Browse Topic: Electronic control systems

Items (3,978)
This study presents the development and integration of a vehicle mass estimator into the ZF’s Adaptive Cruise Control (ACC) system. The aim is to improve the accuracy of the ACC system’s torque control for achieving desired speed and acceleration. Accurate mass estimation is critical for optimal control performance, particularly in commercial vehicles with variable loads. The incorporation of such mass estimation algorithm into the ACC system leads to significant reductions in the error between requested and measured acceleration during both flat and uphill driving conditions, with or without a preceding vehicle. The article details the estimator’s development, integration, and validation through comprehensive experimental testing. An electric front-wheel drive van was used. The vehicle’s longitudinal dynamics were modeled using D’Alembert’s principle to develop the mass estimation algorithm. This algorithm updates the mass estimate based on specific conditions: zero brake torque, high
Marotta, RaffaeleD’Itri, ValerioIrilli, AlessandroPeccolo, Marco
This study addresses the control problem of the electronic throttle valve (ETV) system in the presence of unmatched perturbations. Most previous works have ignored the effect of actuating motor inductance, which results in an approximated model with a matched perturbation structure. However, if this assumption is not permitted, the ETV model turns into an exact model with unmatched perturbation and the control task becomes more challenging. In this article, a backstepping control design based on a quasi-sliding mode disturbance observer (BS-QSMDO) has been proposed to effectively reject the unmatched perturbation in the ETV system. A rigorous stability analysis has been conducted to prove the ultimate boundedness for disturbance estimation error and tracking error. The key to this proposed observer-based control design is to obtain a robust and chattering-free controller based on a quasi-sliding mode methodology. The proposed quasi-sliding mode observer works to estimate the unmatched
Hameed, Akram HashimAl-Samarraie, Shibly AhmedHumaidi, Amjad Jaleel
In electric vehicles development, manufacturing variations pose big challenge in designing various mechanical components as these variations directly impact various customer perceivable performance outputs. If the manufacturing variations can be included in design phase itself, overall robustness of the design can be enhanced. This paper delineates machine learning based methods to include manufacturing variations in designing drive units for electric vehicles. In an electric vehicle, the drive unit transfers power or torque from a battery through an inverter to wheels. The drive units are subjected to different types of loads under various vehicle maneuvers. To evaluate the drive unit system virtually, system level simulations are performed. Traditionally, nominal values of the several inputs such as bearing parameters, gear parameters and clearances etc. are used. However, the drive unit must be designed in such a way that outputs meet target considering all the variations of inputs
Penumatsa, Venkata Ramana RajuKatha, VenkateswarBlack, DerrickJain, SachinMaddipati, Seshagiri
The popular methods to generate PWM (Pulse width modulation) are triangle comparison method and space vector method. The work evaluates the performance of continuous and discontinuous space vector pulse width modulation techniques based on the switching losses and harmonic distortion. The flexibility in the placement of null vectors and active vectors gives generality in SVPWM (Space Vector PWM) techniques. Continuous SVPWM employs the conventional switching sequences which are equally divided the null vectors and active vectors. Discontinuous PWM are derived based on the different combinations of null and active switching vectors. The discontinuous PWM techniques clamps each phase for either 300 or 600 in each half cycle. Majority of the discontinuous SVPWM uses any one of the null vectors and effectively to reduce the average switching loss in a cycle and the total harmonic distortion.The study brings out the optimum SVPWM sequences for the control of PMSM(PERMENANT MAGNET
Nair, Meenu DivakaranDurai, Saranya
Predictive Cruise Control (PCC) is a promising approach for improving fuel efficiency and reducing operational costs in heavy trucks. However, its implementation using conventional Nonlinear Model Predictive Control (NMPC) methods is hindered by computational limitations, often restricting the use of long-horizon slope information. This paper addresses these challenges by proposing a neural network-enhanced slope-adaptive NMPC framework. A Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) architecture is employed to integrate long-horizon slope information and dynamically update control parameters, effectively overcoming computational constraints of traditional NMPC. To further enhance efficiency, an automated simulation scheduling system is developed, leveraging Large Language Models (LLMs) and expert knowledge to optimize parameter tuning and streamline data collection, significantly reducing training overhead. Validation on a high-fidelity simulation platform
Han, XiaoSong, KangLv, Qing FangZhang, YiXie, Hui
The thermal management system of fuel cells poses considerable challenges, particularly due to large time delays and nonlinear behaviors that complicate effective temperature control of the stack. In response to these challenges, this study introduces a novel fuel cell inlet temperature feedback control method based on the internal model principle, designed to enhance control accuracy. Simulations were conducted using MATLAB/Simulink® to evaluate the performance of both Proportional-Integral (PI) and internal model controllers through various tests, including step response and random condition assessments. The results demonstrated that the proposed internal model controller significantly outperformed traditional PID control in both static and dynamic scenarios. Specifically, during step response testing, the maximum temperature overshoot was minimized to just 1.5°C, with a steady-state error of less than 0.5°C. In dynamic performance testing, the inlet temperature exhibited a rapid
Liu, Shiguang
The braking system is an essential element for ensuring the safe operation of vehicles. This research investigates the influence of electronic mechanical brakes on the control performance of permanent magnet synchronous motors, with a particular focus on variations in the load torque and inertial load. This study addresses challenges such as delayed responses in the clamping force and diminished control accuracy. To mitigate these issues, a Luenberger load torque observer is utilized for the real-time identification of load torque. The identified load torque is subsequently converted into a compensation current, which is integrated into the current loop as a feed-forward compensation signal to enhance the control performance. Additionally, to reduce the impact of variations in inertial load on the overall control system, this study employs a model reference adaptive algorithm for the online identification of rotational inertia, with the identification results being fed back to the load
Wan, XiaoboShang, RuipengLi, Yingchun
This article presents a height control method for air suspension systems, which are influenced by strong nonlinearity and multiple coupling factors, based on model-free adaptive control (MFAC) using full-form dynamic linearization (FFDL). To address the impact of different damping coefficients of the shock absorber on the height control effect, an improved genetic algorithm is employed to globally optimize the relevant parameters involved in the design of the control law, thereby enhancing the height control performance. The precision of modeling the air suspension system has a direct impact on the simulation of both static and dynamic vehicle models, as well as the accuracy of height control. In this article, an equivalent thermodynamic model of the air suspension system is established based on the principle of energy conservation for height control research. Considering the nonlinearity of the air suspension system and the need to make additional assumptions before modeling, a MFAC
Yao, JiyangWu, GuangqiangWu, JianYang, YuchenYan, Xudong
Hybrid Electric Vehicles (HEVs) combine combustion and electric propulsion means to achieve key objectives, such as: reducing fuel consumption, minimizing pollutant emissions, and enhancing the overall energy efficiency of the Powertrain System. The series hybrid electric vehicles, in special, have a topology compound by four Subsystems, which are: Traction, Storage, Energy Generation, and Energy Management. The Energy Generation Subsystem is responsible for the power supply of the electric traction motors and batteries, depending on the control strategy promoted by the Energy Management Subsystem. The Energy Generation Subsystem is essentially made by an Internal Combustion Engine (ICE) and a Generator. Effective control of the power output from the Energy Generation Subsystem necessitates precise regulation of the engine speed. Thus, it is necessary to control the engine speed because this is directly related to the power demand of the consumers of other subsystem components. This
Júnior, João Marcos Hilário Barcelosde Sousa Oliveira, Alessandro BorgesTeixeira, Evandro Leonardo SilvaPereira, Bruno LuizPinheiro, Leandro Soaresdos Santos Ribeiro, Eduardodos Santos de Oliveira, Jordano
The advancement of the automotive industry towards automation has fostered a growing integration between this field and automation. Future projects aim for the complete automation of the act of driving, enabling the vehicle to operate independently after the driver inputs the desired destination. In this context, the use of simulation systems becomes essential for the development and testing of control systems. This work proposes the control of an autonomous vehicle through fuzzy logic. Fuzzy logic allows for the development of sophisticated control systems in simple, easily maintainable, and low-cost controllers, proving particularly useful when the mathematical model is subject to uncertainties. To achieve this goal, the PDCA method was adopted to guide the stages of defining the problem, implementation, and evaluation of the proposed model. The code implementation was done in Python and validated using different looping scenarios. Three linguistic variables were used, one with three
Branco, César Tadeu Nasser MedeirosSantos, Rafael Celestino
The exponential growth of the agribusiness market in Brazil combined with the high receptivity among farmers of new technological solutions has driven the study and implementation of high technology in the field. This work aimed to apply servo-assisted driving technology to enable autonomous mobility in an off-road sugarcane truck responsible for harvesting sugarcane. The technology consists of a conventional hydraulic steering with a motor, ECU and torque and angle sensors responsible for reading input data converted from GPS signals and previously recorded tracking lines. The motor responsible for replacing 100% of the physical force generated by the driver acts in accordance with the required torque demand, and the sensors combined with the ECU correct the course to meet the follow-up line through external communication ports. The accuracy of the system depends exclusively on the accuracy of the GPS signal, in this case reaching 2,5 cm, which is considered extremely high accuracy
Oliveira Santos Neto, AntídioLara, VanderleiSilva, EvertonDestro, DanielMoura, MárcioBorges, FelipeHaegele, Timo
In the context of advancing automotive electronic systems, ensuring functional safety as per ISO 26262 standards has become of primary importance. This paper presents the development of an AUTOSAR-compliant Software Component (SWC) applied to ISO 26262 applications. Using MATLAB/Simulink, we design and simulate a SWC that operates within the AUTOSAR architecture, focusing on fault detection and activation of safety mechanisms. The SWC is built to monitor specific system parameters and operational anomalies. Upon detecting a fault, it triggers predefined safety mechanisms to mitigate risks and ensure system integrity. The simulation focus on capability to accurately identify faults and execute safety measures effectively, thus demonstrating a practical approach to enhance automotive system safety implementation and its reuse. This paper not only highlights the importance of ISO 26262 in the automotive industry but also illustrates the feasibility of developing and integrating safety
Santiago, Frederico Victor Scoralickdos Santos Machado, ClebersonImbasciati, HenriqueCosta, Silvio Romero Alves
With the technology of electronic chassis control systems of automobile is widely used, the functional interaction between brake system and the other electronic systems may lead to brake boost degradation. Therefore, it is necessary to find out brake boost degradation events in the quite large number of driving scenarios. To solve the difficulty of thoroughly and quickly searching for brake boost degradation conditions in the large number of driving scenarios, based on Mechatronic-Hardware-In-the-Loop (M-HIL) technology, this paper constructs an electrical chassis system M-HIL bench to verify the function and performance of the electronic brake control system under actual chassis system conditions. To search and locate the brake boost degradation conditions rapidly and enhance the searching efficiency of levels boundary of affecting factors for brake boost degradation, firstly, based on pair-wise coverage combinatorial testing, brake boost degradation occurrence rate is estimated and
Guo, XiaotongLi, LunChen, ZhichengZhang, LiliangYan, LupingWang, WeiZh, Bing
In the rapidly evolving field of automotive engineering, the drive for innovation is relentless. One critical component of modern vehicles is the automotive ECU. Ensuring the reliability and performance of ECU is paramount, and this has led to the integration of advanced testing methodologies such as Hardware-in-the-Loop (HIL) testing. In conjunction with HIL, the adoption of Continuous Integration (CI) and Continuous Testing (CT) processes has revolutionized how automotive ECU are developed and validated. This paper explores the integration of CI and CT in HIL testing for automotive ECU, highlighting the benefits, challenges, and best practices. Continuous Integration and Continuous Test (CI/CT) are essential practices in software development. Continuous Integration process involves regularly integrating code changes into the main branch, ensuring that it does not interfere with the work of other developers. The CI/CT server automatically build and test code whenever a new commit is
Hande, Sheetal VikramMandava, Balaji Bharath
Emergence of Software Defined Vehicles (SDVs) presents a paradigm shift in the automotive domain. In this paper, we explore the application of Model-Based Systems Engineering (MBSE) for comprehensive system simulation within the SDV architecture. The key challenge for developing a system model for SDV using traditional methods is the document centric approach combined with the complexity of SDV. This MBSE approach can help to reduce the complexity involved in Software-Defined Vehicle Architecture making it more flexible, consistent, and scalable. The proposed approach facilitates the definition and analysis of functional, logical, and physical architecture enabling efficient feature and resource allocation and verification of system behaviour. It also enables iterative component analysis based on performance parameters and component interaction analysis (using sequence diagrams).
Navas, AkhilPaul, Annie
A temperature dependent cohesive zone model considering the thermo-mechanical fatigue loadings are used to simulate and predict the failure process of solder joint interface in power electronics modules. Cohesive Zone Models (CZMs) are gaining popularity for modeling the fracture and fatigue behavior in various class of materials such as metals, polymers, ceramics, and their composite materials. Unlike the traditional fracture mechanics which considers concept of infinitesimal crack, CZMs assume a fracture process zone in which external energy is distributed in vicinity to propagating crack. In order to predict the fatigue-fracture process under thermo-mechanical cyclic loading, a damage accumulation variable is utilized. The calculation of damage is performed using a progressive mechanism, and the cohesive zone model is updated to reflect the present level of damage. The existing cohesive forces are influenced by both the current damage status and the extent of separation
Singh, Praveen KumarSahu, AbhishekChirravuri, BhaskaraMiller, Ronald
The automotive industry relies heavily on software to enhance safety, performance, and user experience. The increasing complexity of automotive software demands rigorous testing methodologies. Ensuring the quality and reliability of this software is critical. In this paper, an innovative approach to software validation and verification using a Hybrid Hardware-In-the-Loop (HIL) test system has been proposed. This methodology integrates diverse hardware and software tools to establish a flexible and efficient testing environment. HIL environment can evaluate Device Under Test (DUT) with minimal alterations. This comprehensive solution includes the development of test strategies, plant model simulation, and compliance assurance, all in accordance with automotive standards such as ASPICE, ISO26262. Introduction of a Personality module for Automotive ECU (DUT), enables testing of multiple products using the same HIL setup. This is achieved by loading a DUT-specific signal mapping
Yadav, VikaskumarBhade, Nilesh
Recently, there has been a growing emphasis on Thermal Management Systems (TMS) for Lithium-ion battery packs due to safety concerns related to fire risks when temperatures exceed operating limits. Elevated temperatures accelerate electrochemical reactions, leading to cell degradation and reduced electronic system performance. These conditions can cause localized hotspots and hinder heat dissipation, increasing the risk of thermal runaway due to high temperatures, flammable gases, and heat-producing reactions. To tackle these issues, many automotive manufacturers employ indirect liquid cooling techniques to maintain battery pack and electronic system temperatures within safe limits. Engineered nanofluids, particularly those containing multi-nanoparticles dispersed in water and ethylene glycol, are being explored to enhance electrical safety in case of accidental exposure to electrical systems in EVs. This paper focuses on the experimental characterization of nanofluid containing
Nahalde, SujayHonrao, GauravMore, Hemant
Heavy-duty vehicles, particularly those towing higher weights, require a continuous/secondary braking system. While conventional vehicles employ Retarder or Engine brake systems, electric vehicles utilize recuperation for continuous braking. In a state where HV Battery is at 100% of SOC, recuperated energy from vehicle operation is passed on to HPR and it converts electrical energy into waste heat energy. This study focuses on identification of routes which are critical for High Power Brake Resistors (HPRs), by analyzing the elevation data of existing charging stations, the route’s slope distribution, and the vehicle’s battery SOC. This research ultimately suggests a method to identify HPR critical vehicle operational routes which can be useful for energy efficient route planning algorithms, leading to significant cost savings for customers and contributing to environmental sustainability.
Thakur, ShivamSalunke, OmkarAmbuskar, MandarPandey, Lokesh
This paper examines the effectiveness of optimizing energy management in hybrid electric vehicles by integrating adaptive machine learning algorithms with the energy management electronic control unit (ECU). Existing traditional rule-based energy management and control strategies of power distribution between internal combustion and battery struggle to adapt to dynamic driving conditions, such as rapid acceleration, frequent stop-and-go traffic, and varying terrain. These scenarios often result in sub-optimal energy utilization and performance, as the fixed rules struggle to account for the immediate demands and inefficiencies that arise in such conditions. In conditions like that, rapid acceleration demands a sudden increase in power, which can lead to inefficient fuel consumption if not managed properly, while frequent stop-and-go traffic conditions can cause the battery to drain and lead to increased fuel consumption. Varying terrain can also lead to improper power distribution
Bhargav, Matavalam
Balancing low conductivity, corrosion resistance and optimum heat transfer in next-generation EV coolants while meeting new EV safety regulations. Managing the heating and cooling of electric vehicle propulsion systems may seem to be an easy task compared with combustion engines. After all, ICEs run much hotter-the thermal optimum for a gasoline engine is around 212 F (100 C). By comparison, EV batteries normally generate (as a function of current during charge/discharge cycles) a relatively cool 59-86 F (15-30 C). And while motors and power electronics operate hotter, typically 140-176 F (60-80 C), they still run cooler than ICEs. But among the myriad complexities of EV thermal management are batteries' dislike for temperature extremes, new cell chemistries, heat-generating high-voltage electrical architectures and 800V fast charging. All are putting greater focus on maintaining stable EV battery thermal performance and safety. Experts note that compatibility among the cell chemistry
Brooke, Lindsay
The aerospace and defense industries demand the highest levels of reliability, durability, and performance from their electronic systems. Central to achieving these standards are laminate materials, which form the backbone of printed circuit boards (PCBs) and flexible circuits used in a multitude of applications, from avionics to missile guidance systems. Building these systems, which are typically implemented in environments that experience both temperature extremes and wide variations of temperature over time, requires robust materials that can stand up to punishing environmental conditions. Laminates and films for circuit boards and flexible circuits are a vital component of this protective material profile.
Electromechanical brakes (EMB) are currently coming into focus in the automotive industry. This trend was confirmed in 2022, when a first automotive supplier [1] announced the series production of EMB systems. One major driver is safety, especially if EMB systems are implemented with smart actuators that install redundant electronic control units (ECU) and distributed software [1]. Earlier, the authors have addressed safety mechanisms in EMB actuators [2]. In this article the authors extend their investigation to address safety mechanisms in future EMB central control systems (CCS). Impact of different brake system topologies (X-, H-, centralized) vis-à-vis potential safety mechanisms within communication buses and ECUs is analyzed.
Schrade, SimonRöhler, AndreasNowak, XiVerhagen, ArminSchramm, Dieter
This document provides an overview of currently available and need to be developed modeling and simulation capabilities required for implementing robust and reliable Aerospace WDM LAN applications.
AS-3 Fiber Optics and Applied Photonics Committee
This document (AIR6005) provides the framework for the specifications of a WDM OBN within the SAE AS5659 WDM LAN Specification document family, in particular, the Transparent Optical Backbone Network Specification. This framework includes potential requirements, technical background, investigation and context to support the writing of SAE’s WDM LAN specifications documents. The SAE’s AS6005 WDM OBN document describes a transparent optical network which contains optical components and optical interfaces to perform optical transport, optical add/drop, optical amplification, optical routing, and optical switching functions. The conforming optical signal interfaces for the data plane of the WDM OBN are defined. The conforming signal interfaces for the control and management planes of this network are also defined. The control and management plane signals may be either electrical or optical. If successful, a WDM LAN standard is anticipated to include multiple variants that may get created
AS-3 Fiber Optics and Applied Photonics Committee
An industry-first 3D laser-based, computer-vision system can monitor and control the application of adhesive beads as tiny in width as two human hairs. This unique inspection system for electronic assemblies operates at speeds of 400 to 1,000 times per second, considerably quicker and more effective than conventional 2D systems. “Difficulty in precisely dispensing adhesives or sealants, especially in extremely small or complex electronic assemblies, can lead to over-application, under-application, bubbles, or incorrect location of the adhesive bead,” Juergen Dennig, president of Ann Arbor, Michigan-headquartered Coherix, told SAE Media. Improper application of joining material on electronic control units (ECUs) and power control units (PCUs) can result in poor adhesion, material voids and short circuits.
Buchholz, Kami
During a recent Bosch tech showcase, we spoke with Joe Dear, engineering manager for electric propulsion systems at Linamar. The Guelph, Ontario-based parts manufacturer is no stranger to building unsung components for the auto industry, including gears, camshafts, connecting rods, and cylinder heads. The Linamar team was demonstrating a modified Ram 2500, a collaboration between Bosch and Linamar, that was outfitted with a prototype electric powertrain and new e-axles: a rigid axle on the rear (with a Bosch motor and inverter) and a steering axle up front.
Blanco, Sebastian
Electromechanically actuated drum brakes are one interesting option for the realization of brake-by-wire systems for future electric vehicles. A key characteristic for the design and control of electromechanical brake actuators is the actuation point stiffness, as this quantity relates the actuation force to the required actuator position. The various known approaches for the control of electromechanical brakes, which primarily focus on disc foundation brakes, typically rely on the stiffness curve at least to some extent. A transfer of these approaches to drum brakes is not straightforward, because the actuation point stiffness for drum brakes is much more complex compared to disc brakes. In particular, a strong hysteretic behavior is observed for the standing drum and a considerable change of the stiffness and hysteresis can be observed for the rotating drum. Although drum brakes have been used for decades these effects have not been thoroughly discussed in literature, yet. Hence
Peter, SimonJanhsen, MichaelStümke, DanielGörges, Daniel
Items per page:
1 – 50 of 3978