Browse Topic: Vehicle charging

Items (1,132)
The introduction of renewable energy systems offers the opportunity to achieve energy self-sufficiency or autarky in addition to contributing towards carbon neutrality by reducing the dependency on energy logistics. Amidst growing geo-political conflicts and natural calamities, the scenario of energy shortage or disruption of energy logistics is a major threat, especially for Europe due to the significant reliance on import of primary energy. Achieving autarky, however, requires a distinction between energy consumers that need uninterrupted energy supply and consumers that could potentially be cut-off during energy shortages to avoid prohibitive costs resulting from oversizing the system. Critical infrastructure such as hospitals, communication systems, emergency services and key mobility nodes like fuelling stations and charging points needed to sustain the services provided by them, always need continuous energy supply. The architecture in current tools for optimising the design and
Vijay, ArjunThaler, BernhardKöcheler, ValentinOppl, ThomasTrapp, Christian
The increasing importance of electric vehicles requires addressing challenges related to fast charging, safety, and battery range. Thermal management ensures safety, prolongs battery life, and enables extremely fast charging. In this regard, this article proposes a novel battery thermal management system (BTMS) optimization approach based on a model-free deep reinforcement learning (RL) for a battery pack of an electric vehicle under extreme fast-charging conditions considering the detailed dynamics of vehicle-level BTMS. The objective of the proposed approach seeks to minimize the battery degradation and power consumption of the underlying BTMS. In this respect, the dynamic equations of the thermal system model are constructed considering the air-conditioning refrigerant loop and indirect battery liquid cooling loop. Further, the proposed methodology is implemented on a battery pack, and the results are compared with those of model predictive control (MPC) and proportion–integral
Arjmandzadeh, ZibaHossein Abbasi, MohammadWang, HanchenZhang, JiangfengXu, Bin
As one of the main indexes of functional safety evaluation, controllability is of critical significance. According to ISO26262 standard, by analyzing the impact of potential faults such as unexpected torque and regenerative braking force loss on vehicle controllability under different working conditions, this paper designs a vehicle controllability test scheme under abnormal motor function under multiple scenarios such as straights, lane changes and curves, and builds a test scheme under abnormal motor function. The mapping relationship between vehicle dynamic state data and controllability level provides a new idea for quantitative analysis of vehicle controllability.
Yang, XuezhuHe, LeiLi, ChaoRen, Zhiqiang
To tackle persistent operational instability and excessive energy consumption in marine observation platforms under wave-induced disturbances, this paper introduces a novel ultra-low-power stabilization system based on pendulum dynamics. The system employs an innovative mechanical configuration to deliberately decouple the rotation axis from the center of mass, creating controlled dynamic asymmetry. In this behavior, the fixed axis serves as a virtual suspension pivot while the camera payload functions as a concentrated mass block. This configuration generates intrinsic gravitational restoring torque, enabling passive disturbance attenuation. And its passive foundation is synergistically integrated with an actively controlled brushless DC motor system. During platform oscillation, embedded algorithms detect angular motion reversals. In addition, their detection triggers an instantaneous transition from motor drive to regenerative braking mode, and transition facilitates bidirectional
Zhang, TianlinLiu, ShixuanXu, Yuzhe
Power electronics are fundamental to sustainable electrification, enhancing energy, efficiency, integrating renewable energy sources, and reducing carbon emissions. In electric vehicles (EVs), power electronics is crucial for efficient energy conversion, management, and distribution. Key components like inverters, rectifiers, and DC-DC converters optimize power from renewable sources to meet EV system requirements. In EVs, power electronics convert energy from the lithium-ion battery to the electric vehicle motor, with sufficient propulsion and regenerative braking. Inverters is used to transfer DC power from the lithium-ion eEV battery to alternating current for the motor, while DC-DC converters manage voltage levels for various vehicle systems. These components maximize EV energy efficiency, reduce energy losses, and extend driving range. Power electronics also support fast and efficient battery charging, critical for widespread EV adoption. Advanced charging solutions enable rapid
Pipaliya, Akash PravinbhaiHatkar, Chetan
Electrification applications are increasingly moving towards higher voltage systems to enable greater power delivery and faster battery charging. This trend is particularly evident in the shift from 400V to 800V systems, which offers several benefits and poses unique technical challenges. Higher voltage systems reduce current flow, minimizing energy losses, and improving overall efficiency. This is crucial for applications like electric vehicles and off-highway machinery, where efficient power management is essential. One of the primary benefits of increasing the DC link voltage beyond the 400V is the ability to support higher power levels. Additionally, higher voltage systems can reduce the size and weight of power components, contributing to more compact and lightweight designs. However, transitioning to 800V systems introduces several technical challenges in power electronics design. Key components such as power components (IGBT, MOSFET etc.) must be optimized to handle higher
Hatkar, Chetan ManoharPipaliya, Akash
Environmental concerns are prompting the global mobility sector to transition towards electrification. Increased research and development in the field of electric vehicles have made them an increasingly efficient and compelling option for reducing greenhouse gas emissions and improving the sustainability of freight transport. Electric vehicles require batteries that offer long range, shorter charging times and high energy efficiency. During long-distance travel, for customer convenience, mobile charging stations have become a trending and highly meaningful solution. For such mobile charging stations, it is essential to ensure the durability and safety parameters of the battery and its structure. For this to happen, it is mandatory that the system possess the strength and stiffness behavior to withstand the various dynamic loads arising from the environment and acting on the vehicle and system. Moreover, the system should maintain a weight that is as low as possible so that it is both
Sonare, PushpeshGaneshan, SubramanianDattawade, Vishal
The reduction of the CO2 footprint of transport vehicles is a major challenge to minimize the harmful impact of technology on the environment. Beside passenger cars and light and heavy-duty vehicles, this affects also the two-wheeler category and the non-road mobile machinery (NRMM). One promising path for the de-carbonization is the transition from fossil-fuel powered ICE powertrains to electric powertrains. Several examples of electrified powertrains showcase possibilities for small hand-held power-tools or small mopeds and scooters. As the powertrain categories two-wheeler and NRMM are very diversified and consist of various sub-categories and sub-classes with many different applications, the feasibility of electrification for the whole category cannot be judged by few examples. In this publication, a methodology for assessing the electrification potential of hand-held power tools and two-wheelers is shown. The method uses 4 different factors, which determine the feasibility for
Schmidt, StephanSchacht, Hans-JuergenWeller, KonstantinAbsenger, Johann Friedrich
This study addresses the challenge of reducing the experimental workload involved in characterizing battery cell behavior as a function of state of charge and temperature. Galvanostatic Intermittent Titration Technique tests were carried out in a climate chamber across a wide temperature range, from -20 °C to 70 °C, with 10 °C intervals. The voltage and current response data collected from these tests were used to train several machine learning algorithms. The trained models could then be used to predict the cell voltage response every 5 °C from -15 °C to 55 °C. While the models were experimentally validated at 15 °C, 25 °C, and 35 °C, the predicted voltages across this range contribute to enhancing the characterization process. In particular, the inclusion of these predicted voltage profiles—combined with the experimental data collected every 10 °C from -20 °C to 70 °C—allows for the creation of more accurate lookup tables for the parameters of the equivalent circuit model. These
Giuliano, LucaPeretto, LorenzoCanella, NicholasNefat, Damir
Measurement plays a crucial role in the precise and accurate management of automotive subsystems to enhance efficiency and performance. Sensors are essential for achieving high levels of accuracy and precision in control applications. Rapid technical advancements have transformed the automobile industry in recent years, and a wide range of novel sensor devices are being released to the market to speed up the development of autonomous vehicle technology. Nonetheless, stricter regulations for reliable pressure sensors in automobiles have resulted from growing legal pressures from regulatory bodies. This work proposes and investigates a tribo electric nano sensor that is affected by a changing parameter of the separation distance between the device's primary electrode and dielectric layers. The system is being modeled using the COMSOL multiphysics of electrostatics and the tribo-electric effect. Open circuit electric potential and short circuit surface charge density are two of the
P, GeethaK, NeelimaSudarmani, RC, VenkataramananSatyam, SatyamNagarajan, Sudarson
High Performance Resistors (HPR), also known as brake resistors are used in zero emission vehicles (ZEVs) to dissipate excess electrical energy produced during regenerative braking, as heat energy. It is necessary to use a suitable cooling technique to release this heat energy into the atmosphere in a regulated manner. Currently in most of the ZEVs, liquid cooled HPR with its dedicated heat exchanger and other auxiliaries such as pump, surge tank, Coolant and coolant lines, is used which increases the cost, packaging space and assembly time. This paper presents air cooling as a substitute heat-exchanging technique for high-performance resistors which eliminates the need of auxiliaries mentioned above, resulting in space optimization and reduction in assembly time. An air cooled HPR, designed for this study consists of a heat exchanger, which accommodates a resistor wire within its tubes. The design was made to fit commercial vehicle use, specific to trucks, due to packaging constraints
Menariya, Pravin GaneshKumar, VishnuArhanth, MahimaUmesha, SathwikJagadish, Harshitha
Charging management has a profound impact on the reliability and safety of electric bus (EB) services. However, the actual charging operation of EB fleets is a critical challenge due to uncertain energy consumption, limited charging resources and other factors. At present there are no operational and maintenance guidelines present for operation of EB charging stations since the running and operation of these facilities are at the initial stages of development. There is a need to develop these strategies that provides smooth operation of these newly developed facilities. In the present work maintenance strategies of electrical systems of Electric bus charging station were designed. The complete maintenance is divided into quarterly and annual maintenance based on the requirements and nature of work for smooth operation. Quarterly Maintenance is devised on detecting early signs of wear through visual inspections of key components, including transformers and ventilation systems while
Soam, KumareshVashist, Devendra
Lithium-ion batteries used in electric vehicles (EVs) are facing issues owing to internal short-circuit (ISC), leading to thermal runaway. In this study, a pseudo-two-dimensional (P2D) model is employed to numerically investigate the effects of charging rate (C-rate) and separator electrical conductivity on the ISC behavior of a lithium-ion cell. The results reveal that as C-rate increases, both the voltage and capacity decrease more rapidly marked by higher solid potential gradient indicating increased internal resistance. These effects further intensified at higher separator conductivity, which facilitates greater ISC current and accelerates cell degradation. Also, the variations in current density and solid-phase lithium concentration become more pronounced at higher C-rates, particularly near the anode–separator interface, indicating increased non-uniformity during ISC conditions. Furthermore, the electrolyte voltage drop intensifies with rising C-rate, contributing to additional
Ch, Narendra BabuParamane, AshishRandive, Pitambar
As the electric vehicle (EV) industry grows rapidly in Saudi Arabia, driven by the development of companies such as CEER, Lucid, and Tesla, there is an increasing need to evaluate and adapt electricity tariff structures to address changing demand patterns. This study explores the interaction between EV charging infrastructure, electricity pricing strategies, and consumer behavior, aiming to provide insights that support the sustainable expansion of the electric mobility ecosystem in the Kingdom. The methodology incorporates demand-supply analysis, energy consumption forecasting, and comparative assessments of tariff models implemented in other countries, with Saudi Arabia serving as a case study aligned with Vision 2030 objectives. Although EV adoption is expected to increase electricity demand, the Kingdom’s generation capacity, which reached 453 TWh in 2023 and is projected to exceed future consumption, ensures a stable and sufficient supply. Currently, public EV charging services
AlJuhani, Haneen Radi ABedywi, Lama Mohammed AAbdulNour, Bashar
This study investigates an optimal control strategy for a battery electric vehicle (BEV) equipped with a high-speed motor and a continuously variable transmission (CVT). The proposed dual-motor powertrain model activates only one motor at a time, with Motor A routed through a CVT and Motor B through a fixed gear. To improve energy efficiency, two optimization methods are evaluated: a quasi-steady-state map-based approach and a dynamic programming (DP) method. The DP approach applies Bellman’s principle to derive the globally optimal CVT ratio and motor torque trajectory over the WLTC cycle. Simulation results demonstrate that the DP method significantly improves overall efficiency compared to traditional control logic. Furthermore, the study proposes using DP-derived maps to refine practical control strategies, offering a systematic alternative to conventional experimental calibration.
Zhao, HanqingMoriyoshi, YasuoKuboyama, Tatsuya
Charging time remains a major challenge in the development and adoption of electric vehicles (EVs). The difficulty of locating a charging station, combined with the significant duration required for a full charge, has become an increasingly critical factor influencing consumer decisions. Fast-charging is being progressively implemented not only in newly developed EVs but also retrofitted into existing ones. However, one of the main limitations of fast-charging is the overheating of various components within the vehicle, the charging station, and the charging infrastructure. A key element in this system is the Battery Disconnect Unit (BDU), which is responsible for monitoring, activating, and deactivating the high-voltage battery system. It is crucial to maintain the BDU within safe operating temperatures to prevent overheating and ensure reliable operation. Currently, these components are typically designed for standard charging power. However, as charging power increases and charging
Salameh, GeorgesGoumy, GuillaumeChalet, DavidDubouil, RémiFrecinaux, AnthonyPalluel, MarlèneRatajczack, ChristelleNoiseau, Pascal
Electric double-layer capacitors (EDLCs) store charge by adsorbing ions at the electrode–electrolyte interface, offering fast charge–discharge rates, high power density, minimal heat generation, and long cycle life. These characteristics make EDLCs ideal for memory backup in electronic devices and power assistance in electric and hybrid vehicles, where rapid energy response and high-power delivery are critical. However, their energy density remains lower than that of batteries, requiring improvements in capacitance and operating voltage. Activated carbon with high surface area is commonly used as the electrode material, but its microporous structure limits ion transport at high rates, reducing power performance. This limitation is especially critical in automotive motor drive systems. Recent research has shifted toward mesoporous carbon materials, which improve ion diffusion and accessibility. In this study, resorcinol–formaldehyde carbon cryogels (RFCCs) with controlled mesoporous
Cheng, ZairanOkamura, TsubasaOhnishi, YutoNakagawa, Kiyoharu
Items per page:
1 – 50 of 1132