Browse Topic: Vehicle charging

Items (1,162)
As light electric vehicles (LEVs) gain popularity, the development of efficient and compact on-board chargers (OBCs) has become a critical area of focus in power electronics. Conventional AC-DC topologies often face challenges, including high inrush currents during startup, which can stress components and affect system reliability. Furthermore, DC-DC converters often have a limited soft-switching range under light load conditions, leading to increased switching losses and reduced efficiency. This paper proposes a novel 6.6 kW on-board charger architecture comprising a bridgeless totem-pole power factor correction (PFC) stage and an isolated LLC resonant DC-DC converter. The main contribution lies in the specific focus on enhancing startup behavior and switching performance. In PFC converters, limiting inrush current during startup is crucial, especially with fast-switching wide-bandgap devices like SiC or GaN. Conventional soft-start techniques fall short in of ensuring smooth voltage
Patil, AmrutaBagade, Aniket
This paper presents a comprehensive testing framework and safety evaluation for Vehicle-to-Vehicle (V2V) charging systems, incorporating advanced theoretical modeling and experimental validation of a modern, integrated 3-in-1 combo unit (PDU, DCDC, OBC). The proliferation of electric vehicles has necessitated the development of resilient and flexible charging solutions, with V2V technology emerging as a critical decentralized infrastructure component. This study establishes a rigorous mathematical framework for power flow analysis, develops novel safety protocols based on IEC 61508 and ISO 26262 functional safety standards, and presents comprehensive experimental validation across 47 test scenarios. The framework encompasses five primary test categories: functional performance validation, power conversion efficiency optimization, electromagnetic compatibility (EMC) assessment, thermal management evaluation, and comprehensive fault-injection testing including Byzantine fault scenarios
Uthaman, SreekumarMulay, Abhijit BNikam, Sandip B.
The rapid expansion of electric vehicle (EV) charging infrastructure introduces complex cybersecurity challenges across hardware, software, network, and cloud layers. This review paper synthesizes existing research, standards, and documented incidents to identify critical vulnerabilities and propose layered mitigation strategies. We present a structured threat taxonomy based on the STRIDE model, enriched with real-world attack vectors and mapped to mitigation controls. Our analysis spans physical tampering, insecure firmware updates, protocol-level flaws in OCPP and ISO 15118, and cloud misconfigurations. While prior studies often focus on isolated domains, this work unifies fragmented insights into a cohesive framework. We highlight gaps in current literature, such as inconsistent adoption of secure protocols and limited validation of EVSE identity formats. By aligning threats with industry standards (SAE J3061, NIST CSF, IEC 62443) and scoring risks using CVSS v3.1, we offer a
Aggarwal, AkshitGupta, SaurabhSirohi, KapilArisetty, VenkateshChatterjee, Avik
Software-Defined Vehicles (SDVs) are changing the automotive landscape by separating hardware from software and enabling features like over-the-air updates, advanced control strategies, and real-time decision-making. To support this transformation, EV powertrain systems require high-performance computing (HPC) platforms capable of real-time control, data processing, and cross-domain communication. This paper introduces a fully SDV-compatible EV powertrain architecture designed with NXP S32G3 domain controller. This processor supports multiple core having lockstep. It is designed for zonal control and automotive functional safety. The proposed designed uses the automotive Ethernet as an alternate option for CAN based communication to fulfill the bandwidth and timing requirement of today’s SDV applications. Hence it allows gigabit data transfer, Time Sensitive Networking (TSN) and also provides low latency across SDV control domain. Through secure real time interface with the vehicle’s
Pawar, GaneshInamdar, Sumer DeepakKumar, MayankDeosarkar, PankajTayade, NikhilKanse, DattatrayChopade, Vipul
This paper introduces a modeling and experimentation methodology for transient analysis of surge protective devices (SPDs) for electric vehicle charging system (EVCS) application. The suggested Surge Protective Device topology is to shield the EV power electronics such as on board charger from surge events generated by the grid during charging, with implementation on the grid-EV interface. A new surge protection circuit is designed to suppress transient overvoltages, with its performance evaluated through simulation. The SPD is evaluated in SPICE simulator in the time domain, including its nonlinear spark over characteristics along with its resistive, capacitive and inductive effects. Equivalent circuit is developed and evaluated by simulation under typical surge conditions. The outcomes prove the topology to be effective in clamping voltage, reducing energy transfer to the EV side, and achieving surge event detection. The contribution of this work lies in the establishment of
CHANCHAL, Kumar Prem ChandraKulkarni, SwanandRajaram Joshi, SanjayPatil, Sagar
State Transport Units (STUs) are increasingly using electric buses (EVs) as a result of India's quick shift to sustainable mobility. Although there are many operational and environmental benefits to this development, like lower fuel prices, fewer greenhouse gas emissions, and quieter urban transportation, there are also serious cybersecurity dangers. The attack surface for potential cyber threats is expanded by the integration of connected technologies, such as cloud-based fleet management, real-time monitoring, and vehicle telematics. Although these systems make fleet operations smarter and more efficient, they are intrinsically susceptible to remote manipulation, data breaches, and unwanted access. This study looks on cybersecurity flaws unique to connected passenger electric vehicles (EVs) that run on India's public transit system. Electric vehicle supply equipment (EVSE), telematics control units (TCUs), over-the-air (OTA) update systems, and in-car networks (such as the Controller
Mokhare, Devendra Ashok
In high-performance charging systems, managing higher currents is crucial for efficient battery charging. Elevated battery temperature is the main challenge for limiting the duration and effectiveness of high-current charging. Our proposal of control system addresses these barriers by optimizing charging time by maintaining optimal temperature ranges for the battery. This is achieved through innovative preconditioning solutions that are incorporated with active Battery cooling configurations. Our system features a unique preconditioning approach with dedicated active cooling circuit for the battery which will provide cooling to battery even though cabin HVAC (Heat Ventilation & Air-conditioning unit) is switched off. The active liquid cooling system ensures effective temperature management without additional energy consumption, while the dedicated Battery active liquid cooling system provides enhanced cooling capabilities for more demanding scenarios and preconditioning. By integrating
Badgujar, Pankaj RavindraBhosale, SubhashDave, Rajeev
This study aimed to develop a thermally conductive TPE mat and assess its performance in comparison to an existing antiskid rubber mat, specifically evaluating its impact on wireless charger efficiency. Moreover, morphological and thermal analyses were conducted to establish a correlation between the material behaviours of the new and current thermally conductive antiskid mats. The process of developing the thermally conductive TPE involved utilizing a two-roll mill followed by compression moulding to achieve a 2D sheet shape. Notably, the thermally conductive mat demonstrated a consistent enhancement in charging efficiency over the conventional antiskid mat. To examine the thermal characteristics, thermal characterization techniques including DSC and TGA were employed for both the existing and newly developed mats. FTIR spectroscopy was also utilized to confirm the presence of organic functional groups within the mat. The morphological analysis of the fillers used to enhance thermal
Naikwadi, Amol TarachandMali, ManojPatil, BhushanTata, Srikanth
With the rise of EVs, researchers are focusing on optimizing busbar design to meet the demands of high energy density, fast charging, and compact battery packs. The busbar design starts by selecting the material and the cross-sectional area required based on the rated current requirement. The width matches or may exceed the battery cell terminal size, whereas the length is optimized such that it is packaged within the given space constraints. The research also highlights the risk of busbars to oxidation and corrosion, which increases resistance and decreases conductivity for which plating/coating techniques are applied to improve the surface finish, overall durability, conductivity and in some cases the surface hardness, while minimizing the heat loss. Using simulations and experimental validation, the study examines three key design parameters: the weld diameter for busbar welded joints, electrical resistance, and contact resistance. A detailed analysis investigates how the weld
Nogdhe, YogeshSingh, Shobit KumarPaul, JibinMishra, MukeshMenon, Praveen
The electric vehicle (EV) industry is relentlessly pursuing advancements to enhance efficiency, extend driving range and improve overall performance. A notable limitation of conventional EVs is their fixed-voltage battery architecture, which necessitates compromises in powertrain design and can result in suboptimal efficiency under varying driving conditions. The Dynamic Voltage EV System (DVEVS) presents a transformative solution, allowing the battery pack to dynamically reconfigure its cells between series and parallel connections. This review explores the core principles of DVEVS, including battery topology, power-electronics-based switching, and the integration of hybrid energy storage solutions such as electric double-layer capacitors (EDLCs). We explore the foundational concepts of battery reconfiguration, delve into specific implementation strategies such as power-electronics-based switching and hybrid energy storage systems and address the critical need for adaptive thermal
Amberkar S, SunilRaool, Anuj RajeshM G, ShivanagRajapuram, Bheema Reddy
The increasing adoption of electric vehicles (EVs) has raised the importance of secure communication between EVs and Electric Vehicle Supply Equipment (EVSE). As EV infrastructure rapidly evolves, cybersecurity threats targeting the vehicle-charger interface pose major risks to user safety, data integrity, and operational continuity. This paper presents an overview of existing EV-EVSE communication standards and explores their associated vulnerabilities. We identify potential cyber threats, including man-in-the-middle attacks, replay attacks, and protocol spoofing, that could compromise the security of EV charging systems. The study proposes an enhanced cybersecurity framework incorporating session authentication, and anomaly detection techniques to fortify EV-EVSE communication. The proposed mitigation strategies aim to ensure secure, reliable, and resilient charging infrastructure essential for the widespread adoption of electric mobility.
Uthaman, SreekumarPatil, Urmila
Electric mobility is no longer a distant vision, it is a global imperative in the journey of fight against the climate change and the urban pollution. Yet, despite of explosive growth in the electric vehicle adoptions, a major bottleneck remains which is efficient and convenient charging. The current reliance on physical plug in charging station creates inconvenient, time consuming experience and also faces significant technical and economic challenges those threaten to stall the smooth clean transportation revolution. Without innovation in how we recharge our vehicle the promise of electric mobility appears under threat which is undermined by less efficient, less compatible, and infrastructure hurdles. Wireless charging technology stand out as the game changing breakthrough poised to tackle these all critical problems head on. By enabling the effortless, cable-free charging system across the wide spectrum of electric vehicles, from the personal cars to the public transport fleets and
Jain, GauravPremlal, PPathak, RahulGore, Pandurang
A mobile wireless charger is a device that charge a smartphone or other compatible gadgets without the need for physical cables. Principle of wireless mobile charger system based on inductive coupling phenomena. The main objective of this paper aims to address the challenge of packaging wireless mobile charger in peculiar door trim profile keeping overall functionality and aesthetic appearance of door trim intact. This paper deals with integration of a wireless charging system within the door trim of a vehicle to provide convenience and advanced functionality. The objective is to pack a wireless charger in door trim meeting the ergonomic target and equilibrium state stability while maintaining sleek and minimalist design of the door trim. The study focuses on innovative packaging solutions related to space optimization in door despite multiple challenges involved. Major challenge lies in packing the unit amidst complex mechanisms such as window regulators, speakers, structural
Palyal, NikitaD, GowthamBhaskararao, PathivadaKumarasamy, Raj GaneshBornare, Harshad
The proliferation of wireless charging technology in electric vehicles (EVs) introduces novel cybersecurity challenges that require comprehensive threat analysis and resilient design strategies. This paper presents a proactive framework for assessing and mitigating cybersecurity risks in wireless charger Electronic Control Units (ECUs), addressing the unique vulnerabilities inherent in electromagnetic power transfer systems. Through systematic threat modeling, vulnerability assessment, and the development of defense-in-depth strategies, this research establishes design principles for creating robust wireless charging ecosystems resistant to cyber threats. The proposed framework integrates hardware security modules, encrypted communication protocols, and adaptive threat detection mechanisms to ensure operational integrity while maintaining charging efficiency. Experimental validation demonstrates the effectiveness of the proposed security measures in preventing unauthorized access, data
Uthaman, SreekumarMulay, Abhijit BGadekar, Pundlik
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
In recent years, the automotive industry has been looking into alternatives for conventional vehicles to promote a sustainable transportation future having a lesser carbon footprint. Electric Vehicles (EV) are a promising choice as they produce zero tail pipe emissions. However, even with the demand for EVs increasing, the charging infrastructure is still a concern, which leads to range anxiety. This necessitates the judicious use of battery charge and reduce the energy wastage occurring at any point. In EVs, regenerative braking is an additional option which helps in recuperating the battery energy during vehicle deceleration. The amount of energy recuperated mainly depends on the current State of Charge (SoC) of the battery and the battery temperature. Typically, the amount of recuperable energy reduces as the current SoC moves closer to 100%. Once this limit is reached, the excess energy available for recuperation is discharged through the brake resistor/pads. This paper proposes a
Barik, MadhusmitaS, SethuramanAruljothi, Sathishkumar
Accurate range estimation in battery electric vehicles (BEVs) is essential for optimizing performance, energy efficiency, and customer expectations. This study investigates the discrepancies between physical test data and simulation predictions for the BEV model. A detailed range delta analysis identifies key contributors to the observed deviations, including regenerative braking inefficiencies, increased propulsion demand, auxiliary loads, and estimated drivetrain losses within the Electric Drive Module (EDM) during traction and regen. Results indicate that the test vehicle exhibits lower regenerative braking efficiency, higher traction forces and lower regen energy than predicted by simulations, primarily due to EDM inefficiencies and friction brake usage during regeneration. The study underscores the importance of refining simulation methodologies by integrating real-world, test based EDM loss maps to improve accuracy and better align predictive models with actual vehicle
Mahajan, PrasadKesarkar, SidheshAli, Shoaib
Electric Vehicles and Plug-in Hybrids alleviate the energy crisis but pose a unique challenge for vehicle dynamics. Though significant developments in motor control strategy and energy density management are evolving, we face significant challenges in torque management, with several ADAS features being an integral part of the EVs/xHEVs. It demands high-fidelity physical and control model exchanges between electric chassis, ride-handling, tire modelling, steering assist, powertrain, and validation using a 0D–1D platform. This paper explicates a unified strategy for improving overall vehicle performance by intelligently distributing and coordinating drive torque to enhance traction, stability, and drivability across diverse operating conditions through co-simulation. The co-simulation platform includes physical models in AMESIM, and control strategies integrated in MATLAB/Simulink. The platform features comprehensive representations of digital vehicles that require detailed modelling of
Eruva, PatrickxavierSarapalli Ramachandran, RaghuveeranChougule, SourabhNatanamani-Pillai, Siva SubramanianScheider, ClementLeclerc, CedricNatarajasundaram, Balasubramanian
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Mehrotra, SoumyaChhabra, Rishabh
The electrification of transportation is revolutionizing the automotive and logistics sectors, with electric vehicles (EVs) assuming an increasingly pivotal role in both passenger mobility and commercial activities. As the adoption of EVs rises, the necessity for precise range estimation becomes essential, especially under diverse operational circumstances, including vehicle and battery characteristics, driving conditions, environmental influences, vehicle configurations, and user-specific behaviors. Among the varying factors, a key fluctuating one is user behavior—most notably, increased payload, which significantly affects EV range. A key business challenge lies in the significant variability of EV range due to changes in vehicle load, which can affect performance, operational efficiency, and cost-effectiveness—especially for fleet-based services. This research aims to tackle the technical deficiency in forecasting electric vehicle (EV) range under various payload conditions
Khatal, SwarajGupta, AnjaliKrishna, Thallapaka
India's electric 2-wheeler (E2W) market has witnessed fast growth, driven by lucrative government policies. The two-wheeler segment dominates the Indian automotive market, accounting for the largest share of total sales. Consequently, the manufacturers of 2-wheelers are developing new electric vehicles (EV) tailored for the Indian market. However, the Indian EV market has witnessed multiple fire accidents in recent years, raising safety concerns among consumers and industry stakeholders. These incidents highlight key weakness in battery thermal management systems (BTMS), particularly during charging. Most existing E2W BTMS relies on passive (natural) air cooling, which has been associated with fire incidents due to its inefficiency in heat dissipation, particularly during charging in India's high-temperature environment. Therefore, it is imperative to build thermally viable and economical BTMS for the growing E2W vehicles with fast charging capability. FEV is actively developing the
Raut PhD, AnkitHiremath, Vinodkumar SEmran, AshrafGarg, ShivamBerry, Sushil
The present disclosure is about combating Thermal runaway in Electric, Plug-in Hybrids and mild hybrid vehicles. This paper comprises of high-Voltage Battery pack containing Battery cells electrically coupled with Shape Memory Alloy along with Busbars. These connectors (Shape Memory Alloy) are programmed to operate in two states: First to electrically connect the cells with the busbars, second to disconnect the individual cells from electric connection beyond the threshold temperature. This mechanism enables the Battery cells to rapidly prevent the Battery from the Thermal runaway event which is caused from the cell level ensuring the Battery safety mechanically. Additionally, the Battery pack includes the cell monitoring system and Battery Monitoring System to enhance the above invention with regards to the safety of the vehicle. This configuration is implementable and retrofittable into existing battery systems, offering a robust solution to the challenges posed by prolonged vehicle
Reginald, RiniRout, SaswatVENKATESH, MuthukrishnanChauhan, Ashish JitendraSelvaraj, Elayanila
In its conventional form, dynamometers typically provide a fixed architecture for measuring torque, speed, and power, with their scope primarily centered on these parameters and only limited emphasis on capturing aggregated real-time performance factors such as battery load and energy flow across the diverse range of emerging electric vehicle (EV) powertrain architectures. The objective of this work is to develop a valid, appropriate, scalable modular test framework that combines a real-time virtual twin of a compact physical dynamometer with world leading real-time mechanical and energy parameters/attributes useful for its virtual validation, as well as the evaluation of other unknown parameters that respectively span iterations of hybrid and electric vehicle configurations, ultimately allowing the assessment of multiple chassis without having to modify the physical testing facility's test bench. This integration enables a blended approach, using a live data source for now, providing
Kumar, AkhileshV, Yashvati
The main focus of this paper is to create a more efficient regenerative braking control strategy for electric commercial buses operating under Indian road conditions. The strategy uses Artificial Neural Networks (ANNs) to optimize regenerative braking process. Regenerative braking helps to recover energy that would otherwise be lost during braking and convert it back into usable power for the vehicle. The challenge is to design a system that works effectively on the diverse and often challenging road conditions found in India, such as varying gradients, traffic patterns, and road surface types. This study begins by collecting data (which includes vehicle speed, traffic condition, etc.) from real-world driving conditions and aims to train an Artificial Neural Network (ANN) using a large set of driving data which is collected under various conditions to predict the most efficient regenerative braking settings for different driving scenarios. This research brings a new approach to the
Saurabh, SaurabhBhardwaj, RohitPatil, NikhilGadve, DhananjayAmancharla, Naga Chaithanya
Items per page:
1 – 50 of 1162