Browse Topic: Electronic control units

Items (1,500)
The exponential growth of the agribusiness market in Brazil combined with the high receptivity among farmers of new technological solutions has driven the study and implementation of high technology in the field. This work aimed to apply servo-assisted driving technology to enable autonomous mobility in an off-road sugarcane truck responsible for harvesting sugarcane. The technology consists of a conventional hydraulic steering with a motor, ECU and torque and angle sensors responsible for reading input data converted from GPS signals and previously recorded tracking lines. The motor responsible for replacing 100% of the physical force generated by the driver acts in accordance with the required torque demand, and the sensors combined with the ECU correct the course to meet the follow-up line through external communication ports. The accuracy of the system depends exclusively on the accuracy of the GPS signal, in this case reaching 2,5 cm, which is considered extremely high accuracy
Oliveira Santos Neto, AntídioLara, VanderleiSilva, EvertonDestro, DanielMoura, MárcioBorges, FelipeHaegele, Timo
Emergence of Software Defined Vehicles (SDVs) presents a paradigm shift in the automotive domain. In this paper, we explore the application of Model-Based Systems Engineering (MBSE) for comprehensive system simulation within the SDV architecture. The key challenge for developing a system model for SDV using traditional methods is the document centric approach combined with the complexity of SDV. This MBSE approach can help to reduce the complexity involved in Software-Defined Vehicle Architecture making it more flexible, consistent, and scalable. The proposed approach facilitates the definition and analysis of functional, logical, and physical architecture enabling efficient feature and resource allocation and verification of system behaviour. It also enables iterative component analysis based on performance parameters and component interaction analysis (using sequence diagrams).
Navas, AkhilPaul, Annie
In the rapidly evolving field of automotive engineering, the drive for innovation is relentless. One critical component of modern vehicles is the automotive ECU. Ensuring the reliability and performance of ECU is paramount, and this has led to the integration of advanced testing methodologies such as Hardware-in-the-Loop (HIL) testing. In conjunction with HIL, the adoption of Continuous Integration (CI) and Continuous Testing (CT) processes has revolutionized how automotive ECU are developed and validated. This paper explores the integration of CI and CT in HIL testing for automotive ECU, highlighting the benefits, challenges, and best practices. Continuous Integration and Continuous Test (CI/CT) are essential practices in software development. Continuous Integration process involves regularly integrating code changes into the main branch, ensuring that it does not interfere with the work of other developers. The CI/CT server automatically build and test code whenever a new commit is
Hande, Sheetal VikramMandava, Balaji Bharath
This paper examines the effectiveness of optimizing energy management in hybrid electric vehicles by integrating adaptive machine learning algorithms with the energy management electronic control unit (ECU). Existing traditional rule-based energy management and control strategies of power distribution between internal combustion and battery struggle to adapt to dynamic driving conditions, such as rapid acceleration, frequent stop-and-go traffic, and varying terrain. These scenarios often result in sub-optimal energy utilization and performance, as the fixed rules struggle to account for the immediate demands and inefficiencies that arise in such conditions. In conditions like that, rapid acceleration demands a sudden increase in power, which can lead to inefficient fuel consumption if not managed properly, while frequent stop-and-go traffic conditions can cause the battery to drain and lead to increased fuel consumption. Varying terrain can also lead to improper power distribution
Bhargav, Matavalam
Electromechanical brakes (EMB) are currently coming into focus in the automotive industry. This trend was confirmed in 2022, when a first automotive supplier [1] announced the series production of EMB systems. One major driver is safety, especially if EMB systems are implemented with smart actuators that install redundant electronic control units (ECU) and distributed software [1]. Earlier, the authors have addressed safety mechanisms in EMB actuators [2]. In this article the authors extend their investigation to address safety mechanisms in future EMB central control systems (CCS). Impact of different brake system topologies (X-, H-, centralized) vis-à-vis potential safety mechanisms within communication buses and ECUs is analyzed.
Schrade, SimonRöhler, AndreasNowak, XiVerhagen, ArminSchramm, Dieter
An industry-first 3D laser-based, computer-vision system can monitor and control the application of adhesive beads as tiny in width as two human hairs. This unique inspection system for electronic assemblies operates at speeds of 400 to 1,000 times per second, considerably quicker and more effective than conventional 2D systems. “Difficulty in precisely dispensing adhesives or sealants, especially in extremely small or complex electronic assemblies, can lead to over-application, under-application, bubbles, or incorrect location of the adhesive bead,” Juergen Dennig, president of Ann Arbor, Michigan-headquartered Coherix, told SAE Media. Improper application of joining material on electronic control units (ECUs) and power control units (PCUs) can result in poor adhesion, material voids and short circuits.
Buchholz, Kami
Energy efficiency in both internal combustion engine (ICE) and electric vehicles (EV) is a strategic advantage of automotive companies. It provides a better user experience that emanates amongst others from the reduction in operation expenses, particularly critical for fleets, and the increase in range. This is especially important in EVs where customers may experience range anxiety. The energetical impact of using the air conditioning system in vehicles is not negligible with power consumptions in the range of kilowatts, even with a stopped vehicle. This becomes particularly important in areas with high temperature and humidity levels where the usage of the air conditioning systems becomes safety factor. In such areas, drivers are effectively forced to use the air conditioning system continuously. Hence, the air conditioning system becomes an ideal choice to deploy control strategies for optimized energy usage. In this paper, we propose and implement a control strategy that allows a
Jaybhay, SambhajiKapoor, SangeetKulkarni, Shridhar DilipraoPalacio Torralba, JavierLocks, Olaf
Controller area network (CAN) buses, the most common intravehicle network (IVN) standard, have been used for over 30 years despite their simple architecture for connecting electronic control units (ECUs). Weight, maintenance costs, mobility promotion, and wired connection complexity increase with ECU count, especially for autonomous vehicles. This paper aims to enhance wired CAN with wireless features for autonomous vehicles (AVs). The proposed solutions include modifying the traditional ECU architecture to become wireless, implementing a hidden communication environment using a unique complementary code keying (CCK) modulation equation and presenting a strategy for dealing with jamming signals using two channels. The proposed wireless CAN (WCAN) is validated using OPNET analysis for performance and reliability. The results show that the bit error rate (BER) and packet loss of the receiver ECU are stable between different CCK modifications, indicating the robustness of the basic
Ibrahim, QutaibaAli, Zeina
The controller area network (CAN) bus, the prevailing standard for in-vehicle networking (IVN), has been used for more than four decades, despite its simple architecture, to establish communications between electronic control units (ECUs). Weight, maintenance overheads, improved flexibility, and wiring complexity escalate as the quantity of ECUs rises, especially for high-demand autonomous vehicles (AVs). The primary objective of this study is to examine and discuss the significant challenges that arise during the migration from a wired CAN to a wireless CAN (WCAN). Suggested remedies include changing the configuration of the conventional ECU, creating a hidden wireless communication domain for each AV, and developing a plan to counteract the jamming signals. The simulation of the proposed WCAN was done using MATLAB and validated using OPNET analysis. The results showed that the packet loss of the eavesdropping electronic control unit ranged from 63% to 100%. Anti-jamming results show
Ali, ZeinaIbrahim , Qutaiba
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation. The ECU is operated on
Meli, MatteoWang, ZezhouBailly, PeterPischinger, Stefan
Engine thermal management systems represent a promising solution to improve the efficiency of current Internal Combustion Engines (ICE) and sustain the transition towards a net zero scenario. The core component of an engine thermal management system is the electric pump, which can adjust the coolant flow rate according to the engine thermal needs. This possibility opens to newer design choices, which can contribute to non-negligible energy savings. In this study, three electric coolant pumps with different maximum efficiencies have been investigated to understand the influence of the design operating conditions on the pump energy absorption. A reference vehicle equipping a 130 HP downsized gasoline engine has been considered. An experimental test bench with a copy of the engine and its cooling circuit has been reproduced, and the electric pumps have been tested at a wide range of rotational speeds and thermostat lifts to obtain their characteristic maps. Once their performances were
DI BARTOLOMEO, MARCODi Battista, DavideCipollone, RobertoFremondi, FabrizioCamagni, Umberto
A new industry-first open platform for developing the software-defined vehicle (SDV) combines processing, vehicle networking and system power management with integrated software. NXP Semiconductors' new S32 CoreRide Platform was designed to run “multiple time-critical, safety-critical, security-critical applications in parallel,” Henri Ardevol, executive vice president and general manager of Automotive Embedded Systems for NXP Semiconductors, told SAE Media. NXP's new foundation platform for SDVs differs from the traditional approach of using multiple electronic control units (ECUs), each designed to handle specific vehicle system control tasks. Since each unit requires its own integration work, the integration workload exponentially increases with each additional ECU on a vehicle.
Buchholz, Kami
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network. For example, the vehicle’s Advanced Gateway electronic control unit (ECU) is utilized to enforce cyber policy
Shipman, Maggie E.Millwater, NathanOwens, KyleSmith, Seth
Connectivity is becoming increasingly prevalent in the automotive industry, and with that comes a growing awareness among consumers and regulators of the potential risks. Present-day automobiles are becoming smart and more software-driven. Conversely, every line of code equals a possible threat to the vehicle, the passenger, or the original equipment manufacturer (OEM). To hit the brakes on the alarming increase in cyber threats, government bodies have introduced standards and regulations globally. The United Nations Economic Commission for Europe (UNECE) WP.29 R155 & R156 regulations and International Organization for Standardization/Society of Automotive Engineers (ISO/SAE) 21434 standards are becoming mandatory for all OEMs and are designed to ensure that vehicle functionalities work as intended and are built to mitigate safety risks. UNECE R155 explicitly references ISO/SAE 21434 and mandates a certified cybersecurity management system (CSMS) as a prerequisite for automotive
Zachos, MarkBajpai, VishalAgarwal, Preeti
The software installed in Electronic Control Units (ECUs) has witnessed a significant scale expansion as the functionality of Intelligent Connected Vehicles (ICVs) has become more sophisticated. To seek convenient long-term functional maintenance, stakeholders want to access ECUs data or update software from anywhere via diagnostic. Accordingly, as one of the external interfaces, Diagnostics over Internet Protocol (DoIP) is inevitably prone to malicious attacks. It is essential to note that cybersecurity threats not only arise from inherent protocol defects but also consider software implementation vulnerabilities. When implementing a specification, developers have considerable freedom to decide how to proceed. Differences between protocol specifications and implementations are often unavoidable, which can result in security vulnerabilities and potential attacks exploiting them. Considering the security risks and technology trends of vehicles, this paper uses model learning for the
Luo, FengWang, JiajiaLi, ZhihaoZhang, Xiaoxian
Hardware-in-the-loop (HIL) testing is part of automotive V-design which is commonly used in automotive industries for the development of Electronic Control Unit (ECU). HIL test platform provides the capacity to test the ECU in a controlled environment even with scenarios that would be too dangerous or impractical to test on real situation, also the ECU can be tested even before the actual plant under building. This paper presents a HIL test platform for the validation of a seat ECU. The HIL platform can also be used for control and diagnostics algorithm development. The HIL test platform consists of three parts: a real time target machine (dSPACE SCALEXIO AutoBox), an ECU (Magna Seating M12 Module), and a signal conditioning unit (Load Box). The ECU produces the control commands to the real-time target machine through load box. The real time target machine hosts the plant model of the power seat which includes the kinematics and dynamics of the seat movements. The virtual model within
Wang, ShuoLink, BravinRosiewicz, BrandonYang, Hanlong
To promote real time monitoring, In use performance ratio monitoring “IUPRm” checks has been enforced in India from Apr’23 as a part of BS6-2 regulation. Since IUPRm is representative of diagnostic frequency in real driving conditions and usage pattern. therefore, a clear understanding of real-world driving is required to define IUPRm targets. This paper shares methodology and Validation steps for defining IUPRm routes for Indian market. Methodology objective is to standardize the market operating conditions over a particular region. Selected Methodology consist of three steps: For defining IUPRm route framework, first step is to have a pre-market survey to know current In use performance ratio “IUPR” status and improvement areas in existing market vehicles. Second step is to define market representative localized on road routes based on the finding of Pre-market survey. Third step is to validate defined IUPR routes and correlate the output in reference to coverage of market operating
Sharma, PrashantSingh, DilbaghKumar, AmitGautam, AmitKhanna, Vikram
Analysis of pedestrian-to-vehicle collisions can be complex due to the nature of the interaction and the physics involved. The scarcity of evidence like video evidence (from CCTV or dashcams), data from the vehicle's ECU, witness accounts, and physical evidence such as tyre marks, complicates the analysis of these incidents. In cases with limited evidence, current forensic methods often rely on prolonged inquiry processes or computationally intensive simulations. Without adequate data, accurately estimating pedestrian kinematics and addressing hit-and-run scenarios becomes challenging. This research provides an alternative approach to enhancing pedestrian forensic analysis based on machine learning (ML) algorithms trained on over 3000 multi-body computer simulations with a diverse set of vehicle profiles and pedestrian anthropometries. Leveraging information such as vehicle profile, damage, and pedestrian attributes like height and weight, the ML algorithm estimates essential
Shrinivas, VadhirajBastien, ChristopheDavies, HuwDaneshkhah, AlirezaHardwicke, JosephNeal-Sturgess, CliveLamaj, Albi
Validation plays a crucial role in any Electronic Development process. This is true in the development of any automotive Electronic Control Unit (ECU) that utilizes the Automotive V process. From Research and Development (R&D) to End of Line (EOL), every automotive module goes through a plethora of Hardware (HW) and Software (SW) testing. This testing is tedious, time consuming, and inefficient. The purpose of this paper is to show a way to streamline validation in any part of the automotive V process using Python as a driving force to automate and control Hardware-in-the-loop (HIL) / Model-in-the-loop (MIL) / Software-in-the-loop (SIL) validation. The paper will propose and outline a framework to control test equipment, such as power supplies and oscilloscopes, load boxes, and external HW. The framework includes the ability to control CAN communication signals and messages. A visual Graphical User Interface (GUI) has also been created to provide simplified operation to the user
Rosiewicz, BrandonLink, Bravin
This paper introduces a novel approach to modeling Torque Converter (TC) in conventional and hybrid vehicles, aiming to enhance torque delivery accuracy and efficiency. Traditionally, the TC is modelled by estimating impeller and turbine torque using the classical Kotwicki’s set of equations for torque multiplication and coupling regions or a generic lookup table based on dynamometer (dyno) data in an electronic control unit (ECU) which can be calibration intensive, and it is susceptible to inaccurate estimations of impeller and turbine torque due to engine torque accuracy, transmission oil temperature, hardware variation, etc. In our proposed method, we leverage an understanding of the TC inertia – torque dynamics and the knowledge of the polynomial relationship between slip speed and fluid path torque. We establish a mathematical model to represent the polynomial relationship between turbine torque and slip speed. The mathematical model is used in the forward torque converter model
Sha, HangxingPatel, NadirshBanuso, Abdulquadri
A growing interest in electromechanical brakes (EMB) is discernible in the automotive industry finding its climax in an announcement of EMB series production in late 2022 [1]. The introduction of EMB allows for new design opportunities using distributed software on smart actuators. However, additional efforts are needed to ensure continuously high levels of safety even when established design principles in the brake system are changed. This article discusses different safety concepts that could potentially be put in place in EMB actuators. Therefore, safety goals that need to be satisfied by an actuator are derived. Furthermore, three different degrees of complexity are differentiated, evolving to different required electronic control units (ECU) and architectures. Additionally, also the safety of the actuation unit (AU) is considered to realize a holistic safety concept for the actuator. Finally, a conclusion is drawn comparing the different investigated concepts.
Schrade, SimonRöhler, AndreasNowak, XiVerhagen, ArminSchramm, Dieter
To promote real time monitoring, IUPRm checks has been enforced in India from Apr’23 as a part of BS6-2 regulation. Since IUPRm monitoring is representative of diagnostic frequency in real driving conditions and usage pattern. Therefore, a clear understanding of real-world driving is required to define IUPRm targets. This paper shares methodology and Validation steps for defining IUPR routes for Indian market. Methodology objective is to standardize the market operating conditions over a particular region. Selected Methodology consist of three steps: For defining IUPR route framework, first step is to have a pre-market survey to know current IUPR status and improvement areas in existing market vehicles. Second step is to define market representative localized on road routes based on the finding of Pre-market survey. Third step is to validate defined IUPR routes and correlate the output in reference to coverage of market operating conditions. Routes definition (Step 2) starts with
Sharma, PrashantSingh, DilbaghKumar, AmitGautam, AmitKhanna, Vikram
The evolution of automotive Electronic Control Unit (ECU) technology brings the additional safety, comfort, and control to the vehicle. With an exponential increase in the complexity involved in modern-day ECU, it is very important to verify and validate robustness, functionality, and reliability of ECU software [1]. As of now, Hardware in loop [HIL] and Vehicle in Loop validations are well known software functional validation methods. However, these methods require physical setup, which can incur more cost and time during the development phase. In recent years, ECU virtualization gained attention for development and validation of automotive ECUs [2]. The goal is to minimize the effort on software testing. This paper focuses on virtualization of Electric Vehicle (EV) powertrain system using SIL approach. The objective is to provide an adaptable EV-virtualization environment for virtual-ECU (vECU) verification and validation. This paper focuses on standardization of SIL simulation setup
Sajnani, AbhishekVernekar, KiranGosavi, RupeshNaik, Venkatesh
This scientific publication presents the application of artificial intelligence (AI) techniques as a virtual sensor for tailpipe emissions of CO, NOx, and HC in a high-performance vehicle. The study aims to address critical challenges faced in real industrial applications, including signal alignment and signal dynamics management. A comprehensive pre-processing pipeline is proposed to tackle these issues, and a light gradient-boosting machine (LightGBM) model is employed to estimate emissions during real driving cycles. The research compares two modeling approaches: one involving a unique “direct model” and another using a “two-stage model” which leverages distinct models for the engine and the aftertreatment. The findings suggest that the direct model strikes the best balance between simplicity and accuracy. Furthermore, the study investigates two sensor setups: a standard configuration and an optimized one, which incorporates an additional lambda probe in the exhaust line after the
Giovannardi, EmanueleBrusa, AlessandroPetrone, BorisCavina, NicolòTonelli, RobertoKitsopanidis, Ioannis
The automotive industry is continually evolving, with advanced technologies in a dynamic and competitive market increased consumer expectations driving the need for faster and more efficient product development process. It`s required vehicle manufacturers to launch new models with a short time to market and a larger number of electronic functionalities. Virtual reality is being widely adopted by the automotive industry to enhance the efficiency of product development processes and streamline project stages, leading to a reduction in the use of physical prototypes. Nevertheless, there is still a need for improvement in the analysis and verification of virtual reality through the monitoring of eye tracking and brain signals, which can enhance its robustness. A promising approach to increasing the efficiency of developing new products during the conceptual phase is the integration of models of Electronic Control Units with virtual prototypes. Testing on virtual prototypes reduces the
Bedulli, Fernando H.Leite, RodrigoFreitas, FabioMurari, ThiagoWinkler, Ingrid
Methanol is emerging as an alternate internal combustion engine fuel. It is getting attention in countries such as China and India as an emerging transport fuel. Using methanol in spark ignition engines is easier and more economical than in compression ignition engines via the blending approach. M85 (85% v/v methanol and 15% v/v gasoline) is one of the preferred blends with the highest methanol concentration. However, its physicochemical properties significantly differ from gasoline, leading to challenges in operating existing vehicles. This experimental study addresses the challenges such as cold-start operation and poor throttle response of M85-fueled motorcycle using a port fuel injection engine. In this study, M85-fueled motorcycle prototype is developed with superior performance, similar/better drivability, and lower emissions than a gasoline-fueled port-fuel-injected motorcycle. An open electronic control unit was installed using suitable wiring harness/sensors and actuators to
Agarwal, AvinashYadav, OmkarValera, Hardikk
Increasingly stringent regulations on engine emissions require strict control of nitrogen oxide (NOx) emissions in diesel engines. Feedback control systems coupled with virtual sensors for real-time NOx readings have shown to be effective solutions for managing emissions. The authors of this paper propose a machine learning approach for developing a virtual NOx sensor implemented on an Engine Control Unit (ECU) of a YANMAR diesel engine. A Random Forest model was trained on data comprising Ramped Modal Cycles (RMCs) and Non-Road Transient Cycles (NRTCs) with a focus on robustness with respect to engine-to-engine variability in ECU sensor reading. Despite strong constraints imposed on the complexity of the model due to the limited computing power of the ECU, good prediction performance was obtained on both cycles (R2 = 1.0 on RMCs and R2 = 0.967 on NRTCs). The present study shows that machine learning models trained on transient data can play an important role in developing robust NOx
Latinov, MatteoFiorini, NiccolòVichi, GiovanniInnocenti, AlessandroDanti, Piero
Letter from the Special Issue Editors
Ivanov, ValentinSavitski, Dzmitry
Next-generation vehicle electrical architectures will be based on highly sophisticated domain controllers called HPCs (high-performance computers). These HPCs are more alike gaming PCs than as the traditional ECUs (electronic control units). Today’s diagnostic communication protocol, e.g., UDS (Unified Diagnostic Services, ISO 14229-1) was developed for ECUs and is not fit to be used for HPCs. There is a new protocol being developed within ASAM, SOVD (service-oriented vehicle diagnostics), which is based on a RESTful API (REpresentational State Transfer Application Programming Interface) sent over http (hypertext transfer protocol). But OBD (OnBoard Diagnostic) under the emissions regulation is not yet updated for this shift of protocols and therefore vehicle manufacturers must support older OBD protocols (e.g., SAE J1979-2) during the transition phase. Another problem is that some of the software packages may fall under the DEC-ECU (diagnostic or emission critical electronic control
Pauli, Joakim
The need for a quick reduction in greenhouse gasses and noxious emissions is pushing maritime transportation to increase the use of alternative fuels. Natural Gas (NG) is well recognized as an effective solution to limit the use of marine diesel oil in the short/mid-term. In this scenario, dual-fuel technology is used to enable a conventional diesel engine to operate with a share of gaseous fuel while retaining the capability to run in full diesel mode. Dual-fuel (DF) engines allow the use of natural gas, or biomethane from renewable sources, as the main fuel, with advantages over CO2, SOx and PM emissions with the same levels of NOx. This paper presents an experimental study investigating the effects of the diesel injection strategy on performance and emissions of a dual-fuel, single-cylinder, large bore, 4-stroke engine for marine applications. The engine is equipped with an external supercharging system; NG is injected in the port, while a Common Rail system injects the diesel pilot
De Simio, LuigiIannaccone, SabatoPennino, VincenzoMarchitto, Luca
In the shipbuilding industry, the employment of hybrid propulsion systems is increasingly common on-board vessels for making more eco-sustainable boat traffic in marine waters. Energy management systems are required to ensure the culling of fuel consumption and the preservation of batteries by monitoring their state of charge in hybrid powertrains, coupled with the possibility of performing the sea path desired by a driver unit. A Model Predictive Control (MPC) supervisor is proposed in the present work for managing a marine parallel-hybrid propulsion system in terms of handling the state of charge of batteries and the driving cycle imposed by the boat driver. Specifically, the MPC is employed to avoid excessive electric energy consumption observable as a reduced loss in terms of the state of charge of batteries by selecting the best amount of command torques related to two electric motors and one internal combustion engine of the considered powertrain. A lumped parameters model of a
Tordela, CiroFornaro, Enrico
Decades ago, like the 1990s automobile industry, the off-highway industry was purely recognized as a mechanical entity. In the mechanical system, accuracy and troubleshooting of faults were significant concerns. Additionally, the continuous stringent emission norms by the government call for the adaptation of the aftertreatment and DeNOx led to more complexity and challenges. To meet the government emission regulation and product performance, thorough functionality testing of manufactured units was crucial. For this purpose, EOL/diagnostics testers are developed. Diagnostic protocol CAN establish the connection between ECU and tester due to its robustness and data handling capabilities. This paper aims to develop and test the end-of-line (EOL) tester for off-highway diesel engines. The communication between the tester and ECU will be over UDSonCAN, conforming to standard ISO14229. This tester will cover the synchronization of various components used to assemble the engine and maintain
Khond, Nikita AnilGandhi, NareshKakade, Suhas
This article presents, a prototype to control a duel starting system for diesel engines. A pneumatic starter has been proposed as an additional choice for the engine starting system to overcome the conventional starting system fail, especially on the faraway roads. Starting management between pneumatic and electric starting systems has been controlled by an electronic control unit (ECU) based on air pressure levels. The automatic controller hardware is automated using the Automation Studio program and then controllers were assembled and programmed to build ECU. MATLAB/SIMULINK software have been used to investigate the performance of both electric and pneumatic starting systems to assess the proposed pneumatic starter. In conclusion, the battery life can be increased, and the size, mass, and battery capacity can be reduced.
Abouzaid, M. A.Bahgat, M. E.Watany, M.Abd Elhafiz, Mohamed M.
Secure boot has successfully protected systems from executing untrusted software (SW), but low-power controllers lack sufficient time to check every memory cell while satisfying real-time functional safety requirements. Automotive controllers need to maintain security through multiple cycles of remote, unsupervised operation and safely reach a secure state when an anomaly is detected. To accelerate the boot time, we propose Sliced Secure Boot: build fingerprints by slicing orthogonally through memory blocks, protect each cell with a reusable fingerprint using a reproducible pattern with sufficient entropy, and randomly check one fingerprint pattern during boot. We do not claim that sampling offers equivalent protection to exhaustive checks but demonstrate that careful sampling can provide a sufficient level of detection while maintaining compatibility with both startup time and functional safety requirements.
Kaster, RobertMa, Di
This document establishes recommended practices to validate acceptable corrosion performance of metallic components and assemblies used in medium truck, heavy truck, and bus and trailer applications. The focus of the document is methods of accelerated testing and evaluation of results. A variety of test procedures are provided that are appropriate for testing components at various locations on the vehicle. The procedures incorporate cyclic conditions including corrosive chemicals, drying, humidity, and abrasive exposure. These procedures are intended to be effective in evaluating a variety of corrosion mechanisms as listed in Table 1. Test duration may be adjusted to achieve any desired level of exposure. Aggravating conditions such as joint rotation, mechanical stress, and temperature extremes are also considered. This document does not address the chemistry of corrosion or methods of corrosion prevention. For information in these areas, refer to SAE J447 or similar standard.
Truck and Bus Total Vehicle Steering Committee
Modern electric vehicles (EVs) have complex thermal systems due to stringent energy efficiency requirements. The thermal systems of such vehicles have highly nonlinear and strongly coupled dynamics as they operate under various thermal modes. Extracting the maximum performance benefits from such complex systems requires elaborate and modern control strategies since classic and rule-based strategies cannot effectively control them. This is becoming a challenge for electric vehicles. Feedback linearization is a control approach that is designed based on the mathematical model of the system. It has the advantage of requiring low computational resources, specifically, low-computational-time and low-memory usage when compared to control strategies such as Model Predictive Control (MPC). This paper presents a feedback linearization controller that is designed using a nonlinear physics-based model for cabin heating of an electric vehicle. The nonlinear physics-based model is derived from
Rashid, MuzamilShojaei, SinaToriumi, FabioKarimshoushtari, MiladRestrepo, MateoWeslati, FeiselBouyoucef, Kamal
Items per page:
1 – 50 of 1500