry should be, according to Denise Kurtulus, senior vice president of global marine at Rolls-Royce. “For us, it's clear. It's methanol,” she said. Rolls-Royce worked with industry partners as part of the joint project meOHmare, which is funded by the German Federal Ministry for Economic Affairs and Energy. Injection system specialist Woodward L'Orange and the WTZ Roßlau technology and research center contributed their expertise. Their goal was to not only develop a comprehensive concept for a CO2-neutral marine engine based on green methanol, but also to run it on the test bench by the end of 2025.
Gehm, Ryan
Increasing ethanol blending in gasoline is significant from both financial (reducing dependency on crude oil) and sustainability (overall CO2 reduction) points of view. Flex Fuel is an ethanol-gasoline blend containing ethanol ranging from 20% to 85%. Flex Fuel emerges as an exceptionally advantageous solution, adeptly addressing the shortcomings associated with both gasoline and ethanol. Performance optimization of Flex Fuel is a major challenge as fuel properties like knocking tendency, calorific value, vapour pressure, latent heat, and stoichiometric air-fuel ratio change with varying ethanol content. This paper elaborates on the experimental results of trials conducted for optimizing engine performance with Flex Fuel for a 2-cylinder engine used in a small commercial vehicle. To derive maximum benefit from the higher octane rating of E85, the compression ratio is increased, while ignition timing is optimized to avoid knocking with E20 fuel. For intermediate blends, ignition timing
Kulkarni, DeepakMalekar, Hemant AUpadhyay, RajdipKatkar, SantoshUndre, Shrikant
The adoption of flex-fuel vehicles (FFVs) in India presents a significant opportunity to reduce dependence on fossil fuels, lower greenhouse gas emissions, and ensure compliance with the country’s evolving emission norms. This paper explores the key aspects of flex-fuel technology in the context of Indian four-wheeler regulations, particularly Bharat Stage VI and potential future emission norms. The study begins with an overview of flex-fuel technology, detailing its advantages and associated challenges. A critical focus is placed on blend identification techniques, which play a vital role in optimizing combustion efficiency and ensuring seamless transitions between different ethanol-gasoline blends. Furthermore, the impact of ethanol blending on various fuel properties is examined, including changes in energy content, latent heat of vaporization, octane number rating, and stoichiometric air-fuel ratio. These factors significantly influence engine performance and emission
Balasubramanian, KarthickKR, PrabhakarKallahallii Somu, Santhosh Kumar
On the way to net zero emissions and to cut the oil import bills, NITI Aayog, Government of India and Ministry of Petroleum & Natural Gas (MoP&NG) has rolled out roadmap for ethanol blending in India during 2020-2025. Also, National Policy on Biofuels – 2018, provides an indicative target of 20% ethanol blending under the Ethanol Blended Petrol (EBP) Programme by 2030. Considering these Government’s initiatives current studies were performed on BSVI compliant gasoline direct injection vehicle on RDE compliant route (Route formulated by Indian Oil R&D Centre) with different ethanol blended gasoline fuel formulations i.e., E0 (Neat Gasoline), E10 (10% Ethanol in gasoline) & E20 (20% Ethanol in gasoline). The study aims to determine the compliance of Conformity Factor (C.F.) for ethanol blended gasoline fuel on Direct Injection gasoline engine. The conformity factors were calculated in each case for CO, NOx & PN using moving window average evaluation method. For reference CO2
Kant, ChanderArora, AjaySaroj, ShyamsherKumar, PrashantSithananthan, MChakradhar, Dr MayaKalita, Mrinmoy
The Government of India has mandated biofuel blending in automotive fuels to reduce crude oil imports and support the national economy. As part of this initiative, Oil Marketing Companies (OMCs) have begun nationwide blending of E20 fuel (20% ethanol in petrol). Ethanol supply is expected to exceed demand by the end of 2025 due to initiatives like the Pradhan Mantri JI-VAN Yojana. Alternative applications for ethanol are being explored; one promising approach is its use as a co-blend with diesel fuel (ED blends). However, ethanol’s low cetane number and poor lubricity pose challenges for direct use in diesel engines without modifications. ED blends demonstrated reduced emissions while maintaining performance comparable to conventional diesel. To further address concerns related to materials compatibility of ED blends with fuel system components, particularly plastomers that may impact engine durability, a detailed study was conducted using elastomers such as FVMQ, FKM, HNBR, and NBR in
Johnpeter, Justin PChakrahari, KiranChakradhar, MayaArora, AjayPrakash, ShantiPokhriyal, Naveen Kumar
Today, passenger car makers around the world are striving to meet the increasing demand for fuel economy, high performance, and silent engines. Corporate Average Fuel Economy (CAFE) regulations implemented in India to improve the fuel efficiency of a manufacturer's fleet of vehicles. CAFE goal is to reduce fuel consumption and, by extension, the emissions that contribute to climate change. CNG (Compressed Natural Gas) engines offer several advantages that help manufacturers meet and exceed these standards. The demand for CNG vehicles has surged exponentially in recent years, CNG engine better Fuel efficiency and advantage in CAFÉ norms make good case for OEM & Customer to use more CNG vehicle. CNG is dry fuel compared to gasoline. These dry fuels lack lubricating properties, unlike conventional fuels like petrol, diesel and biofuels, which are wet and liquid. Consequently, the operations and failures associated with these fuels differ. The materials and designs of engine parts, such as
Poonia, SanjayKumar, ChandanSharma, ShailenderKhan, PrasenjitBhat, AnoopP, PrasathNeb, Ashish
This paper presents the methodology and outcomes of modifying a 1.2L naturally aspirated (NA) engine to enable flex-fuel compatibility, targeting optimal performance with ethanol blends ranging from E20 to E100. Ethanol is being increasingly promoted due to its potential to reduce greenhouse gas emissions and to provide an additional source of income for farmers. As per the road map for Ethanol blending released by Govt. of India, there has been continuous increase in blending of ethanol in gasoline. An initial target of 20% ethanol blending in gasoline by April 2025 has already been achieved. This work is in alignment with the broader push for development of flex-fuel vehicles, which necessitates engine adaptations capable of operating on varying ethanol blends. The primary objective was to upgrade the engine, which can give optimum performance with both lower range of ethanol blends starting from E20 as per IS 17021:2018 standard till higher blends of up to E100 as per IS 17821:2022
Tyagarajan, SethuramalingamPise, ChetanKavekar, PratapAgarwal, Nishant Kumar
India being highly populated and developing country, the demand for various alternative fuel is increasing drastically. It is driven by the need to reduce dependency on traditional fossil fuels & reduce impact on environmental issues like Greenhouse gas, emissions & pollution. The potential options, CNG (Compressed Natural Gas) & Biodiesel, are becoming increasingly popular and important. Biodiesel, a renewable fuel which is produced from waste materials & crops which grown repeatedly & easily available while CNG is more sustainable than diesel as natural gas is a cleaner-burning fossil fuel in comparison to coal or oil. This paper will focus on comparison between basic properties of Diesel, CNG & Biodiesel. In this study will also focus on survey of various Government initiatives, policies & infrastructural development which are evolving to encourage the usage of CNG & Biodiesel. These fuels are emerging as promising alternative contenders to traditional diesel. It has the potential
Bondada, NanditaBaruah, LabanyaMokhadkar, Rahul
In alignment with its carbon reduction commitments, India is transitioning towards higher ethanol-blended fuels, with E20 set for nationwide implementation by 2025. Ethanol is a renewable, domestically produced biofuel produced through fermentation of biomass such as sugarcane, corn. It possesses a higher octane rating and oxygen content compared to conventional gasoline, making it a favorable additive for improving engine performance and reducing emissions. This study investigates the impact of E20 fuel on performance parameters of a 694 cc MPFI , water-cooled, twin-cylinder gasoline engine. For deriving maximum benefits of increased Octane rating of E20, compression ratio was increased to 12.5:1. Experimental analysis was conducted to assess the changes in combustion behavior, brake specific fuel consumption (BSFC), torque output, engine out emissions and thermal efficiency when operating on E20 compared to baseline gasoline (E10). Base results indicate that E20 promotes more
Kulkarni, DeepakMalekar, Hemant AThonge, RavindraKanchan, Shubham
In this study, a novel dual-fuel combustion strategy is investigated, employing late pilot injection in diesel–methane engines to improve performance and reduce emissions. The engine was first tested with conventional diesel and methane, exploring a wide range of pilot injection timings, injection pressures, and intake boost pressures. Subsequently, experiments were repeated using a methane/hydrogen blend to assess the influence of hydrogen addition. Results show that, when using only methane, delayed pilot injections have minimal effects on engine performance. In naturally aspirated operation, unburned hydrocarbons and carbon monoxide are reduced, while in supercharged conditions, emissions increase; however, they remain within acceptable limits. Nitrogen oxides and particulate matter reach their lowest levels with delayed injection. Introducing hydrogen reduces engine performance and hydrocarbons and carbon monoxide emissions; notably, it suppresses the typical nitrogen oxides
Carlucci, Antonio PaoloStrafella, LucianoFicarella, Antonio
Biodiesel, a renewable biofuel obtained from vegetable oils or animal fats, has emerged as a sustainable alternative to fossil fuels. This fuel has stood out for its ability to reduce greenhouse gas emissions, helping to mitigate environmental impacts. Biodiesel is produced by reacting oil with an alcohol in the presence of a catalyst, which can be homogeneous or heterogeneous. Heterogeneous catalysis has advantages such as ease of separation, greater tolerance to oils with a high fatty acid content and the possibility of reusing the catalyst, which reduces costs and minimizes waste generation. Among the various heterogeneous catalysts available, niobium-based compounds stand out. The use of niobium-based catalysts is advantageous due to the vast reserves of this element in Brazil, guaranteeing autonomy in production and strengthening the national biofuels industry. This work investigated the production of biodiesel from soybean oil using the homogeneous and heterogeneous
Coelho, Gabriella VilelaAlvarez, Carlos Eduardo CastillaRibeiro, Jessica Oliveira Notório
The concern about CO2 emissions from commercial vehicles powered with internal combustion engines has been motivating research and development projects to reduce the transportation sector carbon footprint. One of the promising alternatives is the use of biofuels associated with high-efficient internal combustion engines, taking advantage of the current infrastructure of car manufacturers and automotive suppliers, as well as of the potential growth in biofuel production. With the stringent emissions regulations, the use of downsized SI engines for passenger cars has driven the adoption of direct injection technology, enabling the use of different fuel injection strategies such as stratified mixtures and multiple injection events, as well as the increase of the compression ratio as a way to improve engine thermal efficiency. This path also led to a gradual increase in injection pressure, aiming to improve spray formation and reduce the formation of particulate matter. In this sense, the
Antolini, JácsonZabeu, Clayton BarcelosPires, Gustavo CassaresPolizio, Yuri
The diversification of the energy matrix, combined with the use of renewable and less polluting fuels in internal combustion engines, has encouraged numerous research efforts both nationally and internationally. In this context, the utilization of waste for biofuel production stands out as a promising alternative, offering a clean and economically viable energy source. Biogas is one of the most sustainable options and has been widely used in the industry. However, it presents low lower heating values (LHV) and difficulties in burning stoichiometric mixtures, which compromise engine performance, resulting in higher specific fuel consumption and lower power output compared to fossil fuels. To address this challenge, this study aimed to improve biogas combustion in internal combustion engines by investigating the application of a new pre-chamber ignition system in the combustion process and engine performance parameters. For this, experimental tests were conducted with two biofuel
Siqueira, Caio Henrique MoreiraÁzara, Luiz Eduardo MartinsRibeiro, José Vitor PuttiniSoares, Gabriel FariaSilva, Fábio MoreiraAlvarez, Carlos Eduardo Castilla
One alternative to fossil fuels is the use of bioethanol in internal combustion engines. However, the application of this renewable fuel in compression-ignition engines is limited due to its low cetane number. This barrier, however, can be overcome by using additives that enhance this property. Consequently, additized ethanol emerges as a promising option with significant potential for decarbonization and improved combustion efficiency. In this context, the present study numerically investigated, using the CONVERGE CFD software, the use of additized ethanol in a compression-ignition internal combustion engine used in marine transportation. As a comparative baseline for each investigated setup, cases involving conventional diesel fuel were also analyzed numerically. The reaction mechanisms used for modeling the combustion of both additized ethanol and conventional diesel were validated against experimental data available in the literature. Di-tert-butyl peroxide (DTBP) was the studied
Assis, GuilhermeSánchez, Fernando ZegarraPradelle, Renata Nohra ChaarBraga, Sergio LealTicona, Epifanio MamaniSouza Junior, JorgePradelle, Florian
Environmental agreements and the urgent need to mitigate greenhouse gas emissions have positioned biogas as a sustainable alternative for bioenergy production. Biogas is a highly versatile fuel that can be used for heat and electricity generation, as well as a substitute for fossil fuels. However, its contribution to the global energy matrix remains limited. This study presents a literature search aimed at assessing the potential for biogas and bioenergy production in Latin American countries, with an emphasis on agro-industrial, agricultural, and urban waste sources. This source was conducted using articles retrieved from the CAPES Journals Portal. Based on the findings, Brazil stands out due to its extensive agro-industrial sector, while countries such as Argentina, Colombia, and Mexico also offer substantial opportunities which biogas could meet a significant share of regional energy demand. The review showed that sugarcane residues in Colombia could replace up to 44% of gasoline
Rodrigues, Jônatas SoaresMoreira, Thiago Augusto AraújoSouza Pereira, Felipe Augusto deCastro, Daniel Enrique
The growing demand for sustainable energy and the need to reduce greenhouse gas emissions have driven interest in low-carbon hydrogen production. Ethanol steam reforming (SR) offers a promising on-board H2 source by exploiting ethanol’s renewability and liquid-fuel convenience. This study presents an integrated energy and exergy analysis of ethanol SR across 573 to 923 K and steam-to-ethanol (S/E) ratios from 1 to 4 using Gibbs free energy minimization in MATLAB to predict equilibrium compositions and thermal duties. Energy analysis shows the heating duty rising from 0.0311 kWh/mol ethanol at 573 K (S/E = 1) to 0.0521 kWh/mol at 923 K (S/E = 4). Reforming duty shifts from -0.0075 to +0.2426 kWh/mol, while cooling duty recovers between -0.0219 and -0.0727 kWh/mol. The net energy balance transitions from strongly endothermic below 650 K to near-neutral at 700 to 750 K for S/E > 2, and becomes exothermic above 800 K, reaching +0.2463 kWh/mol at 923 K. Exergy analysis reveals that heating
Apaza, Jerson Bequer UrdayPradelle, FlorianBraga, Sergio LealSánchez, Fernando ZegarraGuzman, Juan Jose Milon
This study aims to quantify, through Monte Carlo simulation (100,000 iterations), the greenhouse gas (GHG) emissions associated with the complete production cycle of ethanol from sugarcane in Brazil, expressed in kg CO2eq/ha, and to project these emissions over a 20-year horizon. To achieve this, the production cycle was segmented into distinct stages - land use change, soil management and preparation, fertilization, harvesting and straw management, soil carbon sequestration, and industrial processing - and the parameters for each stage were defined based on recent. Three representative scenarios were considered: Worst-case (unsustainable practices involving conversion of native vegetation, high fertilizer dosages, and complete burning of the straw), Typical (conventional practices, with conversion of degraded pastures and sustainable management), and Ideal (best practices, characterized by reduced input dosages, the use of nitrification inhibitors, and high straw retention). The
Assis, Marcelo Suman SilvaPaula Araújo, Gabriel Heleno deBaeta, José Guilherme CoelhoAbreu, Pedro Blaso Barbosa deFilho, Fernando Antonio Rodrigues
Ethanol is a hydrogen-rich liquid and has a specific energy of 8.0 kWh/kg. In a vehicle, hydrogen storage is done in high-pressure cylinders. The same fundamental technology is used at other fuel cell systems in vehicles such as Toyota Mirai and Honda Clarity. Hydrogen is also introduced into the cell to generate electricity, which will power an electric motor that drives the vehicle. Excess electricity is stored in batteries. The main characteristic of the system described here is that hydrogen can be generated through an additional process in a reformer, installed at a fixed station. The reformer transforms the ethanol stored in the fuel station tank into hydrogen, which can then fuel a vehicle equipped with high-pressure cylinders and fed into the fuel cell. The system, however, emits water vapor, heat, and CO2. This is because carbon dioxide is a byproduct resulting from the transformation of ethanol into hydrogen. According to studies, despite this the system is carbon neutral
Fontana, Romeu
Brazil PL8 regulation has required that manufacturers comply with new emissions levels for all of vehicle life – 0 km up to 160.000 km. On this study, tests found that results between new and used vehicles are remarkably similar except for Aldehydes on Ethanol tests. To better understand this phenomena, two main ideas were considered: first, the engine mileage needed to stabilize aldehydes emissions; and second, the main factors responsible for higher acetaldehyde values on new engines only.
Fernandes, SarahBorsari, MarcioBrondani, Dhouglas
This study presents a comparative Life Cycle Assessment (LCA) of urban buses powered by Diesel S10 with three fuel blends: B7 (7% biodiesel), B15 (15% biodiesel), and B100 (100% biodiesel). Employing a well-to-wheel approach, the analysis covers the extraction, production, distribution, and use of the fuels, as well as vehicle manufacturing and maintenance. The environmental impacts were quantified using the CML-IA and ReCiPe 2016 (Midpoint and Endpoint) methods. Results indicate that B100 significantly reduces Global Warming Potential, yet exhibits higher impacts in eutrophication, abiotic depletion, and ecotoxicity. Sensitivity analysis regarding vehicle occupancy revealed greater variability for B100. In conclusion, the optimal fuel choice depends on the prioritization of specific impact categories, providing insights for sustainable transportation policies.
Cavaliero, Carla Kazue NakaoBarboza, Franciele AlvesSeabra, Joaquim Eugênio AbelFerreira, Marcela CravoCarpoviki, Renan SiqueiraCruz, Robson Ferreira
In alignment with the International Maritime Organization’s 2023 GHG Strategy and the Paris Agreement, this study investigates the viability of ternary blends of marine diesel, biodiesel, and ethanol as low-emission marine fuels. While previous studies have established the physicochemical behavior and storage stability of such blends, particularly the co-solvency role of biodiesel to prevent phase separation, limited data exists on their combustion performance under engine-relevant conditions. This work addresses this gap through a series of controlled experiments conducted in a Rapid Compression Machine (RCM), which enables the approximate a single-cycle combustion in a compression ignition engine. The tested blends included varying proportions of ethanol (up to 20% in volume) in a blend of fossil fuel with 25% of biodiesel (25%), and their combustion were evaluated across different injection timings. Key performance metrics such as ignition delay, maximum temperature and pressure
Lobato, Maria Letícia CostaSánchez, Fernando ZegarraTicona, Epifanio MamaniPradelle, Renata Nohra ChaarBraga, Sergio LealCoelho, Lucas Dos SantosPradelle, Florian
Particulate matter (PM), mainly its finer fraction, is among the main atmospheric pollutants present in an urban environment. The relationship between the increase in the concentration of this pollutant and the harm to human health is well established. The main sources of particulate matter in urban areas are mobile sources, which include the exhaust emission from light duty vehicles. This work measured the emission of PM in three light duty passenger vehicles, characterizing it in terms of emitted mass in one “flex” vehicle with port fuel (indirect) injection (PFI), using ethanol and gasohol (mixture of 22% anhydrous ethanol and 78% gasoline, by volume), in another “flex” vehicle with direct fuel injection (GDI), and in a diesel vehicle. In addition to mass measurement, images of the filters used in PM sampling were produced using scanning electron microscopy. The processing of these images made it possible to determine the average PM size, as well as establish a particle size
Borsari, VanderleiNeto, Edson Elpídiode Abrantes, Rui
The increasing demand for reduced emissions in the automotive sector has driven research into alternative fuels, including Diesel, Biodiesel, and ethanol blends. This study aims to optimize mixing rules to predict the physicochemical properties of ternary fuel blends, essential for improving engine performance and minimizing emissions. Seven established mixing rules—Kay’s Equation, Semilogarithmic Equation, Grunberg-Nissan Equation, Modified Lederer Equation, Hu-Burns Equation, Power Law, and Polynomial Equation—were evaluated to estimate key properties such as kinematic viscosity, cetane number, cetane index, flash point, pour point, and cloud point. A comprehensive database, sourced from previous literature, included pure fuel properties and blend data for 33 to 101 cases. MATLAB was used to implement nonlinear optimization, adjusting coefficients to minimize error metrics like Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Standard Deviation (SD). The physical
Tirado, Carlos Andrés AbantoLobato, Maria Letícia CostaPassos, Sthefany FaberPradelle, Renata Nohra ChaarPradelle, Florian
The transition to renewable fuels is critical to reduce greenhouse gas emissions and achieve carbon neutrality in the transportation sector. Ethanol has emerged as a promising biofuel for compression ignition (CI) engines due to its renewability and low-carbon profile. However, its low cetane number, high latent heat of vaporization, poor lubricity, and corrosive properties severely limit its auto-ignition capability and durable operation under conventional CI conditions. Building upon previous work using a Rapid Compression Machine (RCM) to assess ignition improvers for ethanol, this study explores a broader range of fuel formulations to enhance ethanol-based combustion. A total of nine blends were prepared, consisting predominantly of hydrated ethanol (50-80% by volume), combined with 5-25% biodiesel and up to 5% of a commercial ignition improvers. The biodiesel component acted both as a co-solvent and as a combustion stabilizer, particularly under cold-start conditions. Tests were
Bacic, Denise AmatoSánchez, Fernando ZegarraTicona, Epifanio MamaniPradelle, Renata Nohra ChaarSantos Coelho, Lucas dosMota, Crislane Almeida Pereira daPradelle, Florian
Flex-fueled vehicles (FFV) dominate the Brazilian market, accounting for over 75% of the national fleet. Ethanol fuel is widely used, primarily in the form of hydrated ethyl alcohol fuel (HEAF). Given the similar physicochemical properties of ethanol and methanol, fuel adulteration is a growing concern, often involving the addition of anhydrous ethanol, methanol, or even water to hydrated ethanol. These adulterants are visually imperceptible and can only be detected through analyses conducted by regulatory agencies using specialized instruments. However, they can significantly affect vehicle performance and accelerate engine component deterioration. The experiment was performed with a small displacement 3-cylinder port fuel injection flex-fuel engine on an engine test bench (dynamometer) and compared when fueled with ethanol and methanol. Data acquisition included combustion pressure, spark plug temperature, torque, air-fuel ratio, fuel flow, spark maps, and the overall effects of
Mascarenhas, Giovana RebellatoGomes, EdersonCruz, DiegoDuque, Edson Luciano
In this study, a Kirloskar TV1 compression ignition engine is put to test using diesel, palm biodiesel (B100), and palm biodiesel–diesel blend (B40D60). Among the tested fuels, engine performance at 75% loading condition with reference fuel diesel showed the highest brake thermal efficiency, brake specific energy consumption, and exhaust gas temperature at 27.78%, 12.96 MJ/kWh, and 335.88°C, respectively. While B100 and B40D60 were observed to give a lower value for the same parameters due to their inferior physiochemical properties. In terms of combustion pressure, mean gas temperature, rate of heat release, and rate of pressure rise, the values observed with B40D60 at 67.39 bar, 1397.76 K, 68.83 J/CAD, and 4.34 bar/CAD, correspondingly are better than B100 due to the presence of diesel. Yet for the same combustion parameters, the values for both the aforementioned fuels are still lower than the results seen with pure diesel fueling. Owing to higher cetane number in comparison to
Balakrishnan, Navaneetha KrishnanChelladorai, PrabhuMuhammad, Syahidah Akmal
Achieving compression ignition (CI) with ethanol, a renewable fuel, comes with challenges because of its much lower cetane number compared to diesel. Additionally, ethanol’s high cooling potential and high volatility compared to diesel also offer challenges and opportunities to achieving robust, high-efficiency CI. Increasing the compression ratio (CR) and expanding the injection strategy beyond a conventional close-coupled pilot-main diesel injection strategy can help overcome these challenges. This work experimentally tested ethanol CI with several different injection strategies with CRs ranging from 16.3 to 22.3. The results showed that in homogeneous charge CI (HCCI), increasing the CR improved thermal efficiency but incurred a combustion efficiency penalty. In any CI concept, increasing the CR lowered the required intake temperature to achieve ignition. Using close-coupled pilot injections is an effective way to achieve ethanol CI, but it was also shown that HCCI-like intake
Gainey, BrianVedpathak, KunalKumar, MohitLawler, Benjamin
Increasing reservations about the mass consumption of fossil fuels because of their hazardous impact on ecosystem has led to an increased focus to look for renewable alternative. In the last decade, much research is made on production of biodiesel for blending with diesel to reduce diesel consumption in the transport sector. Studies suggest that biofuel do not provide any harm to environment because of their availability from natural resources. Biofuel production and its further utilization requires identifying unknown parameters having nonlinear relationships with each other. Accurate and better predictive tools are required at different stages during its usage. AI technique is one such tool that can provide support during production and utilization. The technique is utilized in designing, monitoring, predicting, decision making and optimizing systems. The present research investigates the areas of AI usage which makes use of models for designing better production strategies, accurate
KUMAR, VIVEKVashist, Devendra
Alcohol fuels are regarded as a feasible approach to address rising energy demands and reduce the dependency on fossil fuels, with ethanol and methanol emerging as a promising renewable fuel for spark-ignition engines. In this research work, tests were performed on a spark ignition engine altered from a diesel engine that employs ethanol/methanol-gasoline blend as fuel operating under lean conditions. The experiments were conducted at 10.5:1 compression ratio and 1500 rpm under full throttle condition with three fuel blends namely M10 (10% of methanol+ 90% gasoline), E10 (10% of ethanol+ 90% gasoline), E5M5 (5% of each ethanol and methanol+ 90% gasoline). Investigational results reveals that alcohol-gasoline blends displayed low COV of IMEP. Furthermore, the alcohol-gasoline mixtures enhanced the peak in-cylinder pressure owing to improved flame speed and flammability limits. Adopting lean-burn operation and high compression ratio can efficiently improve combustion attributes in an
Devunuri, SureshPorpatham, Dr. E
Alcohol is being considered as an alternative to traditional fuels for compression ignition engines due to their oxygen content and biomass origin. Although alcohol generally has lower cetane numbers, which makes them more favorable for premixed combustion, they also offer potential for lowering emissions in internal combustion engines, particularly when combined with strategies such as exhaust gas recirculation (EGR). This research focuses on enhancing the performance of a single-cylinder, four- stroke diesel engine by introducing ethanol into the intake port during the intake phase. Diesel and rubber seed biodiesel were used as primary fuels and were directly injected into the combustion chamber. The findings indicated that adding ethanol to rubber seed biodiesel, along with 10% EGR, led to improved brake thermal efficiency and a reduction in NOX emissions. The ethanol injection timing and duration were optimized for effective dual-fuel operation. At full engine load, the highest
Saminathan, SathiskumarG, ManikandanBungag, Joel QuendanganT, Karthi
Off-Highway Vehicles (OHVs) — including mining trucks, construction machinery, and agricultural equipment — contribute significantly to greenhouse gas (GHG) emissions and local air pollutants due to their dependence on fossil diesel. Achieving sustainable development goals in off-highway sectors requires transitioning toward alternate fuels that can reduce CO₂, NOₓ, and particulate matter (PM) emissions while maintaining performance and reliability. This paper comprehensively evaluates alternate fuels such as biodiesel, renewable diesel, compressed and liquefied natural gas (CNG/LNG), liquefied petroleum gas (LPG), hydrogen, and alcohol-based blends. Using insights from Service Bulletins, fuel standards, and the Worldwide Fuel Charter, it discusses fuel properties, engine compatibility, operational challenges, sustainability impacts, economic feasibility, safety considerations, and regulatory aspects. Case studies of alternate fuel deployment in OHVs illustrate practical challenges and
Mulla, TosifThakur, AnilTripathi, Ashish
A large number of research studies have raised global concerns about the rapid depletion of traditional energy sources like petroleum. These fuels, being largely non-renewable, are being consumed at a rate much faster than they can be replenished. This growing imbalance between demand and supply has led to fears that, in the near future, the world could face a serious energy crisis if alternative sources are not developed and adopted in time. The use of alternative fuels plays an important role in lowering harmful emissions, including those that contribute to ozone formation and other toxic pollutants. It is a well-established scientific understanding that the continued combustion of fossil fuels is a key driver of global atmospheric warming. As environmental awareness grows, many individuals across the globe believe that shifting toward cleaner and more sustainable fuel sources is essential for protecting and improving the health of our planet. Extensive research is being conducted to
G, ManikandanSubbaiyan, GunasekharanSaminathan, SathiskumarT, KarthiS, GokulJ, Sanmuganathan
Biodiesel acceptance and consumption increased rapidly from 2018 onwards because of government policies promoting and mandating (in few cases) the consumption of local made Biodiesel feedstock to replace/reduce the import crude oil to save fuel import costs. Currently biodiesel usage is unregulated and non-standardized in few countries and in cases it is mandated and well controlled by local government (e.g. Indonesia). This unregulated, non-standardized and rapidly increasing usage of Biodiesel started to show consequences such as reduced fuel filter life, degradation of engine and filter with material non-compatibility issues with biodiesel and this developed a need of in-depth study, research and creation of recommendations / best practices for the use of Biodiesel in various application. This paper will discuss the root causes of challenges related to usage of biodiesel (manufacturing process, storing and handling of biodiesel at application site), technical challenges and it’s
Bhalerao, HariprasadShah, AvaniKhedkar, Prashant
As global energy demands continue to grow and environmental challenges intensify, Biodiesel stands out as an environmentally sound and technically feasible alternative to curb fossil fuel use and emissions. This study provides an in-depth analysis of the performance and emissions profile of a compression ignition (CI) engine running on a renewable diesel fuel blend made from ethanol and cottonseed (Cs) combinations enhanced with aluminium oxide (Al2O3) nanoparticles. The experimental fuel blends, consisting of 10%, 20%, and 30% cottonseed biodiesel with 5% ethanol and remaining with conventional diesel, were analyzed under varying engine load conditions. The inclusion of ethanol improved fuel atomization due to its lower viscosity and higher volatility, while Al2O3 nanoparticles acted as advanced combustion catalysts, promoting enhanced oxidation rates and thermal efficiency. Among the blends, B10 (10% cottonseed biodiesel) exhibited superior performance metrics, achieving a brake
T, KarthiG, ManikandanSaminathan, SathiskumarM E, ChandhuruS, BavanyaS, Arunkumar
The application of ammonia fuel in engines can significantly reduce carbon emissions, serving as a crucial method for achieving carbon neutrality. However, its potential is hindered by the challenges of ammonia's difficulty in ignition and slow combustion rate. An effective solution to these drawbacks is to blend methane into ammonia mixtures and use a small amount of diesel for ignition. This study investigates the effects of mixture equivalence ratio and gas composition on the combustion characteristics of diesel-ignited NH3/CH4/Air mixtures. Pressure measurements and visual observations were conducted using a rapid compression expansion machine (RCEM). Experimental results reveal that the combustion process exhibits two distinct stages: initial intense diesel combustion followed by mixture combustion. Higher equivalence ratios prolong ignition delay while accelerate secondary combustion. Pure ammonia mixtures show incomplete lean combustion, while richer mixtures achieve more
Yin, ShuoDai, ZhizhuoZhou, QingxingCui, ZechuanZhang, XiaoleiYe, MingyuanRen, YifangWang, ZhanpengNishida, Keiya
Alcohol fuels, produced from renewable energy sources, are considered a crucial solution for achieving life-cycle carbon neutrality in internal combustion engines. The Boosted Uniflow Scavenged Direct-Injection Combustion Engine (BUSDICE) exhibits significant potential for high thermal efficiency with an aggressive downsizing design. In this study, a computational investigation was carried out to assess the spray mixing and combustion characteristics of BUSDICE fuelled with methanol and ethanol, compared with gasoline, under a high-load condition. The injection duration of methanol and ethanol is significantly longer than that of iso-octane, leading to incomplete evaporation. The mixture exhibits an “outer-rich, central-lean” stratification pattern due to the short mixing time and swirl flow transportation for all three fuels. However, the prolonged injection of methanol induces stronger turbulence, which can enhance the local mixing. The spatial mixture stratification, particularly
Feng, YizhuoLu, EnshenDong, ShuoKeshtkar, HosseinWang, XinyanZhao, Hua
Various fuels are being considered as the next generation of carbon neutral fuels, including methanol, ethanol, and SAF. These have widely different ignition properties. Methanol and ethanol are high-octane fuels, so there are no major problems with their use in gasoline engines. However, SAF is a hydrocarbon with a large molecular weight, so it has a fundamentally low octane rating and is not easy to use in SI engines. In order to put carbon-neutral fuels of various properties into practical use, it is effective to develop a technology that allows fuels with low octane to be operated in SI engines. Therefore, in this study, basic research was conducted on the combustion of fuels with low octane using PRF fuel in opposed-piston engines. Opposed piston engines are characterized by their light weight due to the absence of a cylinder head, low S/V ratio due to the ultra-long stroke, reduced cooling loss due to the long stroke, and reduced vibration due to the offsetting of the
Yamazaki, YoshiakiOkawara, IkumiLiu, JinruIijima, Akira
As a carbon-free fuel, ammonia is one of the alternatives to traditional fossil fuels, but its combustion characteristics are poor, and it is usually optimized by blending methane and increasing oxygen content. However, there are few relevant studies under different conditions. In this study, the laminar burning velocities (LBV) and flame instability of NH3/CH4/O2/N2 mixture at high initial temperature (T), high initial pressure (p), various oxygen contents (Ω) and methane energy ratios (α) are analyzed using a constant volume combustion chamber (CVCC). Through numerical simulation, how various oxygen contents and methane energy ratios affect the combustion characteristics of NH3/CH4/O2/N2 mixture and NO emission is analyzed. The results show that LBV is positively correlated with T, α and Ω, and negatively correlated with p. Markstein length (Lb) does not change significantly with T, but increases with α and decreases with p and Ω. Both oxygen enrichment and methane blending
YU, YuantaoDai, ZhizhuoHou, ChunleiYe, MingyuanZhang, XiaoleiCui, ZechuanYin, ShuoNishida, Keiya
Items per page:
1 – 50 of 4246