Browse Topic: Infotainment systems

Items (372)
Thermal comfort is increasingly recognized as a vital component of the in-vehicle user experience, influencing both occupant satisfaction and perceived vehicle quality. At the core of this functionality is the Climate Control Module (CCM), a dedicated embedded Electronic Control Unit (ECU) within automotive HVAC system [6]. The CCM orchestrates temperature regulation, airflow distribution, and dynamic environmental adaptation based on sensor inputs and user preferences. This paper introduces a comprehensive Hardware-in-the-Loop (HIL) [3] testing framework to validate CCM performance under realistic and repeatable conditions. The framework eliminates the dependencies on physical input devices—such as the Climate Control Head (CCH) and Infotainment Head Unit (HU)—by implementing virtual interfaces using real-time controller, and Dynamic System modelling framework for plant models. These virtual components replicate the behaviour of physical systems, enabling closed loop testing with high
More, ShwetaShinde, VivekTurankar, DarshanaPatel, DafiyaGosavi, SantoshGhanwat, Hemant
With the increasing complexity and connectivity in modern vehicles, cybersecurity has become an indispensable technology. In the era of Software-Defined Vehicles (SDVs) and Ethernet-based architectures, robust authentication between Electronic Control Units (ECUs) is critical to establish a trust. Further, the cloud connected ECUs must perform authentication with backend servers. These authentication requirements often demand multiple certificates to be provisioned within a vehicle, ensuring secure communication between various combinations of ECUs. As a result, a single ECU may end up storing multiple certificates, each serving a specific purpose. This work proposes a method to limit the number of certificates required in a given ECU without compromising security. We introduce a Cross-Intermediate Certificate Authority (Cross-ICA) Trust Architecture, which enables the use of a single certificate per ECU for inter-ECU communication as well as backend server authentication. In this
Venugopal, VaisakhGoyal, YogendraRaja J, SolomonRai, AjayRath, Sowjanya
With the rapid advancement of connected vehicle technologies, infotainment Electronic Control Units (ECUs) have become central to user interaction and connectivity within modern vehicles. However, this enhanced functionality has introduced new vulnerabilities to cyberattacks. This paper explores the application of Artificial Intelligence (AI) in enhancing the cybersecurity framework of infotainment ECUs. The study introduces AI-powered modules for threat detection and response, presents an integrated architecture, and validates performance through simulation using MATLAB, CANoe, and NS-3. This approach addresses real-time intrusion detection, anomaly analysis, and voice command security. Key benefits include zero-day exploit resistance, scalability, and continuous protection via OTA updates. The paper references real-world automotive cyberattack cases such as OTA vulnerability patches, Connected Drive exploits, and Uconnect hack, emphasizing the critical need for AI-enabled proactive
More, ShwetaKulkarni, ShraddhaKumar, PriyanshuGhanwat, HemantJoshi, Vivek
This paper presents a novel Hardware-in-the-Loop (HiL) testing framework for validating panoramic Sunroof systems independent of infotainment module availability. The increasing complexity of modern automotive features—such as rain-sensing auto-close, global closure, and voice-command operation—has rendered traditional vehicle-based validation methods inefficient, resource-intensive, and late in the development cycle. To overcome these challenges, a real-time HiL system was developed using the Real time simulation, integrated with Simulink-based models for simulation, control, and fault injection. Unlike prior approaches that depend on complete vehicle integration, this methodology enables early-stage testing of Sunroof ECU behavior across open, close, tilt, and shade operations, even under multi-source input conflicts and fault conditions. Key innovations include the emulation of real-world conditions such as simultaneous voice and manual commands, sensor faults, and environmental
Ghanwat, HemantLad, Aniket SuryakantJoshi, VivekMore, Shweta
Nowadays, digital instrument clusters and modern infotainment systems are crucial parts of cars that improve the user experience and offer vital information. It is essential to guarantee the quality and dependability of these systems, particularly in light of safety regulations such as ISO 26262. Nevertheless, current testing approaches frequently depend on manual labor, which is laborious, prone to mistakes, and challenging to scale, particularly in agile development settings. This study presents a two-phase framework that uses machine learning (ML), computer vision (CV), and image processing techniques to automate the testing of infotainment and digital cluster systems. The NVIDIA Jetson Orin Nano Developer Kit and high-resolution cameras are used in Phase 1's open loop testing setup to record visual data from infotainment and instrument cluster displays. Without requiring input from the system being tested, this phase concentrates on both static and dynamic user interface analysis
Lad, Rakesh PramodMehrotra, SoumyaMishra, Arvind
In-vehicle communication among different vehicle electronic controller units (ECU) to run several applications (I.e. to propel the vehicle or In-vehicle Infotainment), CAN (Controller Area Network) is most frequently used. Given the proprietary nature and lack of standardization in CAN configurations, which are often not disclosed by manufacturers, the process of CAN reverse engineering becomes highly complex and cumbersome. Additionally, the scarcity of publicly accessible data on electric vehicles, coupled with the rapid technological advancements in this domain, has resulted in the absence of a standardized and automated methodology for reverse engineering the CAN. This process is further complicated by the diverse CAN configurations implemented by various Original Equipment Manufacturers (OEMs). This paper presents a manual approach to reverse engineer the series CAN configuration of an electric vehicle, considering no vehicle information is available to testing engineers. To
Kumar, RohitSahu, HemantPenta, AmarBhatt, Purvish
In today’s world, automotive interior lighting systems not only need to meet rigorous internal test standards but also need to adapt with the changing customer’s expectation across different vehicle segments. As per technological advancements and consumer demands, these systems have become increasingly advanced and software driven. Traditionally, validation relied on physical integration with vehicle hardware, particularly infotainment system. However, this conventional approach presents several limitations, including dependency on mature hardware and software, challenges in testing and synchronization across multiple lighting modules, and constraints in design validation accuracy. To address these limitations, this paper introduces an innovative approach that employs real-time hardware-in-the-loop (HIL) simulation for virtual lamp testing. This method facilitates autonomous testing, enabling independent validation of interior lighting systems within a controlled virtual environment
Shah, KunalJoshi, Vivek S.Mandloi, Prince
Automotive displays have become an essential part of modern vehicles, not just for aesthetics but also for improving safety and user interaction. As cars get smarter, the industry is leaning heavily into advanced display technologies to provide drivers and passengers with clearer, more responsive visuals. Technologies like Active Matrix LCDs (AMLCDs) and AMOLEDs are now common in dashboards, infotainment systems, digital clusters, and even head-up displays. These display types are popular because they offer great brightness, vibrant color, and wide viewing angles — all of which are important in a car, where lighting conditions can change constantly. But to make these displays work effectively, a solid backplane is critical. That’s where technologies like amorphous silicon (a-Si) and low-temperature polysilicon (LTPS) come in. Among these, LTPS has gained popularity due to its ability to support high-resolution, high-refresh-rate screens, thanks to its higher carrier mobility. Still
Sinha Roy, DebarghyaDuggal, AnanyaSingh, Ujjwal Kumar
Commercial vehicle operation faces challenges from driver distraction associated with traditional Human-Machine Interfaces (HMIs) and inconsistent network connectivity, particularly in long-haul scenarios. This paper addresses these issues through the development and presentation of an embedded, offline AI-powered voice assistant. The system is designed to reduce driver distraction and enhance operational efficiency by enabling hands-free control of vehicle functions and access to critical information, irrespective of internet availability. The technical approach involves a three-tier architecture comprising an Android-based In-Vehicle Infotainment (IVI) unit for primary user interaction and voice processing, an Android mobile device acting as a communication bridge and processing hub, and a proprietary OBD-II dongle for CAN bus interfacing. Offline speech recognition is achieved using embedded wake word detection and speech-to-intent engines. A user-centered design methodology
De Oliveira Nelson, RafaelDe Almeida, Lucas GomesArantes Levenhagen, Ivan
Modern automotive systems generate a wide range of audio-based signals, such as indicator chimes, turn signals, infotainment system audio, navigation prompts, and warning alerts, to facilitate communication between the vehicle and its occupants. Accurate Classification and transcription of this audio is important for refining driver aid systems, safety features, and infotainment automation. This paper introduces an AI/ML-powered technique for audio classification and transcription in automotive environments. The proposed solution employs a hybrid deep learning architecture that leverages convolutional neural networks (CNNs) and recurrent neural networks (RNNs), trained using labeled audio samples. Moreover, an Automatic Speech Recognition (ASR) model is integrated for transcribing spoken navigation prompts and commands from infotainment systems. The proposed system delivers reliable results in real-time audio classification and transcription, facilitating better automation and
Singh, ShwethaKamble, AmitMohanty, AnantaKalidas, Sateesh
While electric powertrains are driving 48V adoption, OEMs are realizing that xEV and ICE vehicles can benefit from a shift away from 12-volt architectures. In every corner of the automotive power engineering world, there are discussions and debates over the merits of 48V power networks vs. legacy 12V power networks. The dialogue started over 20 years ago, but now the tone is more serious. It's not a case of everything old is new again, but the result of a growing appetite for more electrical power in vehicles. Today's vehicles - and the coming generations - require more power for their ADAS and other safety systems, infotainment systems and overall passenger comfort systems. To satisfy the growing demand for low-voltage power, it is necessary to boost the capacity of the low-voltage power network by two or three times that of the late 20th century. Delivering power is more efficient at a higher voltage, and today, 48V is the consensus voltage for that higher level.
Green, Greg
In the early days of computers, interfaces were paper printouts or blinking lights, but as the technology matured, the graphical user interface (GUI) quickly became the standard.
The aircraft cabin plays a crucial role in airline differentiation strategies, particularly when introducing novel, data-driven services. These services aim to enhance the passenger experience during the flight and to improve cabin crew efficiency in order to reduce workload and ensure continued growth of airline revenue. Digitalization and extensive exchange of information across the entire aircraft transport system have emerged as key enablers for these services. The development of aircraft and aircraft systems that realize these services is characterized by a multi-level development process. Various development levels are considered to initially identify the functions of an aircraft in the air transport system, refine its systems and break them down into their components until a level of detail is reached that allows the implementation of the component functions. In addition to the high complexity, a major challenge in this development is to ensure traceability and consistency
Blecken, MarvinHintze, HartmutGiertzsch, FabianGod, Ralf
This SAE Edge Research Report explores advancements in next-generation mobility, focusing on digitalized and smart cockpits and cabins. It offers literature review, examining current customer experiences with traditional vehicles and future mobility expectations. Key topics include integrating smart cockpit and cabin technologies, addressing challenges in customer and user experience (UX) in digital environments, and discussing strategies for transitioning from traditional vehicles to electric ones while educating customers. User Experience for Digitalized and Smart Cockpits and Cabins of Next-gen Mobility covers both on- and off-vehicle experiences, analyzing complexities in developing and deploying digital products and services with effective user interfaces. Emphasis is placed on meeting UX requirements, gaining user acceptance, and avoiding trust issues due to poor UX. Additionally, the report concludes with suggestions for improving UX in digital products and services for future
Abdul Hamid, Umar Zakir
In an era where automotive technology is rapidly advancing towards autonomy and connectivity, the significance of Ethernet in ensuring automotive cybersecurity cannot be overstated. As vehicles increasingly rely on high-speed communication networks like Ethernet, the seamless exchange of information between various vehicle components becomes paramount. This paper introduces a pioneering approach to fortifying automotive security through the development of an Ethernet-Based Intrusion Detection System (IDS) tailored for zonal architecture. Ethernet serves as the backbone for critical automotive applications such as advanced driver-assistance systems (ADAS), infotainment systems, and vehicle-to-everything (V2X) communication, necessitating high-bandwidth communication channels to support real-time data transmission. Additionally, the transition from traditional domain-based architectures to zonal architectures underscores Ethernet's role in facilitating efficient communication between
Appajosyula, kalyanSaiVitalVamsi
Virtualization features such as digital twins and virtual patching can accelerate development and make commercial vehicles more agile and secure. There is one sure-fire way to secure commercial vehicles from cyber-attacks. “You just remove the connectivity,” quipped Brandon Barry, CEO of Block Harbor Cybersecurity and the moderator of a panel session on “cybersecurity of virtual machines” at the SAE COMVEC 2024 conference in Schaumburg, Illinois. Obviously, that train has left the station - commercial vehicles of all types, including trains, are only becoming more automated and connected, which increases the risks for cyber-attacks. “We have very connected vehicles, so attacks can be posed not just through powertrain solutions but also through telemetry, infotainment systems connected to different applications and services, and also through cloud platforms,” said Trisha Chatterjee, current product support and data specialist for fuel cell and hydrogen technology at Accelera by Cummins.
Gehm, Ryan
In today’s world, Vehicles are no longer mechanically dominated, with increased complexity, features and autonomous driving capabilities, vehicles are getting connected to internal and external environment e.g., V2I(Vehicle-to-Infrastructure), V2V(Vehicle-to-Vehicle), V2C(Vehicle-to-Cloud) and V2X(Vehicle-to-Everything). This has pushed classical automotive system in background and vehicle components are now increasingly dominated by software’s. Now more focus is made on to increase self-decision-making capabilities of automobile and providing more advance, safe and secure solutions e.g., Autonomous driving, E-mobility, and software driven vehicles, due to which vehicle digitization and lots of sensors inside and outside the vehicle are being used, and automobile are becoming intelligent. i.e., intelligent vehicles with advance safe and secure features but all these advancements come with significant threat of cybersecurity risk. Therefore, providing an automobile that is safe and
Kumar, ArvindGholve, AshishKotalwar, Kedar
Contrary to what you may have heard, Americans are buying more EVs than ever. But they tend to like 'em big. After production delays due to software development issues - a problem that continues to plague automakers from Volkswagen to General Motors - Volvo's EX90 will look to lure families who live for three-row luxury SUVs. Based on a recent media drive in Newport Beach, California, Volvo may still have some work to do. The twin-motor EX90 did impress us with its 510 hp (380 kW), confident handling, leading-edge safety and sparkling high-resolution displays. But a software glitch dinged our test car when a section of its 14.5-inch (37 cm) center screen blanked out. Other journalists reported issues with a phone-based digital key that briefly left one driver stranded when it wouldn't connect with the Volvo. This is another reason I never rely on an automaker's digital key and always ask for a hard backup.
Ulrich, Lawrence
Data privacy questions are particularly timely in the automotive industry as—now more than ever before—vehicles are collecting and sharing data at great speeds and quantities. Though connectivity and vehicle-to-vehicle technologies are perhaps the most obvious, smart city infrastructure, maintenance, and infotainment systems are also relevant in the data privacy law discourse. Facial Recognition Software and Privacy Law in Transportation Technology considers the current legal landscape of privacy law and the unanswered questions that have surfaced in recent years. A survey of the limited recent federal case law and statutory law, as well as examples of comprehensive state data privacy laws, is included. Perhaps most importantly, this report simplifies the balancing act that manufacturers and consumers are performing by complying with data privacy laws, sharing enough data to maximize safety and convenience, and protecting personal information. Click here to access the full SAE EDGETM
Eastman, Brittany
The pace of innovation in automotive and heavy-duty transportation is rapidly accelerating. Manufacturers are harnessing advancements in electrification and electronification, ushering in new levels of safety, comfort, infotainment, connectivity, performance, and sustainability.
As head of software engineering at Volvo Cars, Alwin Bakkenes is involved not just with all of the software and electronics in Volvo's vehicles but also the automaker's automotive cloud, the data center that trains Volvo's algorithms, the connectivity pipeline and software updates as well as interactions with Volvo's autonomous driving software development subsidiary Zenseact and HaleyTek, a joint venture with ECARX to develop Android-based infotainment systems for Volvo and Polestar. This growing digital footprint gives Volvo an array of tools to improve its future vehicles, something Bakkenes made clear when speaking with SAE Media at the 2024 NVIDIA GTC event in San Jose in March. Volvo started working with NVIDIA around eight years ago and first used the NVIDIA DRIVE Orin system-on-a-chip (SoC) technology in the updated XC90 SUV, introduced in 2022. In 2023, Volvo built a new 22,000 sq m (236,806 sq ft) software testing center in Sweden at a cost of around SEK 300 million (U.S
Blanco, Sebastian
As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech. Firstly, to address the issue of inadequate extraction of multi-scale correlation features from speech signals during feature extraction and reconstruction, a novel dense connection multi-scale feature extraction module based on gated dilated convolution is devised to enhance temporal receptive
Zhang, LijunPei, KaikunLi, WenboMeng, DejianHe, Yinzhi
The next generation of digital cockpits requires modern architectures to be successful and affordable. This paper provides an in-depth view on the future of digital cockpit architectures. The currently emerging architectures are explored with two main points in focus: The key experiences that drive customer expectations and the options to cost-effectively meet those expectations—while keeping the vehicle affordable. Modern architectures rely on middleware services. Well-designed middleware services allow for an efficient and reusable approach across different model lines and market segments. The paper presents this approach. The new architectures also lead to a transformation of the partner ecosystem between original equipment manufacturers (OEMs) and component suppliers. OEMs try to lever this system while maintaining control over their offerings. These changes transform the traditional semiconductor industry as a whole. The reasons for this transformation and why it is necessary to
Taylor, Kyle
ChatGPT has entered the car. At CES 2024, Volkswagen and technology partner Cerence introduced an update to IDA, VW's in-car voice assistant, so it can now use ChatGPT to expand what's possible using voice commands in vehicles. VW said the ChatGPT bot will be available in Europe in current MEB and MQB evo models from VW Group brands that currently use the IDA voice assistant. That includes some members of the ID family - the ID.7, ID.4, ID.5 and ID.3 - as well as the new Tiguan, Passat and Golf models. VW brands Seat, Škoda, Cupra and VW Commercial Vehicles also will get IDA integration. VW hopes to bring IDA to other markets, including North America, but did not make any timing announcements.
Blanco, Sebastian
CES 2024 offers a busy look at the software-definied-vehicle future. For a technology set to define our automotive future for years to come, it's surprising that not everyone in the industry can agree on what a software-defined vehicle actually is. It's not controversial to say that SDVs need to be able to adjust - or define - some aspect of a vehicle's performance through software. It's the outer limits of how this works that can prove challenging to define.
Blanco, Sebastian
Vehicle-to-Everything (V2X) communications has the potential to increase the safety and autonomy of automated vehicles in addition to improving reliability, efficiency, infotainment, traffic, road safety, energy consumption, and costs. V2X is enabled by 5G technologies which promise faster connections, lower latency, higher reliability, more capacity and wider coverage. However, research is lacking in determining exactly how V2X can improve the safety, security, and autonomy of automated vehicles and more specifically what are the main V2X requirements. This paper provides a novel framework and structure to introduce V2X as a perception sensor sub-system into ADAS and ADS and to allocate top level target safety requirements to this new modality. To illustrate the novel structure, an example is provided using AD use cases in the context of the five SAE driving automation levels Level 1 through Level 5. The design follows methodologies from standards and regulations such as ISO 26262
Pimentel, Juan
In an increasingly electrified world, there's still a need for 12-volt batteries and a low-voltage electrical architecture in vehicles. Clarios, which provides the low-voltage architecture for around a third of all vehicles in the world, sees room to grow in the electrified future. Connected vehicles, for example, bring new expectations for what a low-voltage system has to provide, including higher electrical loads. This energy is used for OTA updates when the car is not running, for example, or powering larger infotainment screens. SAE Media editor-in-chief Sebastian Blanco spoke with Clarios president and CEO Mark Wallace and Federico Morales-Zimmermann, group vice president and general manager of original equipment, during a roundtable discussion with multiple journalists. The following Q&A from that event has been edited.
Engineers like to know what customers think about a vehicle. Now, drivers of the all-electric Ford F-150 Lightning and Mustang Mach-E can oblige via a new system that channels select customer comments to engineers. F-150 Lightning fullsize pickup truck and Mustang Mach-E SUV owners in the U.S. can pass along opinions via a 45-second voice message after selecting “record feedback” through the settings-general menu on the infotainment touchscreen. “We want to hear the customer's voice. Ford does customer clinics and events, but this is a different way to capture customer feedback,” Donna Dickson, chief engineer of the Ford Mustang Mach-E, said in an interview with SAE Media.
Buchholz, Kami
I know nothing more about artificial intelligence (AI) than what I read and what learned people tell me. I know it's supposed to bring new sophistication to all manner of processes and technologies, including automated driving. So, when a driverless robotaxi operated by GM's Cruise plowed into a road section of freshly poured cement in San Francisco, it raised questions about recently beleaguered Cruise. My mind wandered to AI, which many AV compute “stacks” are touted to leverage in abundance. Driving into wet cement isn't intelligent. Did somebody need to train the vehicle's AV stack specifically to recognize wet cement? If that's how it works, I'd prefer not to bet my life on whether some fairly oddball happenstance (is the term ‘edge case’ not cool anymore?) had been accounted for in that particular version of the AD system's algorithm running that particular day.
Visnic, Bill
More and more applications (apps) are entering vehicles. Customers would like to have in-car apps in their infotainment system, which they already use regularly on their smartphones. Other apps with new functionalities also inspire vehicle customers, but only as long as the customer can utilize them. To ensure customer satisfaction, it is important that these apps work and that failures are found and corrected as quickly as possible. Therefore, in-car apps also implicate requirements for future vehicle diagnostics. This is because current vehicle diagnostic methods are not designed for handling dynamic software failures of apps. Consequently, new diagnostic methods are needed to support the diagnosis of in-car apps. Log data are a central building block in software systems for system health management or troubleshooting. However, there are different types of log data and log environment setups depending on the underlying system or software platform. Depending on that, the creation of
Bickelhaupt, SandraHahn, MichaelNuding, NikolaiMorozov, AndreyWeyrich, Michael
Android Automotive OS (AAOS) has been gaining popularity in recent years, with several OEMs across the world already deploying it or planning to in the near future. Besides the benefit of a well-known, customizable and secure operating system for OEMs, AAOS allows third-party app developers to offer their apps on vehicles of several manufacturers at the same time. Currently, there are 55 apps for AAOS that can be categorized as media, navigation or point-of-interest apps. Specifically the latter two categories allow the third-parties to collect certain sensor data directly from the vehicle. Furthermore, the latest version of AAOS also allows the OEM to configure and collect In-Vehicle Infotainment (IVI) and vehicle data (called OEM telemetry). However, increasing connectivity and integration with the in-vehicle network comes at the expense of user privacy. Previous works have shown that vehicular sensor data often contains personally identifiable information (PII). New privacy
Pese, Mert D.
A modern car is enhancing the driver’s in-vehicle experience through the infotainment system which is a combination of both information and entertainment. The Original Equipment Manufacturers (OEM) are being driven to provide this luxurious experience through the development and adaptation of new technology. In a luxurious car, an infotainment system consists of a high-resolution touchscreen display, smartphone pairing, support for multimedia, installed applications for entertainment, etc. The applications responsible for this experience will exchange the data from the Electronic Control Unit (ECU) to the server and vice versa. If all applications require a unique port for the exchange, then the number of ports will be more which means the number of entry points to exploit the system by an intruder will be increased. For the secure exchange of information, the ECU software consists of a firewall that monitors this exchange and allows only the safe transfer of data to avoid the
Pacharla, Sreedhar ReddyPrasad, Pavan KumarVimlendra, SuryanshVarshney, SauravTiwari, Vishal
Mercedes-Benz developed an in-house computer operating system to join an all-new vehicle platform architecture to enhance automated driving, OTA updates and other features. Mercedes-Benz revealed in late February that it is developing its own computer operating system, dubbed MB.OS, which it said will be standardized across the company's entire model portfolio when deployment begins “mid-decade” in concert with the introduction of the equally new Mercedes Modular Architecture (MMA) vehicle platform. The MB.OS will have full access to all vehicle domains, including infotainment, automated driving, body and comfort, vehicle dynamics and battery charging. Based on a chip-to-cloud architecture, the company asserted MB.OS “is designed to connect the major aspects of the company's value chain, including development, production, omni-channel commerce and services - effectively making it an operating system for the entire Mercedes-Benz business.” The MB.OS architecture is completely updateable
Visnic, Bill
One chip, multiple benefits. That's the claim made by U.S. semiconductor company Qualcomm Technologies Inc. about its new, scalable system-on-a-chip (SoC) product family, called Snapdragon Ride Flex. Unveiled at CES2023 and due to enter the market in early 2024, Snapdragon Flex is the auto industry's first scalable family of SoCs that can run a digital cockpit and ADAS features simultaneously, according to the company. Snapdragon Ride Flex is the latest member of the Snapdragon SoC family. Qualcomm's first-generation Ride Platforms are currently available in commercialized vehicles. Newer generations, which include the Ride Vision stack that can handle ADAS applications, are being tested by Tier 1s. They are expected to arrive on MY2025 vehicles from various OEMs, according to Qualcomm.
Blanco, Sebastian
The smart cockpit has become an irreplaceable element for many new automobile brands, particularly New Energy Vehicles (NEV) of “new forces”. Since the cockpit is a direct interface for the interactions between users and the intelligent and connected functions of the vehicle, any improvements would be easily perceived by users and thus would directly affect user experiences. It would be most important to capture, collect, and understand what users need for a smart cockpit. Users’ online comments on existing smart cockpits contain information on users’ requirements. However, the current user comment text data is too massive, tanglesome, and sparse to process. How to efficiently mine valuable information from these data is non-trivial. This paper focuses on applying the Natural Language Process (NLP) technology for design, development, improvement, and update of a vehicle company’s smart cockpit. By obtaining user comment data from various sources such as eco-system Applications (APP
Lin, ShenheZou, JingkaiZhang, ChaokaiLai, XinjunMao, NingFu, Hui
With the accelerating demands of new features in embedded software viz diagnostic services, infotainment instigate complex software development. Ever-increasing software complexity gives rise to unreliable behaviours in the vehicle system. Software reliability model reinforces the confidence of the end-user about the compliant operation of the provided software with respect to requirements. This paper describes the application of software reliability engineering in the Software development life cycle. Further, we are demonstrating means to compute the software operational reliability by acquiring defects observed at the software testing phase. A detailed software reliability model selection process led us to conclude to a software reliability model based on the Nonhomogeneous Poisson process (NHPP) by Schneidewind. The discussed Software reliability model considers both fault detection and correction process for modelling and uses historical defect data of the software for the
Satpute, Apoorv MohanPriya, JyotiMishra, JitendraAnilkumar, Sandhya
There's no question that significant amounts of power are needed for electric-powered vertical takeoff and landing (eVTOL) aircraft to become airborne and maintain flight. But designers of rotorcraft and personal air vehicles (PAVs) have many questions about what kinds of electrical interconnects can handle the required voltages and kW peak output for electric propulsion motors, inverters, controllers, batteries, infotainment, and sensors. To make eVTOL a reality, designers must identify the proper connectivity solution and implement a “follow-the-wire” design approach to overcome the following challenges:
There’s no question that significant amounts of power are needed for electric-powered vertical takeoff and landing (eVTOL) aircraft to become airborne and maintain flight. But designers of rotorcraft and personal air vehicles (PAVs) have many questions about what kinds of electrical interconnects can handle the required voltages and kW peak output for electric propulsion motors, inverters, controllers, batteries, infotainment, and sensors. To make eVTOL a reality, designers must identify the proper connectivity solution and implement a “follow-the-wire” design approach to overcome the following challenges:
Items per page:
1 – 50 of 372