Browse Topic: Vehicle charging
Problem definition: Battery-electric commercial vehicles in particular have large battery capacities with several hundred kilowatt hours, some of which do not have enough energy for an entire working day, which is why they need to be recharged if necessary. High charging power with correspondingly high charging currents is required to recharge the electrical energy storage in an acceptable time. Due to the electrical losses, waste heat is generated, which places a thermal load on the charging components. In particular, the CCS charging inlet is subject to high thermal loads and, for safety reasons, must not exceed the maximum temperature of 90°C according to DIN EN IEC 62196-1. Depending on the ambient temperature, the charging inlet in the charging path often represents a thermally limiting component, as the charging current must be reduced before the maximum temperature is reached. Solution: Three general solution approaches are used to investigate how the CCS charging inlet can be
Letter from the Guest Editors
A team led by Kelsey Hatzell, Associate Professor of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, has uncovered insights that could help power a new type of battery, called an anode-free solid-state battery, past lithium-ion’s limitations.
A new bendable supercapacitor made from graphene has been developed that charges quickly and safely stores a record-high level of energy for use over a long period. The technology overcomes the issue faced by high-powered, fast-charging supercapacitors: they usually cannot hold a large amount of energy in a small space.
Nickel’s role in the future of electric vehicle batteries is clear: It’s more abundant and easier to obtain than widely used cobalt, and its higher energy density means longer driving distances between charges. However, nickel is less stable than other materials with respect to cycle life, thermal stability, and safety. Researchers from The University of Texas at Austin and Argonne National Laboratory aim to change that with a new study that dives deep into nickel-based cathodes, one of the two electrodes that facilitate energy storage in batteries.
Range anxiety is perhaps the single biggest misnomer in electric vehicle technology. With a growing number of EVs now delivering 300 miles or more of real-world range, how many of us can truly claim to exceed that in a typical day?
Hatz Americas (Waukesha, Wisconsin) expanded its power generation product portfolio to include AC and DC mobile diesel generators for the recreational vehicle and industrial markets. The new offerings provide prepackaged, sound-attenuated solutions for power generation and hybrid battery charging. Manufacturing and testing of the 1B30VE engines used in the generators will continue to take place at the primary engine plant in Ruhstorf, Germany. Final assembly of the generator sets will occur at Hatz's new production facility in Italy. The first model released will be the GD3200-120 Silent Pack with RV package, which is available to order. This will be followed by the BD3000-56 Silent Pack for use in either 28V or 56V hybrid battery charging systems. https://www.hatzamericas.com
It's not hard to find automakers and battery companies that are trying to develop viable solid-state batteries. The technology will open up quicker charging, increased energy density and, more importantly, lower costs. At Nissan's Opamma plant in Japan, the automaker's Shunichi Inamijima, vice president of powertrain and EV engineering, shared Nissan's plans to bring a solid-state battery-powered EV to market by the end of 2028.
This document covers the dimensional definition of the SAE J3400 (NACS) electric vehicle coupler, which includes the connector and inlet.
As the adoption of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV) continues to rise, more individuals are encountering these quieter vehicles in their daily lives. While topics such as propulsion sound via Active Sound Design (ASD) and bystander safety through Acoustic Vehicle Alerting Systems (AVAS) have been extensively discussed, charging noise remains relatively unexplored. Most EV/PHEV owners charge their vehicles at home, typically overnight, leading to a lack of awareness about charging noise. However, those who have charged their cars overnight often report a variety of sounds emanating from the vehicle and the electric vehicle supply equipment (EVSE). This paper presents data from several production EVs measured during their normal charging cycles. Binaural recordings made inside and outside the vehicles are analyzed using psychoacoustic metrics to identify sounds that may concern EV/PHEV owners or their neighbors.
This document covers the dimensional definition of the SAE J3400 (NACS) electric vehicle coupler, which includes the connector and inlet.
The added connectivity and transmission of personal and payment information in electric vehicle (EV) charging technology creates larger attack surfaces and incentives for malicious hackers to act. As EV charging stations are a major and direct user interface in the charging infrastructure, ensuring cybersecurity of the personal and private data transmitted to and from chargers is a key component to the overall security. Researchers at Southwest Research Institute® (SwRI®) evaluated the security of direct current fast charging (DCFC) EV supply equipment (EVSE). Identified vulnerabilities included values such as the MAC addresses of both the EV and EVSE, either sent in plaintext or encrypted with a known algorithm. These values allowed for reprogramming of non-volatile memory of power-line communication (PLC) devices as well as the EV’s parameter information block (PIB). Discovering these values allowed the researchers to access the IPv6 layer on the connection between the EV and EVSE
Mitsubishi Fuso Truck and Bus has announced it will conduct a joint demonstration of its Battery 2nd Life initiative this year. This initiative will be jointly conducted with CONNEXX Systems and will repurpose used batteries from Mitsubishi eCanter trucks to build energy storage systems. According to Mitsubishi, CONNEXX will remove the used batteries from end-of-life eCanters and repurpose them as power sources for what CONNEXX has dubbed its EnePOND EV Charger energy storage systems. These units have integrated EV chargers developed by CONNEXX that can reportedly reduce the load on the existing power grid while allowing for DC fast charging of multiple EVs simultaneously. CONNEXX also noted that these units enable EV charging during power outages.
Conventional solid polymer electrolyte batteries perform poorly due to structural limitations that hinder an optimal electrode contact. This could not eliminate the issue of “dendrites”, where lithium grows in tree-like structures during repeated charging and discharging cycles. Dendrites are a critical issue, as an irregular lithium growth can disrupt battery connections, potentially causing fires and explosions.
The driving capability and charging performance of electric vehicles (EVs) are continuously improving, with high-performance EVs increasing the voltage platform from below 500V to 800V or even 900V. To accommodate existing low-voltage public charging stations, vehicles with high-voltage platforms typically incorporate boost chargers. However, these boost chargers incur additional costs, weight, and spatial requirements. Most mature solutions add a DC-DC boost converter, which results in lower charging power and higher costs. Some new methods leverage the power switching devices and motor inductance within the electric drive motor to form a boost circuit using a three-phase current in-phase control strategy for charging. This approach requires an external inductor to reduce charging current ripple. Another method avoids the use of an external inductor by employing a two-parallel-one-series topology to minimize current ripple; however, this reduces charging power and increases the risk
Items per page:
50
1 – 50 of 1075