Browse Topic: Vehicle charging

Items (1,163)
This study presents the design and implementation of an advanced IoT-enabled, cloud-integrated smart parking system, engineered to address the critical challenges of urban parking management and next-generation mobility. The proposed architecture utilizes a distributed network of ultrasonic and infrared occupancy sensors, each interfaced with a NodeMCU ESP8266 microcontroller, to enable precise, real-time monitoring of individual parking spaces. Sensor data is transmitted via secure MQTT protocol to a centralized cloud platform (AWS IoT Core), where it is aggregated, timestamped, and stored in a NoSQL database for scalable, low-latency access. A key innovation of this system is the integration of artificial intelligence (AI)-based space optimization algorithms, leveraging historical occupancy patterns and predictive analytics (using LSTM neural networks) to dynamically allocate parking spaces and forecast demand. The cloud platform exposes RESTful APIs, facilitating seamless
Deepan Kumar, SadhasivamS, BalakrishnanDhayaneethi, SivajiBoobalan, SaravananAbdul Rahim, Mohamed ArshadS, ManikandanR, JamunaL, Rishi Kannan
As electric vehicles adoption becomes more common, power grid operators are facing new challenges in managing the unpredictable and varying energy demands in the existing electrical infrastructure. Moreover, the cost of Electric vehicle is high when compared to fuel vehicle it has limited access to charging infrastructure along with the driving range that act as a key barrier preventing the drivers from making shift to EVs. When the EV usage integrates with blockchain, it mitigates the limitation in charging station infrastructure along with the former problem discussed. The lack of trust exists between EV owners and charging station providers can be solved through secure and transparent payment processing possible by blockchain based smart contract. Building charging station on blockchain will ease the automated payment through the use of smart contract and create more efficient EV charging network. Also, the blockchain-based charging system would enable EV owners know if they are
Govindasamy, DhivyaR, Rajarajeswari
The growing awareness about sustainability and environmental concerns are accelerating the adoption of electric vehicles. They play a promising role due to their potential to significantly reduce greenhouse gas emissions, improve air quality and lessen reliance on fossil fuels. However, one of the primary concerns for potential buyers is the charging process and infrastructure. Traditional wired charging systems for electric vehicles face limitations such as user inconvenience, wear and tear of connectors and challenges in automation. A wireless electric vehicle charging offers more user-friendly, automated and contactless method by eliminating the need for physical connectors. However, wireless inductive charging suffers from relatively low efficiency due to higher energy losses. Whereas resonant coupling significantly improves efficiency by using electromagnetic resonance to transfer power more effectively over short distances. This paper mainly focuses on design and implementation
Shaik, AmjadGudipati, Ravi Sai HemanthB, Vikranth ReddyAnudeep, D B S SVarshith, Dasari
Due to the rapid transformation of EVs and the battery storage system, the battery management system (BMS) is essential to ensure optimal performance of the battery storage piles. A BMS monitors and controls parameters such as SOC, voltage, current, and temperature. A traditional BMS has a minimum support of analytics, and it’s limited to local processing. However, when the battery information is uploaded to the internet, it becomes easier to manage maintenance and track the battery’s performance from anywhere in the world. This Cloud-based system is easy and made earlier, thereby giving a system alarm before the issue becomes big. Managing many batteries at once saves a significant amount of money in places like EV charging stations and Energy Storage Systems (BESS). Software updates to the system can also be sent remotely. Also, a BMS connected to the cloud can be used to support weaker grids in an instant if it needs the reactive power support. Cloud integration of BMS with the grid
R, RajarajeswariN, KalaiarasiFrancis, Elgin Calister
The growing global adoption of electric vehicles (EVs) has resulted in a spike in the number of EV charging stations. As EVs have become more and more popular worldwide, a large number of EV charging stations are opening up to accommodate their demands. During grid failures, an EV charging station can also serve as a flexible load connected to the grid to balance out voltage fluctuations. An EV charging station when powered using a separate source, such as solar or wind, can function as a powerhouse, bringing electricity to the grid when it's needed. Therefore, instead of installing more equipment to sustain voltage, the current EV charging station can be efficiently used to meet the grid's needs during failures. These stations have the potential to be dynamic, grid-connected assets for sustainable cities and communities in addition to their core function of vehicle charging (SDG 11). Because of their dual purpose, they can serve as adaptable loads that reduce voltage variations during
R, UthraRangarajan, RaviD, SuchitraD, Anitha
The growing adoption of electric vehicles (EVs), particularly those utilizing High-Voltage battery systems, demands fast-charging infrastructure that ensures high efficiency and power quality. The proposed GJO algorithm is employed to optimize the control and switching parameters of the Vienna rectifier, thereby improving harmonic performance and conversion efficiency without altering the converter hardware. This paper focuses solely on control optimization of the Vienna rectifier topology and does not include DC–DC isolation or galvanic separation. Filter components are modeled with equivalent series resistance (ESR) to account for incremental losses. Simulation results demonstrate that the Golden Jackal optimization (GJO) based control reduces input current THD to 2.09%, has a power factor of 0.998, and achieves an efficiency of 98.53%, representing a fractional but consistent improvement over conventional control methods such as SSA, ALO, and PSO. These findings highlight the
R, Mohammed AbdullahN, Kalaiarasi
Electric Vehicles and Plug-in Hybrids alleviate the energy crisis but pose a unique challenge for vehicle dynamics. Though significant developments in motor control strategy and energy density management are evolving, we face significant challenges in torque management, with several ADAS features being an integral part of the EVs/xHEVs. It demands high-fidelity physical and control model exchanges between electric chassis, ride-handling, tire modelling, steering assist, powertrain, and validation using a 0D–1D platform. This paper explicates a unified strategy for improving overall vehicle performance by intelligently distributing and coordinating drive torque to enhance traction, stability, and drivability across diverse operating conditions through co-simulation. The co-simulation platform includes physical models in AMESIM, and control strategies integrated in MATLAB/Simulink. The platform features comprehensive representations of digital vehicles that require detailed modelling of
Eruva, PatrickxavierSarapalli Ramachandran, RaghuveeranChougule, SourabhNatanamani-Pillai, Siva SubramanianScheider, ClementLeclerc, CedricNatarajasundaram, Balasubramanian
Accurate range estimation in battery electric vehicles (BEVs) is essential for optimizing performance, energy efficiency, and customer expectations. This study investigates the discrepancies between physical test data and simulation predictions for the BEV model. A detailed range delta analysis identifies key contributors to the observed deviations, including regenerative braking inefficiencies, increased propulsion demand, auxiliary loads, and estimated drivetrain losses within the Electric Drive Module (EDM) during traction and regen. Results indicate that the test vehicle exhibits lower regenerative braking efficiency, higher traction forces and lower regen energy than predicted by simulations, primarily due to EDM inefficiencies and friction brake usage during regeneration. The study underscores the importance of refining simulation methodologies by integrating real-world, test based EDM loss maps to improve accuracy and better align predictive models with actual vehicle
Mahajan, PrasadKesarkar, SidheshAli, Shoaib
Precise estimation of power metrics like active power, reactive power and apparent power is mandatory for effective control and monitoring of three phase power systems. On the other hand there might be challenges like waveform distortion, noisy signals and unbalanced load circumstances. traditional methods may not always provide accuracy in such an environment thus to address that in this study, we are using cross correlation and zero crossing methods to estimate power parameters of a three phase system. We are using these signal processing techniques to find phase angle, which in turn determines all other power parameters like active power, reactive power, apparent power, power factor. While Cross correlation tracks both the signals at different time lags and evaluate similarity between both the signals, zero crossing point approach identifies some particular locations where signal crosses zero axis. This analysis can be used in various applications such as power parameters monitoring
Panchal, Sanjivani VishwanathRoy, Sandipan
The rapid advancement of electric vehicle (EV) technology has created a demand for reliable and Thermal - efficient electronic components for power electronics and control systems on printed circuit boards (PCBs). The research looks at the overall simulation and study of a PCB for Electric Vehicles, including how it handles heat, stress, and reliability in real working conditions like considering casing (Heat Sink) in which PCB is held, into the simulation. We have used numerical based methods (reliability), Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) methods to simulate heat performance looking at steady-state and changing load profiles common in EV powertrains. We ran structural and thermal simulations to check the PCB's toughness against heat expansion and shaking loads often seen in cars. We also did a reliability check looking at heat cycling life for PCB components, and possible ways it could break to guess long-term toughness. The results show critical
Kanbarkar, Suraj OmanaDeore, UdayPatil, NishikantNayak, Shibabrata
The proliferation of wireless charging technology in electric vehicles (EVs) introduces novel cybersecurity challenges that require comprehensive threat analysis and resilient design strategies. This paper presents a proactive framework for assessing and mitigating cybersecurity risks in wireless charger Electronic Control Units (ECUs), addressing the unique vulnerabilities inherent in electromagnetic power transfer systems. Through systematic threat modeling, vulnerability assessment, and the development of defense-in-depth strategies, this research establishes design principles for creating robust wireless charging ecosystems resistant to cyber threats. The proposed framework integrates hardware security modules, encrypted communication protocols, and adaptive threat detection mechanisms to ensure operational integrity while maintaining charging efficiency. Experimental validation demonstrates the effectiveness of the proposed security measures in preventing unauthorized access, data
Uthaman, SreekumarMulay, Abhijit BGadekar, Pundlik
In recent years, the automotive industry has been looking into alternatives for conventional vehicles to promote a sustainable transportation future having a lesser carbon footprint. Electric Vehicles (EV) are a promising choice as they produce zero tail pipe emissions. However, even with the demand for EVs increasing, the charging infrastructure is still a concern, which leads to range anxiety. This necessitates the judicious use of battery charge and reduce the energy wastage occurring at any point. In EVs, regenerative braking is an additional option which helps in recuperating the battery energy during vehicle deceleration. The amount of energy recuperated mainly depends on the current State of Charge (SoC) of the battery and the battery temperature. Typically, the amount of recuperable energy reduces as the current SoC moves closer to 100%. Once this limit is reached, the excess energy available for recuperation is discharged through the brake resistor/pads. This paper proposes a
Barik, MadhusmitaS, SethuramanAruljothi, Sathishkumar
A mobile wireless charger is a device that charge a smartphone or other compatible gadgets without the need for physical cables. Principle of wireless mobile charger system based on inductive coupling phenomena. The main objective of this paper aims to address the challenge of packaging wireless mobile charger in peculiar door trim profile keeping overall functionality and aesthetic appearance of door trim intact. This paper deals with integration of a wireless charging system within the door trim of a vehicle to provide convenience and advanced functionality. The objective is to pack a wireless charger in door trim meeting the ergonomic target and equilibrium state stability while maintaining sleek and minimalist design of the door trim. The study focuses on innovative packaging solutions related to space optimization in door despite multiple challenges involved. Major challenge lies in packing the unit amidst complex mechanisms such as window regulators, speakers, structural
Palyal, NikitaD, GowthamBhaskararao, PathivadaKumarasamy, Raj GaneshBornare, Harshad
Electric mobility is no longer a distant vision, it is a global imperative in the journey of fight against the climate change and the urban pollution. Yet, despite of explosive growth in the electric vehicle adoptions, a major bottleneck remains which is efficient and convenient charging. The current reliance on physical plug in charging station creates inconvenient, time consuming experience and also faces significant technical and economic challenges those threaten to stall the smooth clean transportation revolution. Without innovation in how we recharge our vehicle the promise of electric mobility appears under threat which is undermined by less efficient, less compatible, and infrastructure hurdles. Wireless charging technology stand out as the game changing breakthrough poised to tackle these all critical problems head on. By enabling the effortless, cable-free charging system across the wide spectrum of electric vehicles, from the personal cars to the public transport fleets and
Jain, GauravPremlal, PPathak, RahulGore, Pandurang
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
India's electric 2-wheeler (E2W) market has witnessed fast growth, driven by lucrative government policies. The two-wheeler segment dominates the Indian automotive market, accounting for the largest share of total sales. Consequently, the manufacturers of 2-wheelers are developing new electric vehicles (EV) tailored for the Indian market. However, the Indian EV market has witnessed multiple fire accidents in recent years, raising safety concerns among consumers and industry stakeholders. These incidents highlight key weakness in battery thermal management systems (BTMS), particularly during charging. Most existing E2W BTMS relies on passive (natural) air cooling, which has been associated with fire incidents due to its inefficiency in heat dissipation, particularly during charging in India's high-temperature environment. Therefore, it is imperative to build thermally viable and economical BTMS for the growing E2W vehicles with fast charging capability. FEV is actively developing the
Raut PhD, AnkitHiremath, Vinodkumar SEmran, AshrafGarg, ShivamBerry, Sushil
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Mehrotra, SoumyaChhabra, Rishabh
The electrification of transportation is revolutionizing the automotive and logistics sectors, with electric vehicles (EVs) assuming an increasingly pivotal role in both passenger mobility and commercial activities. As the adoption of EVs rises, the necessity for precise range estimation becomes essential, especially under diverse operational circumstances, including vehicle and battery characteristics, driving conditions, environmental influences, vehicle configurations, and user-specific behaviors. Among the varying factors, a key fluctuating one is user behavior—most notably, increased payload, which significantly affects EV range. A key business challenge lies in the significant variability of EV range due to changes in vehicle load, which can affect performance, operational efficiency, and cost-effectiveness—especially for fleet-based services. This research aims to tackle the technical deficiency in forecasting electric vehicle (EV) range under various payload conditions
Khatal, SwarajGupta, AnjaliKrishna, Thallapaka
State Transport Units (STUs) are increasingly using electric buses (EVs) as a result of India's quick shift to sustainable mobility. Although there are many operational and environmental benefits to this development, like lower fuel prices, fewer greenhouse gas emissions, and quieter urban transportation, there are also serious cybersecurity dangers. The attack surface for potential cyber threats is expanded by the integration of connected technologies, such as cloud-based fleet management, real-time monitoring, and vehicle telematics. Although these systems make fleet operations smarter and more efficient, they are intrinsically susceptible to remote manipulation, data breaches, and unwanted access. This study looks on cybersecurity flaws unique to connected passenger electric vehicles (EVs) that run on India's public transit system. Electric vehicle supply equipment (EVSE), telematics control units (TCUs), over-the-air (OTA) update systems, and in-car networks (such as the Controller
Mokhare, Devendra Ashok
As light electric vehicles (LEVs) gain popularity, the development of efficient and compact on-board chargers (OBCs) has become a critical area of focus in power electronics. Conventional AC-DC topologies often face challenges, including high inrush currents during startup, which can stress components and affect system reliability. Furthermore, DC-DC converters often have a limited soft-switching range under light load conditions, leading to increased switching losses and reduced efficiency. This paper proposes a novel 6.6 kW on-board charger architecture comprising a bridgeless totem-pole power factor correction (PFC) stage and an isolated LLC resonant DC-DC converter. The main contribution lies in the specific focus on enhancing startup behavior and switching performance. In PFC converters, limiting inrush current during startup is crucial, especially with fast-switching wide-bandgap devices like SiC or GaN. Conventional soft-start techniques fall short in of ensuring smooth voltage
Patil, AmrutaBagade, Aniket
This study aimed to develop a thermally conductive TPE mat and assess its performance in comparison to an existing antiskid rubber mat, specifically evaluating its impact on wireless charger efficiency. Moreover, morphological and thermal analyses were conducted to establish a correlation between the material behaviours of the new and current thermally conductive antiskid mats. The process of developing the thermally conductive TPE involved utilizing a two-roll mill followed by compression moulding to achieve a 2D sheet shape. Notably, the thermally conductive mat demonstrated a consistent enhancement in charging efficiency over the conventional antiskid mat. To examine the thermal characteristics, thermal characterization techniques including DSC and TGA were employed for both the existing and newly developed mats. FTIR spectroscopy was also utilized to confirm the presence of organic functional groups within the mat. The morphological analysis of the fillers used to enhance thermal
Naikwadi, Amol TarachandMali, ManojPatil, BhushanTata, Srikanth
The electric vehicle (EV) industry is relentlessly pursuing advancements to enhance efficiency, extend driving range and improve overall performance. A notable limitation of conventional EVs is their fixed-voltage battery architecture, which necessitates compromises in powertrain design and can result in suboptimal efficiency under varying driving conditions. The Dynamic Voltage EV System (DVEVS) presents a transformative solution, allowing the battery pack to dynamically reconfigure its cells between series and parallel connections. This review explores the core principles of DVEVS, including battery topology, power-electronics-based switching, and the integration of hybrid energy storage solutions such as electric double-layer capacitors (EDLCs). We explore the foundational concepts of battery reconfiguration, delve into specific implementation strategies such as power-electronics-based switching and hybrid energy storage systems and address the critical need for adaptive thermal
Amberkar S, SunilRaool, Anuj RajeshM G, ShivanagRajapuram, Bheema Reddy
Software-Defined Vehicles (SDVs) are changing the automotive landscape by separating hardware from software and enabling features like over-the-air updates, advanced control strategies, and real-time decision-making. To support this transformation, EV powertrain systems require high-performance computing (HPC) platforms capable of real-time control, data processing, and cross-domain communication. This paper introduces a fully SDV-compatible EV powertrain architecture designed with NXP S32G3 domain controller. This processor supports multiple core having lockstep. It is designed for zonal control and automotive functional safety. The proposed designed uses the automotive Ethernet as an alternate option for CAN based communication to fulfill the bandwidth and timing requirement of today’s SDV applications. Hence it allows gigabit data transfer, Time Sensitive Networking (TSN) and also provides low latency across SDV control domain. Through secure real time interface with the vehicle’s
Pawar, GaneshInamdar, Sumer DeepakKumar, MayankDeosarkar, PankajTayade, NikhilKanse, DattatrayChopade, Vipul
In high-performance charging systems, managing higher currents is crucial for efficient battery charging. Elevated battery temperature is the main challenge for limiting the duration and effectiveness of high-current charging. Our proposal of control system addresses these barriers by optimizing charging time by maintaining optimal temperature ranges for the battery. This is achieved through innovative preconditioning solutions that are incorporated with active Battery cooling configurations. Our system features a unique preconditioning approach with dedicated active cooling circuit for the battery which will provide cooling to battery even though cabin HVAC (Heat Ventilation & Air-conditioning unit) is switched off. The active liquid cooling system ensures effective temperature management without additional energy consumption, while the dedicated Battery active liquid cooling system provides enhanced cooling capabilities for more demanding scenarios and preconditioning. By integrating
Badgujar, Pankaj RavindraBhosale, SubhashDave, Rajeev
The rapid expansion of electric vehicle (EV) charging infrastructure introduces complex cybersecurity challenges across hardware, software, network, and cloud layers. This review paper synthesizes existing research, standards, and documented incidents to identify critical vulnerabilities and propose layered mitigation strategies. We present a structured threat taxonomy based on the STRIDE model, enriched with real-world attack vectors and mapped to mitigation controls. Our analysis spans physical tampering, insecure firmware updates, protocol-level flaws in OCPP and ISO 15118, and cloud misconfigurations. While prior studies often focus on isolated domains, this work unifies fragmented insights into a cohesive framework. We highlight gaps in current literature, such as inconsistent adoption of secure protocols and limited validation of EVSE identity formats. By aligning threats with industry standards (SAE J3061, NIST CSF, IEC 62443) and scoring risks using CVSS v3.1, we offer a
Aggarwal, AkshitGupta, SaurabhSirohi, KapilArisetty, VenkateshChatterjee, Avik
As the world is moving towards electric vehicles, we are observing a wide use of Lithium-Ion batteries in modern transportation. Lithium-Ion Batteries offer several advantages over conventional battery systems, including higher energy density that is energy stored per unit mass, longer Cycle Life, faster Charging rates, low Self-Discharge, lighter weight, and ease of maintenance as the memory effect present in other batteries is absent. However, despite these advantages, the system faces significant technical challenges arising from inaccurate battery State of Health (SOH) estimation techniques. These inaccuracies can lead to unexpected vehicle failures and a degraded end-user experience, especially due to incorrect “distance to empty” predictions. In this paper, different SOH estimation techniques are reviewed and compared in detail. The SOH estimation approaches are broadly classified into three main categories: Model based estimation techniques, data driven estimation techniques
Patel, ParvezBhagat, Ayush
This paper presents the design, implementation, and evaluation of a high-efficiency Phase-Shifted Full-Bridge (PSFB) DC-DC converter utilizing Silicon Carbide (SiC) MOSFETs for low-voltage (LV) battery charging in electric vehicle (EV) applications. The converter operates with Peak Current Mode Control (PCMC), enhanced by a digitally implemented slope compensation technique to ensure control loop stability, counter subharmonic oscillations and accurate current regulation across a wide load range. The use of SiC devices enables high switching frequencies operation with reduced conduction losses, contributing to improved efficiency and power density of converter. The hardware design utilizes a planar transformer with shim inductance to enable Zero Voltage Switching (ZVS) of the primary switches, thereby reducing switching losses and mitigating transformer flux imbalance. The secondary stage employs diode rectification, while the overall PCB layout is optimized to minimize parasitics and
Kumar, MayankDeosarkar, PankajTayade, NikhilInamdar, Sumer
As India accelerates the adoption of electric vehicles (EVs) the development of a scalable, reliable and efficient charging infrastructure becomes critical to ensuring the success of EV adoption. During type testing, the off board AC/DC EV chargers undergo a comprehensive assessment to ensure they meet safety and performance standards required by regulations. The tests examine crucial factors like electrical safety, EMC (electromagnetic compatibility), interoperability, environmental endurance and mechanical strength. This paper provides information of the India mandatory compliance requirements and highlights typical failure modes observed during the validation process of off-board chargers. Emphasis is placed on challenges associated with electrical safety, EMC performance and interoperability. The objective is to support charger manufacturers to identify potential issues during design and development.
Murumkar, AdityaMulay, Abhijit B
This paper presents a comprehensive testing framework and safety evaluation for Vehicle-to-Vehicle (V2V) charging systems, incorporating advanced theoretical modeling and experimental validation of a modern, integrated 3-in-1 combo unit (PDU, DCDC, OBC). The proliferation of electric vehicles has necessitated the development of resilient and flexible charging solutions, with V2V technology emerging as a critical decentralized infrastructure component. This study establishes a rigorous mathematical framework for power flow analysis, develops novel safety protocols based on IEC 61508 and ISO 26262 functional safety standards, and presents comprehensive experimental validation across 47 test scenarios. The framework encompasses five primary test categories: functional performance validation, power conversion efficiency optimization, electromagnetic compatibility (EMC) assessment, thermal management evaluation, and comprehensive fault-injection testing including Byzantine fault scenarios
Uthaman, SreekumarMulay, Abhijit BNikam, Sandip B.
With the rise of EVs, researchers are focusing on optimizing busbar design to meet the demands of high energy density, fast charging, and compact battery packs. The busbar design starts by selecting the material and the cross-sectional area required based on the rated current requirement. The width matches or may exceed the battery cell terminal size, whereas the length is optimized such that it is packaged within the given space constraints. The research also highlights the risk of busbars to oxidation and corrosion, which increases resistance and decreases conductivity for which plating/coating techniques are applied to improve the surface finish, overall durability, conductivity and in some cases the surface hardness, while minimizing the heat loss. Using simulations and experimental validation, the study examines three key design parameters: the weld diameter for busbar welded joints, electrical resistance, and contact resistance. A detailed analysis investigates how the weld
Nogdhe, YogeshSingh, Shobit KumarPaul, JibinMishra, MukeshMenon, Praveen
This comprehensive research presents an in-depth analysis of communication protocols essential for implementing fast charging systems in India's rapidly expanding electric two-wheeler and three-wheeler market. As India witnesses unprecedented growth in electric mobility, with two-wheelers representing over 95% of current EV sales, the establishment of standardized, secure, and efficient charging protocols becomes paramount for widespread adoption. This study examines the current landscape of AC charging methodologies, evaluates the technical and economic feasibility of DC fast charging implementation, and provides detailed comparative analysis of existing international standards including IS 17017-25, IS 17017-31, ChaoJi, and CCS 2.0. The research concludes with strategic recommendations for developing cyber-secure, cost-effective charging infrastructure specifically tailored to meet India's unique market requirements and operational constraints.
Uthaman, SreekumarMulay, Abhijit B
Items per page:
1 – 50 of 1163