Browse Topic: Electronic control systems

Items (4,024)
(TC)The paper presents a designed and evaluated optimal traction control (TC) strategy for unmanned agriculture vehicle, where onboard sensors acquire various real-time information about wheel speed, load sharing, and terrain characteristics to achieve the precise control of the powertrain by establishing an optimal control command; moreover, the developed AMT-adaptive SMC combines the AMT adaptive control algorithm and the SMC to implement the dynamic gear shifting, torque output, and driving mode switching to obtain an optimal power distribution according to different speed demand and harvest load. Based on the establishment of models of the autonomous agriculture vehicle and corresponding tire model, a MATLAB/Simulink method based on dynamic simulation is adopted to simulate the unmanned agricultural vehicle traversing different terrains conditions. The results from comparison show that the energy saving reaches 19.0%, rising from 2. 1 kWh/km to 1. 7 kWh/km, an increase in
Feng, ZhenghaoLu, YunfanGao, DuanAn, YiZhou, Chuanbo
Efficient thermal management is critical for the reliability and performance of power electronics systems in automotive applications. This work presents a computationally efficient modeling approach for transient thermal simulation of power electronic systems, with a focus on inverter modules using multiple MOSFETs mounted on a printed circuit board assembly (PCBA). A case study of an inverter module comprising six MOSFETs arranged as high-side and low-side pairs for a three phases system mounted on a PCBA, attached to a heat sink is considered. Computational fluid dynamic (CFD) simulations in Ansys® Icepak™ are performed considering different heat transfer mechanisms, including natural convection, forced convection at constant velocity, and forced convection with varying flow velocity. A transient thermal model is developed using the lumped parameter linear superposition (LPLSP) method, a hybrid approach that combines lumped parameter modeling with the principle of linear
Padmanabhan, Neelakantan
Operating tractors on inclined & uneven terrains for prolonged operations presents safety and ergonomic challenges. Applications such as shuttle operations, loader use, or long-duration implement usage prove to be highly critical based on field observations across Mahindra tractor platforms and it requires skill & experience for maneuvering at ease across usage. We identified the need to offload these repeatable tasks from the operator to improve control & offer comfort. This paper explains the role of Advanced drive assistance features developed for Mahindra tractors suited for all prime mover types – ICE, Alternate Fuels including electric. These features include Hill Hold, Electronic parking brake, Cruise control & Creep mode. Each feature is designed to offload frequent manual tasks from the operator and ensure smoother, safer operation. Hill hold and electronic parking brake work in tandem to offer unparalleled safety by eliminating the fear of tractor roll back in uneven terrain
M, RojerSundaram, PavithraNatarajan, SaravananDevakumar, KiranMuniappan, Balakrishnan
The rapid evolution of autonomy in Off-Highway Vehicles (OHVs)—spanning agriculture, mining, and construction—demands robust cybersecurity strategies. Sensor-control systems, the cognitive core of autonomous OHVs, operate in harsh, connectivity-limited environments. This paper presents a structured approach to applying threat modeling to these architectures, ensuring secure-by-design systems that uphold safety, resilience, and operational integrity.
Kotal, Amit
The increasing complexity of autonomous off-highway vehicles, particularly in mining, demands robust safety assurance for Electronic/Electrical (E/E) systems. This paper presents an integrated framework combining Functional Safety (FuSa) and Safety of the Intended Functionality (SOTIF) to address risks in autonomous haulage systems. FuSa, based on ISO 19014[1] and IEC 61508[2], mitigates hazards from system failures, while SOTIF, adapted from ISO 21448[3] addresses functional insufficiency and misuse in complex operational environments. We propose a comprehensive verification and validation (V&V) strategy that identifies hazardous scenarios, quantifies risks, and ensures acceptable safety levels. By tailoring automotive SOTIF standards to off-highway applications, this approach enhances safety for autonomous vehicles in unstructured, high-risk settings, providing a foundation for future industry standards.
Kumar, AmrendraBagalwadi, Saurabh
The evolution of Autonomous off-highway vehicles (OHVs) has transformed mining, construction, and agriculture industries by significantly improving efficiency and safety. These vehicles operate in high dust, uneven terrain, and potential communication failures, where safety is challenged. To guarantee vehicle safety in such situations, a robust architecture that combines AI-driven perception, fail-safe mechanisms, and conformance to many ISO standards is required. In unstructured environments, AI-driven perception, decision-making, and fail-safe mechanisms are not fully addressed by traditional safety standards like ISO26262 (road vehicles), ISO19014 (earth-moving machinery and it is replacing withdrawn ISO 15998), ISO12100 (Safety of machinery) and ISO25119 (agriculture), ISO 18497 (safety of highly automated agricultural machinery), and ISO/CD 24882 (cybersecurity for machinery).These standards mainly concentrate on the reliability of mechanical and electric/electronic systems
Muthusamy, Sugantha
Power electronics are fundamental to sustainable electrification, enhancing energy, efficiency, integrating renewable energy sources, and reducing carbon emissions. In electric vehicles (EVs), power electronics is crucial for efficient energy conversion, management, and distribution. Key components like inverters, rectifiers, and DC-DC converters optimize power from renewable sources to meet EV system requirements. In EVs, power electronics convert energy from the lithium-ion battery to the electric vehicle motor, with sufficient propulsion and regenerative braking. Inverters is used to transfer DC power from the lithium-ion eEV battery to alternating current for the motor, while DC-DC converters manage voltage levels for various vehicle systems. These components maximize EV energy efficiency, reduce energy losses, and extend driving range. Power electronics also support fast and efficient battery charging, critical for widespread EV adoption. Advanced charging solutions enable rapid
Pipaliya, Akash PravinbhaiHatkar, Chetan
Electrification applications are increasingly moving towards higher voltage systems to enable greater power delivery and faster battery charging. This trend is particularly evident in the shift from 400V to 800V systems, which offers several benefits and poses unique technical challenges. Higher voltage systems reduce current flow, minimizing energy losses, and improving overall efficiency. This is crucial for applications like electric vehicles and off-highway machinery, where efficient power management is essential. One of the primary benefits of increasing the DC link voltage beyond the 400V is the ability to support higher power levels. Additionally, higher voltage systems can reduce the size and weight of power components, contributing to more compact and lightweight designs. However, transitioning to 800V systems introduces several technical challenges in power electronics design. Key components such as power components (IGBT, MOSFET etc.) must be optimized to handle higher
Hatkar, Chetan ManoharPipaliya, Akash
Items per page:
1 – 50 of 4024