Browse Topic: Electronic control units
The rapid evolution of in-vehicle electronic systems toward zonal based architectures introduces a new layer of complexity in automotive diagnostics. Traditional architectures, built on Controller Area Network (CAN) and Local Interconnect Network (LIN) protocols, operate on a uniform Real-Time Operating System (RTOS), enabling simplified and consistent diagnostic workflows across Electronic Control Units (ECUs). However, next-generation platforms must accommodate diverse communication protocols (e.g., CAN, LIN, DoIP, SOME/IP) and heterogeneous operating systems (e.g., RTOS, Linux, QNX), resulting in fragmented and inflexible diagnostic processes. This paper presents a Diagnostic controller that addresses these challenges by enabling unified, scalable, and adaptive diagnostic capabilities across modern vehicle platforms. The proposed system consolidates protocol handling at the application level, abstracts diagnostic complexities, and allows cross-platform communication through
With the rapid advancement of connected vehicle technologies, infotainment Electronic Control Units (ECUs) have become central to user interaction and connectivity within modern vehicles. However, this enhanced functionality has introduced new vulnerabilities to cyberattacks. This paper explores the application of Artificial Intelligence (AI) in enhancing the cybersecurity framework of infotainment ECUs. The study introduces AI-powered modules for threat detection and response, presents an integrated architecture, and validates performance through simulation using MATLAB, CANoe, and NS-3. This approach addresses real-time intrusion detection, anomaly analysis, and voice command security. Key benefits include zero-day exploit resistance, scalability, and continuous protection via OTA updates. The paper references real-world automotive cyberattack cases such as OTA vulnerability patches, Connected Drive exploits, and Uconnect hack, emphasizing the critical need for AI-enabled proactive
This study introduces a novel Large Language Model (LLM)-driven approach for comprehensive diagnosis and prognostics of vehicle faults, leveraging Diagnostic Trouble Codes (DTCs) in line with industry-standard automation protocols. The proposed model asks for significant advancement in automotive diagnostics by reasoning through the root causes behind the fault codes given by DTC document to enhance fault interpretability and maintenance efficiency, primarily for the technician and in few cases, the vehicle owner. Here LLM is trained on vehicle specific service manuals, sensor datasets, historical fault logs, and Original Equipment Manufacturer (OEM)-specific DTC definitions, which leads to context-aware understanding of the vehicle situation and correlation of incoming faults. Approach validation has been done using field level real-world vehicle dataset for different running scenarios, demonstrating model’s ability to detect complex fault chains and successfully predicting the
With the rapid adoption of electric vehicles (EVs), ensuring the reliability, safety, and cost-effectiveness of power electronic subsystems such as onboard chargers, DC-DC converters, and vehicle control units (VCUs) has become a critical engineering focus. These components require thorough validation using precise calibration and communication protocols. This paper presents the development and implementation of an optimized software stack for the Universal Measurement and Calibration Protocol (XCP), aimed at real-time validation of VCUs using next-generation communication methods such as CAN, CAN-FD, and Ethernet. The stack facilitates read/write access to the ECU’s internal memory in runtime, enabling efficient diagnostics, calibration, and parameter tuning without hardware modifications. It is designed to be modular, platform-independent, and compatible with microcontrollers across different EV platforms. By utilizing the ASAM-compliant protocol architecture, the proposed system
The automotive industry is undergoing a transformational shift with the addition of Virtual ECU in the development of software and validation. The Level 3 Virtual ECU concept will lead to the transformation in the SDLC process, as early detection of defects will have a significant impact on cost and effort reduction. This paper explains the application of a Level 3 virtual ECU which can enable to perform testing in initial period considering the Shift Left Strategy, which will significantly reduce development time. This paper demonstrates various development and validation strategies of virtual ECU and how it can impact project timeline.
This paper addresses the challenge of increasing hardware complexity, long development cycles and high costs associated with integrating multiple systems. The research explores the potential of Large Language Models (LLMs) when applied as chatbots to revolutionize the design and development of automotive electrical hardware systems, encompassing areas such as convenience features, safety systems, advanced lighting, vehicle body control and modular electronic control units. A key focus is on how LLMs can automate cost-reduction design tasks, including design optimization, requirements verification and component validation, ultimately driving down expenses without compromising performance or reliability. Furthermore, the research investigates how LLMs can assist in decision-making by providing data-driven insights that inform critical design choices and facilitate enhanced team collaboration, leading to improved productivity through innovative tools and streamlined workflows. In that
Simulation has become mission-critical for ADAS development. Model-based systems engineering can integrate modeling and simulation from the start of the design process. Advanced Driver Assistance Systems (ADAS) are transforming vehicle safety, acting as the bridge between conventional driving and full autonomy. From adaptive cruise control to emergency braking and blind-spot detection, these technologies rely on a dense network of radar sensors, antennas, electronic control units and software. What unites them is the need for precise functionality under complex real-world situations. Achieving full reliability requires more than testing on the road; it demands a virtual approach grounded in simulation. Simulation has become mission-critical for ADAS development. As new vehicles integrate dozens of sensors into tightly constrained spaces, even subtle design decisions can affect system performance. Radar solutions, in particular, present unique challenges, especially as vehicle surfaces
The calibration of automotive electronic control units is a critical and resource-intensive task in modern powertrain development. Optimizing parameters such as transmission shift schedules for minimum fuel consumption traditionally requires extensive prototype testing by expert calibrators. This process is costly, time-consuming, and subject to variability in environmental conditions and human judgment. In this paper, an artificial calibrator is introduced – a software agent that autonomously tunes transmission shift maps using reinforcement learning (RL) in a Software-in-the-Loop (SiL) simulation environment. The RL-based calibrator explores shift schedule parameters and learns from fuel consumption feedback, thereby achieving objective and reproducible optimizations within the controlled SiL environment. Applied to a 7-speed dual-clutch transmission (DCT) model of a Mild Hybrid Electric Vehicle (MHEV), the approach yielded significant fuel efficiency improvements. In a case study on
The rapid evolution of electric vehicles (EVs) necessitates advanced electronic control units (ECUs) for enhanced safety, monitoring, and performance. This study introduces an innovative ECU system designed with a modular architecture, incorporating real-time monitoring, cloud connectivity, and crash sensing. The methodology includes cost-effective design strategies, integrating STM32 controllers, CAN bus systems, and widely available sensors for motor RPM and temperature monitoring. Key findings demonstrate that the proposed ECU system improves data reliability, enhances vehicle safety through crash response systems, and enables predictive maintenance via cloud connectivity. This scalable and affordable ECU is adaptable to a broad range of EV models.
Software Defined Vehicle (SDV) is gaining attraction in the automotive industry due to its wide range of benefits like remote software/feature upgrade, scalable functionality, Electronic Control Unit (ECU) commonization, remote diagnostics, increased safety, etc. To obtain all these benefits, ECUs need to be designed accordingly. ECU hardware must be designed to support a range of vehicles with a variety of loading, scalable features, power distribution, levels of processing, and networking architecture. Each domain has unique challenges to make the ECU economical and robust to operating conditions without compromising performance. This paper illustrates the critical hardware design challenges to accommodate a scalable SDV architecture. This paper focuses electrical interface design to support wide range of input/output port loads, scalable functionality, and robust diagnostics. Also, flexibility of microprocessor processing capability, ECU networking, and communication complexity are
Items per page:
50
1 – 50 of 1531