Browse Topic: Electronic control units

Items (1,519)
This paper addresses the challenge of increasing hardware complexity, long development cycles and high costs associated with integrating multiple systems. The research explores the potential of Large Language Models (LLMs) when applied as chatbots to revolutionize the design and development of automotive electrical hardware systems, encompassing areas such as convenience features, safety systems, advanced lighting, vehicle body control and modular electronic control units. A key focus is on how LLMs can automate cost-reduction design tasks, including design optimization, requirements verification and component validation, ultimately driving down expenses without compromising performance or reliability. Furthermore, the research investigates how LLMs can assist in decision-making by providing data-driven insights that inform critical design choices and facilitate enhanced team collaboration, leading to improved productivity through innovative tools and streamlined workflows. In that
Ribeiro, Riquelmy Oliveira deSouza Santos, Gabriella deBatista, Victor GnoattoPeres, Renan Luis CassianoSantos, Jean Carlo Villares dosFerreira, Flávio Fabrício V. M.Murari, Thiago B.
The modern vehicle electrical architecture consists, on average, of 30 integrated electronic modules (ABS, infotainment, instrument panel, etc.), also known as Electronic Control Units (ECUs), and approximately 300 peripherals such as sensors (collision, temperature, oxygen, position, pressure, etc.) and actuators (window motor, mirror motor, relays, airbag inflator, windshield wiper, etc.). This increase in component integration imposes significant challenges to system installation and design. The interconnection of multiple devices renders harness design an arduous and time-consuming task, especially when conducted manually, resulting in error-prone and suboptimal outcomes. Such a scenario highlights the pressing need for studies on harness routing optimization in the automotive industry. Historically, wiring harness design practices have transitioned from manual approaches to the adoption of advanced computational tools. This methodological transition encompasses the use of various
Ribeiro, ThiagoReis, BrenoBarreto, ZeusGaleno, AntônioPereira, MarceloFerreira, Fláavio Fabrício V. M.
This study presents three methods for obtaining the latency of an indirect injection Electro-Injector as a function of the applied voltage. This parameter is relevant for the linearization of the injected mass in order to model fuel mass delivery on modern ECUs. For this purpose, the authors built a test bench, with the intent of running analysis on the results of tests of mass differential between injections, circulating current, and mechanical vibration. The authors gathered data over the iterative experiments and correlated the mass differential, vibration data and current measurements. The authors observed that with a reduction of supply voltage at the injector’s pins, a greater injector dead time made itself present displaying a need for a compensation of opening time in function of voltage since the injector’s needle takes a longer amount of time in partially open positions. Modern ECU manufacturers broadly use the data obtained by this type of iterative experiment to accurately
Juliatti, Rafael MotterOliveira, Julia Mathias deMorais Hanriot, Sérgio deSilveira, Hairton Júnior Jose daMoreira, Vinicius Guerra
This research paper proposes a framework based on lumped parameter thermal networks (LPTN) to understand the system behavior of thermally stressed component spaces in automotive vehicles. LPTNs offer an energy-based, low-degree-of-freedom model that can represent arbitrary thermal systems inside automotive vehicles. The time response of these low-order models can be calculated using standard ordinary differential equation solvers. The paper showcases the modeling of LPTNs and the calculation of their time response by using an electronic control unit (ECU) of a BMW 7 series. The use of LPTNs instead of exponential functions reduced the MAE in this example by 60.5%. Furthermore, a system identification approach for experimental temperature curves has been developed and implemented. System identification aims to mathematically model system behavior and predict system output. This paper compares least-square estimation (LSE) with constrained minimization (CM), where CM has a higher MAE by
Kehe, MaximilianEnke, WolframRottengruber, Hermann
This information report identifies and evaluates isolation building blocks applicable to TA sandboxing within a HPSE. These building blocks can be used to support SAE J3101 TA requirements for sandboxing of TAs and secure communication between TAs. TAs must execute within their own trust domain to prevent compromise of the HPSE and other TAs. TA trust domain isolation strength may vary depending on the risk profile of the TA deployed, hence the requirement for isolation building blocks to match the risk profile. A multitenancy TA HPSE has a higher risk profile than multiple TAs from the same source (e.g., OEM). TA multitenancy must not compromise the security properties of the HPSE (the secure integration and execution of trusted multi-vendor code). In this report, we provide information on the following: HPSE TA use cases and risk profiles HPSE TA isolation building blocks for manufacturers Threat analysis to determine the effectiveness of isolation security models As the ECU E/E
Vehicle Electrical System Security Committee
The rapid evolution of autonomy in Off-Highway Vehicles (OHVs)—spanning agriculture, mining, and construction—demands robust cybersecurity strategies. Sensor-control systems, the cognitive core of autonomous OHVs, operate in harsh, connectivity-limited environments. This paper presents a structured approach to applying threat modeling to these architectures, ensuring secure-by-design systems that uphold safety, resilience, and operational integrity.
Kotal, Amit
This paper describes the design and characteristics of the knock sensor. The sensor is already used as a commodity product for automotive applications and used by all automotive OEMs for spark ignited combustion engines. With the arrival of the electronic fuel injection on the two wheelers, further optimization of the combustion can be obtained. Although there are many publications on the engine knock strategy, little is known publicly about the sensor itself. The knock sensor is an accelerometer based on a piezoelectric component; it provides an analog signal of the engine vibration. The Electronic Control Unit will filter the signal according to a specific strategy and defines the presence and intensity of the engine knock. The ECU will act accordingly on the ignition timing. The inner structure as well as the mechanical and electrical interface are described in this article.
van Est, JeroenPrieu, Corentin
The calibration of automotive electronic control units is a critical and resource-intensive task in modern powertrain development. Optimizing parameters such as transmission shift schedules for minimum fuel consumption traditionally requires extensive prototype testing by expert calibrators. This process is costly, time-consuming, and subject to variability in environmental conditions and human judgment. In this paper, an artificial calibrator is introduced – a software agent that autonomously tunes transmission shift maps using reinforcement learning (RL) in a Software-in-the-Loop (SiL) simulation environment. The RL-based calibrator explores shift schedule parameters and learns from fuel consumption feedback, thereby achieving objective and reproducible optimizations within the controlled SiL environment. Applied to a 7-speed dual-clutch transmission (DCT) model of a Mild Hybrid Electric Vehicle (MHEV), the approach yielded significant fuel efficiency improvements. In a case study on
Kengne Dzegou, Thierry JuniorSchober, FlorianRebesberger, RonHenze, Roman
The rapid evolution of electric vehicles (EVs) necessitates advanced electronic control units (ECUs) for enhanced safety, monitoring, and performance. This study introduces an innovative ECU system designed with a modular architecture, incorporating real-time monitoring, cloud connectivity, and crash sensing. The methodology includes cost-effective design strategies, integrating STM32 controllers, CAN bus systems, and widely available sensors for motor RPM and temperature monitoring. Key findings demonstrate that the proposed ECU system improves data reliability, enhances vehicle safety through crash response systems, and enables predictive maintenance via cloud connectivity. This scalable and affordable ECU is adaptable to a broad range of EV models.
Padma Priya, S.R.Santhipkumar, S.Sasipriya, S.Srivisweswara, M.S.
Today’s vehicle architectures build trust on a framework that is static, binary and rigid; tomorrow’s software defined vehicle architectures require a trust model that is dynamic, nuanced, and adaptive. The Zero Trust paradigm supports this dynamic need, but current implementations focus on protecting information, not considering the challenges that automobiles face interacting with the physical world. We propose expanding Zero Trust for cyber-physical systems by weighing the potential safety impact of taking action based on information provided against the amount of trust in the message and develop a method to evaluate the effectiveness of this strategy. This strategy offers a potential solution to the problems of implementing real-time responses to active attacks over vehicle lifetime.
Kaster, RobertMa, Di
Toyota vehicles equipped with Toyota Safety Sense (TSS) can record detailed information surrounding various driving events, including crashes. Often, this data is employed in accident reconstruction. TSS data is comprised of three main categories: Vehicle Control History (VCH), Freeze Frame Data (FFD), and image records. Because the TSS data resides in multiple Electronic Control Units (ECUs), the data recording is susceptible to catastrophic power loss. In this paper, the effects of a sudden power loss on the VCH, FFD, and images are studied. Events are triggered on a TSS 2.5+ equipped vehicle by driving toward a stationary target. After system activation, a total power loss is induced at various delays after activation. Results show that there is a minimum time required after system initiation in order to obtain full VCH, FFD, and image records. Power losses occurring within this time frame produce incomplete records. Data accuracy is unaffected, even in partial records.
Getz, CharlesDiSogra, MatthewSpivey, HeathJohnson, TaylorPatel, Amit
Testing was conducted in daytime and nighttime conditions to evaluate the performance of the Automatic Emergency Braking and Forward Collision Warning systems present on both a 2020 and 2022 Kia Telluride. The 2022 Kia Telluride was tested during the day at speeds between 35 and 70 miles per hour, while the 2020 Kia Telluride was tested both during the day and at night at speeds between 35 and 60 miles per hour (mph). The daytime testing of both the 2020 and 2022 Kia Telluride utilized a foam stationary vehicle target. The nighttime testing of the 2020 Kia Telluride utilized a live 2006 Chevrolet Tahoe as the target with the brake lights on. Testing measured the Time to Collision (TTC) values of the visual/audible component of the Forward Collision Warning (FCW) that was presented to the driver. Further, testing also quantified the timing and magnitude of the two-phase response of the Automatic Emergency Braking (AEB) system. The results of both sets of testing add higher speed FCW and
Harrington, ShawnPatrick-Moline, PeytonNagarajan, Sundar Raman
Testing was conducted to evaluate the performance of the 2020 Jeep Grand Cherokee’s Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) collision mitigation systems at speeds between 35 and 70 miles per hour (mph). Two different 2020 Jeep Grand Cherokee’s were utilized under varying testing conditions in order to evaluate the performance of their collision mitigation systems. A total of 40 tests were conducted: 29 tests were conducted during daytime and 11 tests were conducted at nighttime. Testing measured the Time to Collision (TTC) values of the visual/audible component of the Forward Collision Warning that was presented to the driver. In addition, the testing quantified the TTC response of the Automatic Emergency Braking (AEB) system including the timing and magnitude of the automatic braking response. The results of the testing add higher speed FCW and AEB testing scenarios to the database of publicly available tests for the 2020 Jeep Grand Cherokee.
Harrington, ShawnLieber, VictoriaNagarajan, Sundar Raman
This paper describes a novel invention which is an Intrusion Detection System based on fingerprints of the CAN bus analogue features. Clusters of CAN message analogue signatures can be associated with each ECU on the network. During a learning mode of operation, fingerprints can be learnt with the prior knowledge of which CAN identifier should be transmitted by each ECU. During normal operation, if the fingerprint of analogue features of a particular CAN identifier does not match the one that was learnt then there is a strong possibility that this particular CAN identifier’s message is symptomatic of a problem. It could be that the message has been sent by either an intruder ECU or an existing ECU has been hacked to send the message. In this case an intruder can be defined as a device that has been added to the CAN bus OR a device that has been hacked/manipulated to send CAN messages that it was not designed to (i.e. could be originally transmitted by another device). It could also be
Quigley, ChristopherCharles, David
SAE J1939 is a CAN-based standard used for connecting various ECUs together within a vehicle. There are also some related protocols sharing many of the features of SAE J1939 across other industries including ISO11783, RVC and NMEA 2000. The standard has enabled the easy integration of electronic devices into a vehicle. However, as with all CAN-based protocols, several vulnerabilities to cyberattacks have been identified and are discussed in this paper. Many are at the CAN-level, whilst others are in common with those protocols from the SAE J1939 family of protocols. This paper reviews the known vulnerabilities that have been identified with the SAE J1939 protocol at CAN and J1939-levels, along with proposed mitigation strategies that can be implemented in software. At the CAN-level, the weaknesses include ways to spoof the network by exploiting parts of the protocol. Denial of Service is also possible at the CAN-level. At the SAE J1939-level, weaknesses include Denial of Service type
Quigley, Christopher
Modern vehicles contain tens of different Electronic Control Units (ECUs) from several vendors. These small computers are connected through several networking busses and protocols, potentially through gateways and converters. In addition, vehicle-to-vehicle and internet connectivity are now considered requirements, adding additional complexity to an already complex electronic system. Due to this complexity and the safety-critical nature of vehicles, automotive cyber-security is a difficult undertaking. One critical aspect of cyber-security is the robust software testing for potential bugs and vulnerabilities. Fuzz testing is an automated software testing method injecting large input sets into a system. It is an invaluable technique across many industries and has become increasingly popular since its conception. Its success relies highly on the “quality” of inputs injected. One shortcoming associated with fuzz testing is the expertise required in developing “smart” fuzz testing tools
McShane, JohnCelik, LeventAideyan, IwinosaBrooks, RichardPesé, Mert D.
Automotive technologies have been rapidly evolving with the introduction of electric powertrains, Advanced Driver-Assistance Systems (ADAS) and Over-The-Air (OTA) upgradability. Existing decentralized architectures are not an optimal choice for these applications, due to significant increases in cost and complexity. The transition to centralized architectures enables heavy computation to be delegated to a limited number of powerful Electronic Control Units (ECUs) called domain or zone controllers. The remaining ECUs, known as smart actuators, will perform well defined and specific tasks, receiving new parameters from the dedicated domain/zone controller over a network. Network bandwidth and time synchronization are the two major challenges in this transition. New automotive standards have been developed to address these challenges. Automotive Ethernet and Time Sensitive Networking (TSN) are two standards that are well-suited for centralized architectures. This paper presents a
Ayesh, MostafaBandur, VictorPantelic, VeraWassyng, AlanWasacz, BryonLawford, Mark
Software Defined Vehicle (SDV) is gaining attraction in the automotive industry due to its wide range of benefits like remote software/feature upgrade, scalable functionality, Electronic Control Unit (ECU) commonization, remote diagnostics, increased safety, etc. To obtain all these benefits, ECUs need to be designed accordingly. ECU hardware must be designed to support a range of vehicles with a variety of loading, scalable features, power distribution, levels of processing, and networking architecture. Each domain has unique challenges to make the ECU economical and robust to operating conditions without compromising performance. This paper illustrates the critical hardware design challenges to accommodate a scalable SDV architecture. This paper focuses electrical interface design to support wide range of input/output port loads, scalable functionality, and robust diagnostics. Also, flexibility of microprocessor processing capability, ECU networking, and communication complexity are
Hasan, S.M. NayeemIrgens, Peter
The intensive use of software applications in modern vehicles has highlighted the critical role of Systems Engineering (SE) in the automotive industry. These “computers on wheels” are thoroughly interconnected, by their own connections and with the cloud, due to the advancement of Electronic Control Units (ECU) technologies and the widespread use of sensors transmitting real-time data. This interconnectedness and the level of software abstraction that are known today, significantly escalates the complexity of these systems. This has made it necessary to adopt an approach that is flexible to change, structured, agile, and traceable. The modern approach to SE, now model-based, offers numerous advantages over the previous paradigm, which was predominantly document-based. MBSE (Model-Based Systems Engineering) emerges as a contemporary approach, providing the scalability needed for engineering teams to develop robust products. Its “model-based” essence ensures that the model acts as the
Mendes de Oliveira, Arthur HendricksReis, Pedro AlmeidaAnunciação, GabrielVinícius Carlos de Lima, JonathanSarracini Júnior, FernandoGarcia, Matias Ezequiel
The SAE J1939 communications network is developed for use in heavy-duty environments and is suitable for horizontally integrated vehicle industries. The SAE J1939 communications network is applicable for light-duty, medium-duty, and heavy-duty vehicles used on-road or off-road, and for appropriate stationary applications which use vehicle-derived components (e.g., generator sets). Vehicles of interest include, but are not limited to, on-highway and off-highway trucks and their trailers, construction equipment, and agricultural equipment and implements. SAE J1939-71 is the SAE J1939 reference document describing SAE J1939 parameter (SP) and message (PG) definitions, SLOT (standard data encoding) definitions, conventions and notations used to specify the parameter (SP) placement in PG data, conventions for text data parameters, and conventions for PG transmission rates. This document previously contained the majority of the SAE J1939 OSI application layer data parameters and messages for
Truck and Bus Control and Communications Network Committee
The exponential growth of the agribusiness market in Brazil combined with the high receptivity among farmers of new technological solutions has driven the study and implementation of high technology in the field. This work aimed to apply servo-assisted driving technology to enable autonomous mobility in an off-road sugarcane truck responsible for harvesting sugarcane. The technology consists of a conventional hydraulic steering with a motor, ECU and torque and angle sensors responsible for reading input data converted from GPS signals and previously recorded tracking lines. The motor responsible for replacing 100% of the physical force generated by the driver acts in accordance with the required torque demand, and the sensors combined with the ECU correct the course to meet the follow-up line through external communication ports. The accuracy of the system depends exclusively on the accuracy of the GPS signal, in this case reaching 2,5 cm, which is considered extremely high accuracy
Oliveira Santos Neto, AntídioLara, VanderleiSilva, EvertonDestro, DanielMoura, MárcioBorges, FelipeHaegele, Timo
In the rapidly evolving field of automotive engineering, the drive for innovation is relentless. One critical component of modern vehicles is the automotive ECU. Ensuring the reliability and performance of ECU is paramount, and this has led to the integration of advanced testing methodologies such as Hardware-in-the-Loop (HIL) testing. In conjunction with HIL, the adoption of Continuous Integration (CI) and Continuous Testing (CT) processes has revolutionized how automotive ECU are developed and validated. This paper explores the integration of CI and CT in HIL testing for automotive ECU, highlighting the benefits, challenges, and best practices. Continuous Integration and Continuous Test (CI/CT) are essential practices in software development. Continuous Integration process involves regularly integrating code changes into the main branch, ensuring that it does not interfere with the work of other developers. The CI/CT server automatically build and test code whenever a new commit is
Hande, Sheetal VikramMandava, Balaji Bharath
Emergence of Software Defined Vehicles (SDVs) presents a paradigm shift in the automotive domain. In this paper, we explore the application of Model-Based Systems Engineering (MBSE) for comprehensive system simulation within the SDV architecture. The key challenge for developing a system model for SDV using traditional methods is the document centric approach combined with the complexity of SDV. This MBSE approach can help to reduce the complexity involved in Software-Defined Vehicle Architecture making it more flexible, consistent, and scalable. The proposed approach facilitates the definition and analysis of functional, logical, and physical architecture enabling efficient feature and resource allocation and verification of system behaviour. It also enables iterative component analysis based on performance parameters and component interaction analysis (using sequence diagrams).
Navas, AkhilPaul, Annie
This paper examines the effectiveness of optimizing energy management in hybrid electric vehicles by integrating adaptive machine learning algorithms with the energy management electronic control unit (ECU). Existing traditional rule-based energy management and control strategies of power distribution between internal combustion and battery struggle to adapt to dynamic driving conditions, such as rapid acceleration, frequent stop-and-go traffic, and varying terrain. These scenarios often result in sub-optimal energy utilization and performance, as the fixed rules struggle to account for the immediate demands and inefficiencies that arise in such conditions. In conditions like that, rapid acceleration demands a sudden increase in power, which can lead to inefficient fuel consumption if not managed properly, while frequent stop-and-go traffic conditions can cause the battery to drain and lead to increased fuel consumption. Varying terrain can also lead to improper power distribution
Bhargav, Matavalam
Electromechanical brakes (EMB) are currently coming into focus in the automotive industry. This trend was confirmed in 2022, when a first automotive supplier [1] announced the series production of EMB systems. One major driver is safety, especially if EMB systems are implemented with smart actuators that install redundant electronic control units (ECU) and distributed software [1]. Earlier, the authors have addressed safety mechanisms in EMB actuators [2]. In this article the authors extend their investigation to address safety mechanisms in future EMB central control systems (CCS). Impact of different brake system topologies (X-, H-, centralized) vis-à-vis potential safety mechanisms within communication buses and ECUs is analyzed.
Schrade, SimonRöhler, AndreasNowak, XiVerhagen, ArminSchramm, Dieter
An industry-first 3D laser-based, computer-vision system can monitor and control the application of adhesive beads as tiny in width as two human hairs. This unique inspection system for electronic assemblies operates at speeds of 400 to 1,000 times per second, considerably quicker and more effective than conventional 2D systems. “Difficulty in precisely dispensing adhesives or sealants, especially in extremely small or complex electronic assemblies, can lead to over-application, under-application, bubbles, or incorrect location of the adhesive bead,” Juergen Dennig, president of Ann Arbor, Michigan-headquartered Coherix, told SAE Media. Improper application of joining material on electronic control units (ECUs) and power control units (PCUs) can result in poor adhesion, material voids and short circuits.
Buchholz, Kami
Energy efficiency in both internal combustion engine (ICE) and electric vehicles (EV) is a strategic advantage of automotive companies. It provides a better user experience that emanates amongst others from the reduction in operation expenses, particularly critical for fleets, and the increase in range. This is especially important in EVs where customers may experience range anxiety. The energetical impact of using the air conditioning system in vehicles is not negligible with power consumptions in the range of kilowatts, even with a stopped vehicle. This becomes particularly important in areas with high temperature and humidity levels where the usage of the air conditioning systems becomes safety factor. In such areas, drivers are effectively forced to use the air conditioning system continuously. Hence, the air conditioning system becomes an ideal choice to deploy control strategies for optimized energy usage. In this paper, we propose and implement a control strategy that allows a
Jaybhay, SambhajiKapoor, SangeetKulkarni, Shridhar DilipraoPalacio Torralba, JavierLocks, Olaf
Controller area network (CAN) buses, the most common intravehicle network (IVN) standard, have been used for over 30 years despite their simple architecture for connecting electronic control units (ECUs). Weight, maintenance costs, mobility promotion, and wired connection complexity increase with ECU count, especially for autonomous vehicles. This paper aims to enhance wired CAN with wireless features for autonomous vehicles (AVs). The proposed solutions include modifying the traditional ECU architecture to become wireless, implementing a hidden communication environment using a unique complementary code keying (CCK) modulation equation and presenting a strategy for dealing with jamming signals using two channels. The proposed wireless CAN (WCAN) is validated using OPNET analysis for performance and reliability. The results show that the bit error rate (BER) and packet loss of the receiver ECU are stable between different CCK modifications, indicating the robustness of the basic
Ibrahim, QutaibaAli, Zeina
The controller area network (CAN) bus, the prevailing standard for in-vehicle networking (IVN), has been used for more than four decades, despite its simple architecture, to establish communications between electronic control units (ECUs). Weight, maintenance overheads, improved flexibility, and wiring complexity escalate as the quantity of ECUs rises, especially for high-demand autonomous vehicles (AVs). The primary objective of this study is to examine and discuss the significant challenges that arise during the migration from a wired CAN to a wireless CAN (WCAN). Suggested remedies include changing the configuration of the conventional ECU, creating a hidden wireless communication domain for each AV, and developing a plan to counteract the jamming signals. The simulation of the proposed WCAN was done using MATLAB and validated using OPNET analysis. The results showed that the packet loss of the eavesdropping electronic control unit ranged from 63% to 100%. Anti-jamming results show
Ali, ZeinaIbrahim , Qutaiba
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation. The ECU is operated on
Meli, MatteoWang, ZezhouBailly, PeterPischinger, Stefan
Engine thermal management systems represent a promising solution to improve the efficiency of current Internal Combustion Engines (ICE) and sustain the transition towards a net zero scenario. The core component of an engine thermal management system is the electric pump, which can adjust the coolant flow rate according to the engine thermal needs. This possibility opens to newer design choices, which can contribute to non-negligible energy savings. In this study, three electric coolant pumps with different maximum efficiencies have been investigated to understand the influence of the design operating conditions on the pump energy absorption. A reference vehicle equipping a 130 HP downsized gasoline engine has been considered. An experimental test bench with a copy of the engine and its cooling circuit has been reproduced, and the electric pumps have been tested at a wide range of rotational speeds and thermostat lifts to obtain their characteristic maps. Once their performances were
DI BARTOLOMEO, MARCODi Battista, DavideCipollone, RobertoFremondi, FabrizioCamagni, Umberto
A new industry-first open platform for developing the software-defined vehicle (SDV) combines processing, vehicle networking and system power management with integrated software. NXP Semiconductors' new S32 CoreRide Platform was designed to run “multiple time-critical, safety-critical, security-critical applications in parallel,” Henri Ardevol, executive vice president and general manager of Automotive Embedded Systems for NXP Semiconductors, told SAE Media. NXP's new foundation platform for SDVs differs from the traditional approach of using multiple electronic control units (ECUs), each designed to handle specific vehicle system control tasks. Since each unit requires its own integration work, the integration workload exponentially increases with each additional ECU on a vehicle.
Buchholz, Kami
Items per page:
1 – 50 of 1519