Browse Topic: Vehicle charging

Items (1,075)
With the rapid development of new energy vehicles, high-power charging technology has become an effective way to meet the fast-charging needs of electric vehicles. Temperature control of charging cables is crucial for the safety and efficiency of charging. This article aims to develop finite element method (FEM)-ML to predict the temperature field of the charging cable. First, the initial ambient temperature and maximum current were set as the main influencing factors, and a dataset including various charging parameters and cable temperature fields was built by FEM based on a two-factor, four-level orthogonal design. Then, surrogate models based on the Bayesian optimization (BO) algorithm, multilayer perceptron (MLP) model, and extreme gradient boosting (XGB) model were established to predict the temperature field distribution of high-power charging cables. The results indicated that the XGB model had better prediction performance than the MLP model, with average values of MSE, RMSE
Li, XilinZhan, ZhenfeiFan, FuhaoFu, YunyouShen, YunlongPu, LiangxiZhou, QiTang, Weiqin
In this article, the hybrid drive is discussed of the combination of conventional tractors with electrified trailers, usually referred to as E-trailer. We demonstrate that this approach offers the possibility of achieving fuel savings exceeding 20%. For regional trips, about half of this reduction is achieved without offline charging, i.e., without applying electric energy from the E-trailer battery. For motorway dominant trips, more use is required of the battery energy. A new control strategy is proposed, validated through simulations, in which only three control parameters are required, which can be tuned effectively to achieve maximum fuel reduction under certain trip and loading conditions. This control strategy adjusts the E-trailer torque request, based on the requested power for the tractor diesel engine, being estimated through a smart kingpin sensor. It ensures that the E-trailer supports the tractor propulsion when significant power is required, and recovers energy when the
Pauwelussen, JoopKural, KarelHetjes, Bas
Problem definition: Battery-electric commercial vehicles in particular have large battery capacities with several hundred kilowatt hours, some of which do not have enough energy for an entire working day, which is why they need to be recharged if necessary. High charging power with correspondingly high charging currents is required to recharge the electrical energy storage in an acceptable time. Due to the electrical losses, waste heat is generated, which places a thermal load on the charging components. In particular, the CCS charging inlet is subject to high thermal loads and, for safety reasons, must not exceed the maximum temperature of 90°C according to DIN EN IEC 62196-1. Depending on the ambient temperature, the charging inlet in the charging path often represents a thermally limiting component, as the charging current must be reduced before the maximum temperature is reached. Solution: Three general solution approaches are used to investigate how the CCS charging inlet can be
Krings, JochenReuss, Hans-ChristianZiegler, PeterSteinmetz, Paul
Fast charging of lithium-ion batteries presents significant thermal management challenges, due to the high demanding conditions of high C-rates, particularly at extreme ambient temperatures. This study explores the thermal behavior of a cylindrical lithium-ion cell during fast-charging scenarios designed to achieve a full charge in 15 minutes or less (SOC: 0%–100%), across a wide range of ambient temperatures. The analysis covers a broad spectrum of ambient temperatures, from 303 K to 333 K, addressing real-world operational challenges faced by electric vehicles and energy storage systems. A validated thermal model, calibrated with experimental data on the open circuit voltage (OCV) and internal resistance of the cell across varying conditions, is employed to accurately predict the temperature distribution of the cell at different states of charge (SOC). The model also includes scenarios involving high initial cell temperatures to assess their effect on thermal performance during fast
Jahanpanah, JalalMahmoudzadeh Andwari, AminBabaie, MeisamKonno, JuhoAkbarzadeh, Mohsen
Electric vehicles are no longer a rarity on Europe’s streets. But battery electric vehicles (BEVs) still have a long way to go to be the dominant vehicle type on the streets. In the last years, not only has the number of passenger cars risen, but also the number of electric trucks and heavy-duty vehicles. In 2023 electric trucks have share of 1.5% in the market. [1, 2] For the truck industry higher charging powers are even more important. Due to European regulations drivers of vehicles with more than 3.5t weight or buses with more than 10 passengers must rest for 45 minutes after 4.5 hours of drive. [3] Therefore, higher charging powers were needed, and the Megawatt Charging System (MCS) standard was developed. The voltage level goes up to 1250 V and currents of 3000 A are defined. [4] This allows the battery of heavy-duty vehicles to be completely charged within the driving breaks. As with the upcoming MCS standard, the charging power increases, also the failure risk rises. Higher
Grund, CarolineReuss, Hans-Christian
This paper examines the impact of the distribution of charging and hydrogen refueling stations on their reachability for craft vehicles with a defined usage profile. A simulation-based methodology is presented for this purpose. The simulation models daily trips for craft vehicles, considering amongst others the company location, the client stops, the operating radius and the mean daily driving distance. Based on these inputs, the number of charging or refueling opportunities for typical daily trips of the craft vehicle is calculated. To investigate the impact of locations on the frequency of encountering energy provisions, simulations are conducted in three regions: Ulm (urban), Stuttgart (metropolitan), and Munderkingen (rural). Furthermore, the impact of different locations within the same infrastructural area is examined by assessing multiple company locations in Ulm. The findings indicate that the urban zone of Ulm is characterized by a highly dense electric fast charging
Heilmann, OliverMüller, JulianHeinrich, MarcoCortès, SvenSchlick, MichaelKulzer, André Casal
Experimental testing in automotive development sometimes relies on ad hoc approaches like ‘One Factor at a Time’, particularly in time- and resource-limited situations. While widely used, these approaches are limited in their ability to systematically capture parameter interactions and system complexities, which poses significant challenges in safety-critical applications like high-voltage battery systems. This study systematically investigates the factors influencing thermal runaway in lithium-ion battery cells using a statistical full-factorial experimental design. Key parameters, including state of charge, cell capacity and heating trigger power, have been analyzed under controlled conditions with an autoclave setup, enabling precise measurement of thermal and mechanical responses. The use of automotive-grade lithium-ion cells ensures relevance for next-generation applications. By employing factorial regression and statistical analysis, the study identifies critical temperatures
Ceylan, DenizKulzer, André CasalWinterholler, NinaWeinmann, JohannesSchiek, Werner
Heavy-duty trucks idling during the hotel period consume millions of gallons of diesel/fuel a year, negatively impacting the economy and environment. To avoid engine idling during the hotel period, the heating, ventilation, and air-conditioning (HVAC) and auxiliary loads are supplied by a 48 V onboard battery pack. The onboard battery pack is charged during the drive phase of a composite drive cycle, which comprises both drive and hotel phases, using the transmission-mounted electric machine (EM) and battery system. This is accomplished by recapturing energy from the wheels and supplementing it with energy from the engine when wheel energy alone is insufficient to achieve the desired battery state of charge (SOC). This onboard battery pack is charged using the transmission-mounted EM and battery system during the drive phase of a composite drive cycle (i.e., drive phase and hotel phase). This is achieved by recapturing wheel energy and energy from the engine when the wheel energy is
Huang, YingHanif, AtharAhmed, Qadeer
Letter from the Guest Editors
Zhu, Shun-PengZhan, ZhenfeiHuang, Shiyao
A team led by Kelsey Hatzell, Associate Professor of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, has uncovered insights that could help power a new type of battery, called an anode-free solid-state battery, past lithium-ion’s limitations.
A new bendable supercapacitor made from graphene has been developed that charges quickly and safely stores a record-high level of energy for use over a long period. The technology overcomes the issue faced by high-powered, fast-charging supercapacitors: they usually cannot hold a large amount of energy in a small space.
Nickel’s role in the future of electric vehicle batteries is clear: It’s more abundant and easier to obtain than widely used cobalt, and its higher energy density means longer driving distances between charges. However, nickel is less stable than other materials with respect to cycle life, thermal stability, and safety. Researchers from The University of Texas at Austin and Argonne National Laboratory aim to change that with a new study that dives deep into nickel-based cathodes, one of the two electrodes that facilitate energy storage in batteries.
Range anxiety is perhaps the single biggest misnomer in electric vehicle technology. With a growing number of EVs now delivering 300 miles or more of real-world range, how many of us can truly claim to exceed that in a typical day?
Hatz Americas (Waukesha, Wisconsin) expanded its power generation product portfolio to include AC and DC mobile diesel generators for the recreational vehicle and industrial markets. The new offerings provide prepackaged, sound-attenuated solutions for power generation and hybrid battery charging. Manufacturing and testing of the 1B30VE engines used in the generators will continue to take place at the primary engine plant in Ruhstorf, Germany. Final assembly of the generator sets will occur at Hatz's new production facility in Italy. The first model released will be the GD3200-120 Silent Pack with RV package, which is available to order. This will be followed by the BD3000-56 Silent Pack for use in either 28V or 56V hybrid battery charging systems. https://www.hatzamericas.com
It's not hard to find automakers and battery companies that are trying to develop viable solid-state batteries. The technology will open up quicker charging, increased energy density and, more importantly, lower costs. At Nissan's Opamma plant in Japan, the automaker's Shunichi Inamijima, vice president of powertrain and EV engineering, shared Nissan's plans to bring a solid-state battery-powered EV to market by the end of 2028.
Baldwin, Roberto
With the rapid expansion of the electric vehicle (EV) market, the frequency of grid-connected charging has concentrated primarily during peak hours, notably from 7:00 a.m. to 10:00 a.m. and 6:00 p.m. to 10:00 p.m., resulting in substantial demand surges during both morning and evening periods. Such uncoordinated charging patterns pose potential challenges to the stability and economic efficiency of power systems. As vehicle-to-grid (V2G) technology advances, facilitating bidirectional energy exchange between EVs and smart grids, the need for optimized control of EV charging and discharging behaviors has become critical to achieving effective peak shaving and valley filling in the grid. This paper proposes a microgrid energy scheduling optimization algorithm based on existing smart grid and EV charging control technologies. The method establishes a multi-objective optimization model with EVs’ 24-h charging and discharging power as decision variables and microgrid load rate, load
Fan, LongyuChen, YuxinZhang, Dacai
This document covers the dimensional definition of the SAE J3400 (NACS) electric vehicle coupler, which includes the connector and inlet.
Hybrid - EV Committee
The trend towards electrification propulsion in the automotive industry is highly in demand due to zero-emission and becoming more significant across the world. Battery electric vehicles have lower overall noise as compared to conventional I.C Engine counterparts due to the absence of engine combustion and mechanical noise. However, other narrowband and tonal noises are becoming dominant and are strongly perceived inside the cabin. With the ongoing push towards electrification, there is likely to be increased focus on the noise impact of gearing required for the transmission of power from the electric motor to the road. Direct coupling of E-motors with Axle has resulted in severe tonal noises from the driveline due to instant e-motor torque ramp up from 0 rpm and reverse torque on driving axle during regenerative braking. The tonal noises from the rear axle during vehicle running become very critical for customer perception. For automotive NVH engineers, it has become a challenge to
Doshi, SohinKalsule, DhanajiSawangikar, PradeepSuresh, VineethSharma, Manish
As the adoption of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV) continues to rise, more individuals are encountering these quieter vehicles in their daily lives. While topics such as propulsion sound via Active Sound Design (ASD) and bystander safety through Acoustic Vehicle Alerting Systems (AVAS) have been extensively discussed, charging noise remains relatively unexplored. Most EV/PHEV owners charge their vehicles at home, typically overnight, leading to a lack of awareness about charging noise. However, those who have charged their cars overnight often report a variety of sounds emanating from the vehicle and the electric vehicle supply equipment (EVSE). This paper presents data from several production EVs measured during their normal charging cycles. Binaural recordings made inside and outside the vehicles are analyzed using psychoacoustic metrics to identify sounds that may concern EV/PHEV owners or their neighbors.
Marroquin, MarcBray, Wade
Electric double-layer capacitors (EDLCs) store charge by adsorbing ions at the electrode-electrolyte interface, offering fast charge/discharge rates, high power density, minimal heat generation, and long cycle life. These characteristics make EDLCs ideal for memory backup in electronic devices and power assistance in electric and hybrid vehicles. However, their energy density is lower than that of batteries, necessitating improvements in electrical capacity and potential. Traditionally, activated carbon with a high specific surface area has been used, but recent research focuses on mesoporous carbon materials for better ion diffusion. This study uses resorcinol-formaldehyde-carbon cryogel (RFCC) with mesopores and organic electrolytes with a wider electrochemical window. Various RFCCs with different pore sizes were synthesized and evaluated. Comprehensive investigations into the pore structures and surface properties of both synthesized carbon gels and commercial mesoporous materials
Cheng, ZairanOkamura, TsubasaOhnishi, YutoNakagawa, Kiyoharu
This document covers the dimensional definition of the SAE J3400 (NACS) electric vehicle coupler, which includes the connector and inlet.
Hybrid - EV Committee
The added connectivity and transmission of personal and payment information in electric vehicle (EV) charging technology creates larger attack surfaces and incentives for malicious hackers to act. As EV charging stations are a major and direct user interface in the charging infrastructure, ensuring cybersecurity of the personal and private data transmitted to and from chargers is a key component to the overall security. Researchers at Southwest Research Institute® (SwRI®) evaluated the security of direct current fast charging (DCFC) EV supply equipment (EVSE). Identified vulnerabilities included values such as the MAC addresses of both the EV and EVSE, either sent in plaintext or encrypted with a known algorithm. These values allowed for reprogramming of non-volatile memory of power-line communication (PLC) devices as well as the EV’s parameter information block (PIB). Discovering these values allowed the researchers to access the IPv6 layer on the connection between the EV and EVSE
Kozan, Katherine
Mitsubishi Fuso Truck and Bus has announced it will conduct a joint demonstration of its Battery 2nd Life initiative this year. This initiative will be jointly conducted with CONNEXX Systems and will repurpose used batteries from Mitsubishi eCanter trucks to build energy storage systems. According to Mitsubishi, CONNEXX will remove the used batteries from end-of-life eCanters and repurpose them as power sources for what CONNEXX has dubbed its EnePOND EV Charger energy storage systems. These units have integrated EV chargers developed by CONNEXX that can reportedly reduce the load on the existing power grid while allowing for DC fast charging of multiple EVs simultaneously. CONNEXX also noted that these units enable EV charging during power outages.
Wolfe, Matt
Conventional solid polymer electrolyte batteries perform poorly due to structural limitations that hinder an optimal electrode contact. This could not eliminate the issue of “dendrites”, where lithium grows in tree-like structures during repeated charging and discharging cycles. Dendrites are a critical issue, as an irregular lithium growth can disrupt battery connections, potentially causing fires and explosions.
The operating temperature of lithium-ion battery (LIB) cells significantly influences their degradation behavior. In indirect liquid cooling systems, temperature variations within a Battery Electric Vehicle (BEV) LIB module are inevitable due to the increasing downstream temperature of the cooling medium as it absorbs heat. This leads to reduced temperature differentials between the cooling medium and the LIB cells. As a result, LIB cells located further along the flow path experience higher average temperatures than those at the front. Typically, a maximum average cell temperature difference of 5 K within LIB modules is considered acceptable. However, results from a conventional cooling system indicate that, when fast charging is exclusively used, this can lead to a 15.5 % difference in the total ampere-hours passed before the End-of-Life (EOL) is reached for the front and back LIB cells. To address this issue, a switchable thermal management system for the traction battery is
Auch, MarcusWeyershäuser, KonstantinKuthada, TimoWagner, Andreas
The driving capability and charging performance of electric vehicles (EVs) are continuously improving, with high-performance EVs increasing the voltage platform from below 500V to 800V or even 900V. To accommodate existing low-voltage public charging stations, vehicles with high-voltage platforms typically incorporate boost chargers. However, these boost chargers incur additional costs, weight, and spatial requirements. Most mature solutions add a DC-DC boost converter, which results in lower charging power and higher costs. Some new methods leverage the power switching devices and motor inductance within the electric drive motor to form a boost circuit using a three-phase current in-phase control strategy for charging. This approach requires an external inductor to reduce charging current ripple. Another method avoids the use of an external inductor by employing a two-parallel-one-series topology to minimize current ripple; however, this reduces charging power and increases the risk
Yuan, BaochengMa, YongXie, XiLiu, ShaoweiGuan, TianyuGe, KaiZheng, LifuXu, Xu
The surge in electric vehicle usage has expanded the number of charging stations, intensifying demands on their operation and maintenance. Public charging stations, often exposed to harsh weather and unpredictable human factors, frequently encounter malfunctions requiring prompt attention. Current methods primarily employ data-driven approaches or rely on empirical expertise to establish warning thresholds for fault prediction. While these approaches are generally effective, the artificially fixed thresholds they employ for fault prediction limit adaptability and fall short in sensitivity to special scenarios, timings, locations, and types of faults, as well as in overall intelligence. This paper presents a novel fault prediction model for charging equipment that utilizes adaptive dynamic thresholds to enhance diagnostic accuracy and reliability. By integrating and quantifying Environmental Influence Factors (EF), Scenario Influence Factors (SF), Fault Severity Factors (FF), and
Wang, HaoWang, NingLi, YuanTang, Xinyue
Rechargeable lithium batteries are widely used in the electric vehicle industry due to their long lifespan and high energy density. However, after long-term repeated charging and discharging, various electrochemical reactions inside lithium batteries can lead to performance degradation and even cause battery fires. Estimating the health status and predicting the remaining life of lithium batteries can provide insights into their future operating conditions, which is crucial for achieving fault warnings and ensuring the safe operation of battery-related equipment. In terms of predicting the health status of lithium batteries, this paper proposes a method based on an improved Long Short-Term Memory (LSTM) for health status estimation. This method first employs nearest neighbor component analysis to eliminate feature redundancy among the multidimensional health factors of the battery. Then, a differential grey wolf optimization algorithm (DEGWO) is used to globally optimize the
K, Meng Zi
aThe lengthy charging time of lithium-ion batteries for electric vehicles (EVs) significantly affect their acceptance. Reducing charging time requires high-power fast charging. However, such fast charging can trigger various side reactions, leading to safety and durability issues. Among these, lithium plating is a major concern as it can reduce battery capacity and potentially cause internal short circuits or even thermal runaway. Currently, multi-stage constant current charging (MCCC) protocols are widely adopted. However, the difficulty in effectively detecting lithium plating during the MCCC process significantly limits the charging power. Therefore, it is urgent to explore a method to detect lithium plating during the MCCC process. In this study, the impedance evolution during the MCCC procedure was first investigated. Then a method based on the impedance variation patterns was proposed to detect lithium plating. Besides, the reason for the behavior of impedance changes was further
Shen, YudongWang, XueyuanWu, HangWei, XuezheDai, Haifeng
With Rapid growth of Electric Vehicles (EVs) in the market challenges such as driving range, charging infrastructure, and reducing charging time needs to be addressed. Unlike traditional Internal combustion vehicles, EVs have limited heating sources and primarily uses electricity from the running battery, which reduces driving range. Additionally, during winter operation, it is necessary to prevent window fogging to ensure better visibility, which requires introducing cold outside air into the cabin. This significantly increases the energy consumption for heating and the driving range can be reduced to half of the normal range. This study introduces the Ceramic Humidity Regulator (CHR), a compact and energy-efficient device developed to address driving range improvement. The CHR uses a desiccant system to dehumidify the cabin, which can prevent window fogging without introducing cold outside air, thereby reducing heating energy consumption. A desiccant system typically consists of two
Hamada, TakafumiShinoda, NarimasaKonno, YoshikiIhara, YukioIto, Masaki
This paper presents a highly integrated 4-in-1 power electronics solution for 800V electric vehicle applications, combining on-board charging (OBC), DC boost charging, traction drive, and high-voltage/low-voltage (HV/LV) power conversion in a single housing. Integration is achieved through the use of motor windings for charging and a custom-designed three-port transformer that magnetically couples HV and LV batteries while ensuring galvanic isolation. The system also employs a three-phase open-ended winding machine (OEWM) to support both single-(1P) and three-phase (3P) AC charging. A dual-bank DC/DC architecture allows for seamless integration of a redundant auxiliary power module (APM), enhancing functional safety and autonomy. In AC charging mode, the three-level (3L) T-type inverter operates as a Vienna rectifier for 3P charging and as a totem-pole power factor correction (PFC) circuit for 1P charging, with the motor windings utilized as PFC inductors. In DC boost charging mode
Wang, YichengTaha, WesamAnand, Aniket
Electrifying truck fleets has the potential to improve energy efficiency and reduce carbon emissions from the freight transportation sector. However, the range limitations and substantial capital costs with current battery technologies imposes constraints that challenge the overall cost feasibility of electrifying fleets for logistics companies. In this paper, we investigate the coupled routing and charge scheduling optimization of a delivery fleet serving a large urban area as one approach to discovering feasible pathways. To this end, we first build an improved energy consumption model for a Class 7-8 electric and diesel truck using a data-driven approach of generating energy consumption data from detailed powertrain simulations on numerous drive cycles. We then conduct several analyses on the impact of battery pack capacity, cost, and electricity prices on the amortized daily total cost of fleet electrification at different penetration levels, considering availability of fast
Wendimagegnehu, Yared TadesseAyalew, BeshahIvanco, AndrejHailemichael, Habtamu
Items per page:
1 – 50 of 1075