Browse Topic: Vehicle charging
ABSTRACT The roll-up roll-away Tactical Vehicle-to-Grid / Vehicle-to-Vehicle (V2G/V2V) system provides a plug-and-play, very fast forming, smart, aggregated, and efficient power solution for an emerging (including austere) contingency base that is ready to generate up to 240kW of 208 VAC 3-phase power in less than 20 minutes. The system is designed to provide grid services (peak shaving, Volt/VAR control, power regulation, and current source mode) beneficial to emerging and mature grids (CONUS or OCONUS). The system uses vehicle Transmission-Integrated Generators (TIGs) to produce 600VDC power for use by vehicle hotel-loads (electrification) and off-board loads (tents/shelters, communications centers, or other electrical loads). Each vehicle is equipped with a Vehicle Communication Module (VCM), which provided the communication capability prior to initiation of transfer of up to 100kW of power via the J1772 SAE Combo Connector between vehicles (V2V) and/or for export power off-vehicle
ABSTRACT Main Battle Tanks (MBTs) remain a key component of most modern militaries. While the best way to ‘kill a tank’ is via the employment of another tank, matching enemy armor formations one-for one is not always possible. Light infantry lack organic armor and their shoulder launched anti-tank capabilities do not defeat the latest generation of MBTs. To compensate for this capability gap, the U.S. Army has employed precision guided anti-tank munitions, such as the “Javelin.” However, these are expensive to produce in quantity and require risking the forward presence of dismounted Soldiers to employ. Mine fields offer another option but are immobile once employed. The ‘Guillotine’ Attack System proposes to change the equation by pairing an AI enabled, adaptive unmanned delivery system with a shaped charge payload. Guillotine can loiter for hours, reposition itself to hunt for targets, and- when ready- deliver a precision shaped charge strike from the air. Citation: “The ‘Guillotine
ABSTRACT Abuse response of lithium-ion batteries has been extensively studied over several decades. Most studies on the onset and propagation of battery fires following mechanical deformation are focused on understanding the onset of thermal events following quasi-static loading. Using an array of cylindrical lithium-ion cells as example, we report results from ultra-high strain-rate deformation mechanical events (> 100 /s) that result in electrochemical short-circuits followed by thermal events. We present a methodology that takes stock of gas compositions as a function of state of charge and compute flammability limits. Finally, we discuss implications for flame lengths and propensity for propagation of thermal events. Citation: J. Kim, A. Mallarapu, S. Santhanagopalan, Y. Ding, “Propagation of Fire in Li-Ion Batteries under Ultra-High Strain-Rate Deformation” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
ABSTRACT This paper presents a fast and safe quasi-optimal multistage constant current (MCC) charge pattern optimization strategy for Li-ion batteries. It is based on an integrated electro-thermal model that combines an electrical equivalent circuit (EEC) battery model with a thermal battery model. The EEC model is used to predict the battery’s terminal voltage continuously as charging progresses, while its temperature rise is also estimated continuously by employing the thermal model. This integrated electro-thermal battery model is utilized to search for an optimal MCC charge pattern that charges the battery in minimum time, while simultaneously limiting its temperature rise to a user-specified level. The search for the optimal charge pattern is carried out on a stage-by-stage basis by using a single-variable optimal search strategy that can be easily implemented on a battery management system. The paper also includes some simulation results obtained from an integrated electro
ABSTRACT Rechargeable batteries needed for military applications face critical challenges including performance at extreme temperatures, compatibility with military logistical processes, phasing out of legacy battery technologies, and poor compatibility of COTS lithium-ion batteries with specialized military operational requirements and legacy platforms. To meet these challenges, CAMX Power has developed and is commercializing a lithium-ion battery technology, trademarked CELX-RC®, with high power and rapid charging capability, long life, exceptional performance and charge acceptance capability at extreme low temperatures (e.g., -60 ºC), excellent safety, capability for discharge and storage at 0V, and ability to be implemented in batteries without management systems. This paper describes CELX-RC technology and its implementation in prototype batteries. Citation: D. Ofer, J. Bernier, E. Siegal, M. Rutberg, S. Dalton-Castor, “Robust, Versatile and Safe Lithium-Ion Batteries for Military
American drivers have long been accustomed to quickly filling up at a gas station with plenty of fuel available, and electric vehicle drivers want their pit stops to mimic this experience. Driver uncertainty about access to charging during long trips remains a barrier to broader EV adoption, even as the U.S. strives to combat climate change by converting more drivers
Outsized costs for charging infrastructure could slow implementation of battery-electric CVs. The high cost of batteries to electrify on-road commercial vehicles is one thing. But some connected with or studying electrification for the CV sector now are concerned that the cost of installing high-capacity recharging infrastructure for EV versions of trucks, buses and other on-road commercial vehicles is the latest factor with potential to derail the growth of CV electrification. One prominent study from earlier this year pegged the cost to the freight industry and utilities at a resounding near-$1 trillion to fully electrify all commercial vehicles over the course of roughly 20 years. And that cost is for infrastructure only, exclusive of the vehicles themselves, “which can be two to three times as expensive as their diesel-powered equivalents,” the report asserted
Safe and efficient energy storage is important for American prosperity and security. With the adoption of both renewable energy sources and electric vehicles on the rise around the world, it is no surprise that research into a new generation of batteries is a major focus. Researchers have been developing batteries with higher energy storage density, and thus, longer driving range. Other goals include shorter charging times, greater tolerance to low temperatures, and safer operation
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer to an electric vehicle using a coupler capable of, but not limited to, transferring three-phase AC power. It defines a conductive power transfer method including the digital communication system. It also covers the functional and dimensional requirements for the electric vehicle inlet, supply equipment connector, and mating housings and contacts. Moveable charging equipment such as a service truck with charging facilities are within scope. Charging while moving (or in-route-charging) is not in scope
This document covers the general physical, electrical, functional, safety, and performance requirements for conductive power transfer to an electric vehicle using a coupler, which can be hand-mated and is capable of transferring either DC or AC single-phase power using two current-carrying contacts
As the world looks to net-zero emissions goals, hybrid electric vehicles may play an increasingly important role. For passenger electric vehicles (EVs) that predominantly make short journeys but occasionally need to make longer trips, electrofuel range extension may be more cost effective than either hydrogen or rapid charging. Micro gas turbines and catalytic combustion show significant potential to deliver low-cost, low-maintenance, lightweight engines with virtually no emissions, and hydrocarbon consuming solid oxide fuel cells show even greater potential in these areas. Aditioanlly, sodium-ion batteries for EVs, dispatachable vehicle-to-grid power and buffering, and variable intermittent renewable energy could also play key roles. The Role of Hybrid Vehicles in a Net-zero Transport System explores the costs, considerations, and challenges facing these technologies. Click here to access the full SAE EDGETM Research Report portfolio
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) of light-duty plug-in electric vehicles. The specification defines three charging levels up to 11 kVA and in future revisions up to 22 kVA. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. This is meant to be used in conjunction with communications standard SAE J2847/6 and use cases J2836/6 and ground assembly WPT Certification UL 2750. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under SAE J2954 should also be able to be charged conductively by SAE J1772 plug-in chargers. This standard addresses stationary light-duty
Sodium (Na), which is over 500 times more abundant than lithium (Li), has recently garnered significant attention for its potential in sodium-ion battery technologies. However, existing sodium-ion batteries face fundamental limitations, including lower power output, constrained storage properties, and longer charging times, necessitating the development of next-generation energy storage materials
Items per page:
50
1 – 50 of 974