Browse Topic: Power electronics

Items (491)
Electric vehicles (EVs) are the cornerstone of sustainable transportation, but their performance and component longevity are heavily influenced by driving behaviors. This study proposes a comprehensive analytical framework to assess how different driving styles affect the operational health of key EV components such as the battery pack, motor, and DC-DC converter. Various driving styles such as aggressive, moderate, and economical are discriminated against using dynamic vehicle operation signatures including acceleration and braking intensity, turning profiles, and load variations. These behavioral patterns are reflected in the electrical responses, namely current and voltage waveforms across power electronic systems. By analyzing these electrical signatures, a range of KPIs can be estimated for each component, offering insights into their operational stress and degradation trends. Experimental analysis using real-time EV datasets validates the framework’s ability to predict and
Deole, KaushikKumar, PankajHivarkar, Umesh
The thermal management capability of power electronic (PE) systems has a critical impact on the performance and efficiency of electric, fuel cell, or hybrid vehicles. Bus bars, high resistance sensor devices, semiconductor switches, power capacitors are the primary components, which make a major contribution in total heat generation in electrical drive unit. As PE packaging sizes are projected to become smaller, the challenge of managing increased heat dissipation becomes more critical. This paper numerically compares six different cooling strategies to determine the best possible thermal management scenario. A coupled physics co-simulation framework is used to analyze a 35W motor inverter integrated with water cooled heat sink. A multi-physics finite element model, integrating fluid, electrical, and thermal fields, is employed to analyze heat generation within the PE system and the associated cooling mechanisms. The power losses from the inverter system are dynamically computed in 1-D
Singh, Praveen KumarNatarajan, NesamaniMurali, Sariki
Over the last few years, notable progress has occurred in electric vehicle (EV) technology. Inverters are key components for electric vehicles (EV). Various PWM strategies have been implemented by OEMs over past years. For most of PWM scheme timing calculation & Lengthy algorithm increases complexity. The proposed a novel Pulse Width Modulation (PWM) control technique for generating inverter lag switching times in multi-level inverters. The proposed Space Vector PWM (SVPWM) method eliminates the need for sector and region identification by utilizing sampled values of reference phase voltages, thereby reducing computational efforts and complexities. The scheme can generate N-level PWM signals and offers flexibility to operate with fewer levels, including operation in the overmodulation range. The sampled magnitudes reference phase voltages are converted into timing signals that are subsequently processed by an algorithm to modify modulating signals. These modulating signals are
Bhanabhagvanwala, Prem Kiritkumar
In current scenario, demand for alternate energy is increasing due to depletion of fossil fuels and countries working to achieve carbon neutrality by 2050. Hydrogen being a cleaner fuel, many OEMs across the world started to work on various strategies like hydrogen combustion engine and fuel cell. Passenger vehicles like buses are at the lookout for fuel cell technology at faster rate than other commercial vehicles. In fuel cell vehicles, cooling system design is critical & complex since it includes fuel cell cooling, Power electronics cooling & battery cooling. In this paper, cooling system design of a Fuel cell electric bus for inter-city application is demonstrated. Radiators and Fans are designed considering overall heat rejection and Coolant inlet temperature requirements of components. Cooling system circuit and pump is decided to meet the coolant flow rate targets. Flow simulation and thermal simulation done with the help of simulation models built using software KULI to predict
M S, VigneshKiran, Nalavadath
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Mehrotra, SoumyaChhabra, Rishabh
The distribution of mobility equipped with electrified power units is advancing towards carbon-neutral society. The electrified power units require an integration of numerous hardware components and large-scale software to optimize high-performance system. Additionally, a value-enhancement cycle of mobility needs to be accelerated more than ever. The challenge is to achieve high-quality performance and high-efficient development using Model-Based Development (MBD). The development process based on V-model has been applied to electrified power units in passenger vehicle. Traditionally, MBD has been primarily utilized in the left bank (performance design phase) of the V-model for power unit development. MBD in performance design phase has been widely implemented in research and development because it refines prototype performance and reduces the number of prototypes. However, applying the MBD to an entire power unit development process from performance design phase to performance
Ogata, KenichiroKatsuura, AkihiroTsuji, MinakoMatsumoto, TakumiIwase, HiromuNakasako, SeiyaTakahata, Motoki
As light electric vehicles (LEVs) gain popularity, the development of efficient and compact on-board chargers (OBCs) has become a critical area of focus in power electronics. Conventional AC-DC topologies often face challenges, including high inrush currents during startup, which can stress components and affect system reliability. Furthermore, DC-DC converters often have a limited soft-switching range under light load conditions, leading to increased switching losses and reduced efficiency. This paper proposes a novel 6.6 kW on-board charger architecture comprising a bridgeless totem-pole power factor correction (PFC) stage and an isolated LLC resonant DC-DC converter. The main contribution lies in the specific focus on enhancing startup behavior and switching performance. In PFC converters, limiting inrush current during startup is crucial, especially with fast-switching wide-bandgap devices like SiC or GaN. Conventional soft-start techniques fall short in of ensuring smooth voltage
Patil, AmrutaBagade, Aniket
With the rapid adoption of electric vehicles (EVs), ensuring the reliability, safety, and cost-effectiveness of power electronic subsystems such as onboard chargers, DC-DC converters, and vehicle control units (VCUs) has become a critical engineering focus. These components require thorough validation using precise calibration and communication protocols. This paper presents the development and implementation of an optimized software stack for the Universal Measurement and Calibration Protocol (XCP), aimed at real-time validation of VCUs using next-generation communication methods such as CAN, CAN-FD, and Ethernet. The stack facilitates read/write access to the ECU’s internal memory in runtime, enabling efficient diagnostics, calibration, and parameter tuning without hardware modifications. It is designed to be modular, platform-independent, and compatible with microcontrollers across different EV platforms. By utilizing the ASAM-compliant protocol architecture, the proposed system
Uthaman, Sreekumar
With the increasing demand for DC loads, DC-DC converters have become indispensable in modern power electronic architectures. With high-voltage applications typical DC-DC converter topologies are required which include isolation for safety and voltage level conversion. Among various isolated converter topologies, the flyback converter is widely favored for low-power applications, typically under 100 W, due to its simplicity and cost-effectiveness. Like other DC-DC topologies, the flyback converter can operate in either continuous conduction mode or discontinuous conduction mode (DCM). The work has focused on the design and performance analysis of a flyback converter operating in DCM, with a specific emphasis on magnetic component design and loss evaluation. A 55 W multi-winding flyback converter employing a passive snubber circuit is studied and implemented. The loss analysis is done with switch losses around 3.4W and the coupled inductor core losses around 1.5W and copper losses
S, DenisDeshpande, Prathamesh PravinDeshpande, Rohan
The work completed on “System level concepts to test and design integrated EV system involving power conversion to satisfy ISO26262 functional safety requirement” is included in the paper. Integrating power conversion and traction inverter subsystems in EVs is currently popular since it increases dependability and improves efficiency and cost-effectiveness. Maintaining safety standards is at danger due to the growing safety requirements, which also raise manufacturing costs and time. The three primary components of integrated EV systems are the PDU, DC-DC converter, and onboard charger. Every part and piece of software is always changing and needs to be tested and validated in an economical way. Since the failure of any one of these components could lead to a disaster, the article outlines the economical approaches and testing techniques to verify and guarantee that the system meets the functional safety criterion.
Uthaman, SreekumarMulay, Abhijit BGadekar, Pundlik
This paper introduces a modeling and experimentation methodology for transient analysis of surge protective devices (SPDs) for electric vehicle charging system (EVCS) application. The suggested Surge Protective Device topology is to shield the EV power electronics such as on board charger from surge events generated by the grid during charging, with implementation on the grid-EV interface. A new surge protection circuit is designed to suppress transient overvoltages, with its performance evaluated through simulation. The SPD is evaluated in SPICE simulator in the time domain, including its nonlinear spark over characteristics along with its resistive, capacitive and inductive effects. Equivalent circuit is developed and evaluated by simulation under typical surge conditions. The outcomes prove the topology to be effective in clamping voltage, reducing energy transfer to the EV side, and achieving surge event detection. The contribution of this work lies in the establishment of
CHANCHAL, Kumar Prem ChandraKulkarni, SwanandRajaram Joshi, SanjayPatil, Sagar
This manuscript introduces a methodology to reduce the DC link capacitor size in pole-phase modulated (PPM) induction motor drives (IMD). Typically, the DC link capacitor (DCLC) occupies around 25 to 30% of the inverter volume and 20% of the inverter material cost. Reducing the DCLC size and cost is essential to lowering the inverter size and cost. This can be accomplished by lowering the DCLC ripple current. The proposed technique suggests adapting phase-shifted triangular carrier waveforms, in all the operating modes of the PPM drive, to significantly reduce the ripple current through DCLC, successively reduces the size and cost of DCLC. Simulations are performed in MATLAB/Simulink on a 9 phase PPM drive to validate the efficacy of the strategy. Though the suggested concept is verified with a 9 phase PPM drive, which is operated in 2 modes, it can be extended to any 3n PPM drive. The results demonstrate a 60% reduction in ripple magnitude, enabling the use of smaller, more reliable
A, Rajeshwari
The design and improvement of electric motor and inverter systems is crucial for numerous industrial applications in electrical engineering. Accurately quantifying the amount of power lost during operation is a substantial challenge, despite the flexibility and widespread usage of these systems. Although it is typically used to assess the system’s efficiency, this does not adequately explain how or why power outages occur within these systems. This paper presents a new way to study power losses without focusing on efficiency. The goal is to explore and analyze the complex reasons behind power losses in both inverters and electric motors. The goal of this methodology is to systematically analyze the effect of the switching frequency on current ripple under varying operating conditions (i.e., different combinations of current and speed) and subsequently identify the optimum switching frequency for each case. In the end, the paper creates a complete model for understanding power losses
Banda, GururajSengar, Bhan
The advent of wide-bandgap (WBG) switching MOSFET devices enables high-frequency operation, allowing for significant reductions in the size of passive components such as inductors and capacitors, and improving the overall efficiency of inverter systems. However, these benefits come with the trade-off of increased electromagnetic interference (EMI), which imposes stringent requirements on filter design. The complexity of designing EMI filters, which depends heavily on switching frequency and applicable EMI standards, presents a significant challenge and can impact development timelines. Carrier wave modulation technique is considered as an effective method for minimizing conducted EMI in traction inverters. This article presents various carrier wave modulation schemes that successfully reduce conducted EMI. The evaluated strategies aim to eliminate noise fluctuations and simplify the design of demanding EMI filters. Additionally, the impact on output voltage, output current, total
R, KodeeswaranKuncham, Sateesh KumarKolhatkar, Yashomani
Horse Powertrain revealed more information about its all-in-one hybrid powertrain, the Future Hybrid System, at IAA Mobility 2025 in Munich in September. The new details involve a 1.5-L, four-cylinder unit with integrated engine, motor, and transmission that was designed to replace an EV's front electric drive module to convert that EV into a hybrid, PHEV, or range-extended EV. Horse Powertrain revealed two variants of the Future Hybrid System (FHS) in Munich. The first, called Performance, is 740 mm (29 in) wide and uses two motors in a P1 + P3 configuration, with one each on the engine output and transmission output shafts. The second, the Ultra-Compact, is 650 mm (26 in) wide and is designed to sit between the engine and transmission. The 1.5-L engine, a dedicated hybrid transmission, and a full suite of power electronics for hybrid use are used in both versions. The company said an even smaller version - by 70 mm (3 in) - with three cylinders is being investigated.
Blanco, Sebastian
In automotive applications a power electronic converter is used for energy conversion between battery and electrical machine. For high performance drives a lightweight design is demanded. Additionally, a higher efficiency of the inverter results in lower cooling requirements but is often achieved by increasing component weight. Hence, thermal modeling of the components and their interactions is essential to determine the best compromise between weight, efficiency and cooling requirements. In traction inverters the DC-link capacitors, power modules, high voltage electrical connections and low voltage devices dissipate power. In this paper the focus is on the thermal modeling of the DC-link capacitor, power modules and high voltage electrical connections and their system, as the performance of the inverter is defined by these components. The thermal models are derived based on physical properties and geometries. First, the DC-link capacitor thermal model is presented and considers the
Blaschke, Wolfgang MaximilianMengoni, LeonardPflüger, RobinKulzer, André Casal
The winding configuration of an electric machine has a decisive influence on the properties of a traction drive. When designing the electric drive, the optimum compromise must be found between maximum torque, maximum power and high efficiency over a wide operating range. A decisive factor in this design conflict is the choice of the winding configuration. The concept of winding switching offers a way of solving the design conflict and improving the characteristics of the drive through the additional degree of freedom of the variable winding configuration. Switching the number of parallel winding branches in a serial and parallel configuration is a promising approach to overcome the challenge of a high spread between maximum power and high efficiency in customer related driving scenarios of an electric vehicle. The aim of this study is to identify factors influencing the efficiency improvement potential of the winding switching topology under consideration compared to a reference drive
Oestreicher, RaphaelKoenen, ChristianKulzer, André Casal
Efficient thermal management is critical for the reliability and performance of power electronics systems in automotive applications. This work presents a computationally efficient modeling approach for transient thermal simulation of power electronic systems, with a focus on inverter modules using multiple MOSFETs mounted on a printed circuit board assembly (PCBA). A case study of an inverter module comprising six MOSFETs arranged as high-side and low-side pairs for a three phases system mounted on a PCBA, attached to a heat sink is considered. Computational fluid dynamic (CFD) simulations in Ansys® Icepak™ are performed considering different heat transfer mechanisms, including natural convection, forced convection at constant velocity, and forced convection with varying flow velocity. A transient thermal model is developed using the lumped parameter linear superposition (LPLSP) method, a hybrid approach that combines lumped parameter modeling with the principle of linear
Padmanabhan, Neelakantan
Power electronics are fundamental to sustainable electrification, enhancing energy, efficiency, integrating renewable energy sources, and reducing carbon emissions. In electric vehicles (EVs), power electronics is crucial for efficient energy conversion, management, and distribution. Key components like inverters, rectifiers, and DC-DC converters optimize power from renewable sources to meet EV system requirements. In EVs, power electronics convert energy from the lithium-ion battery to the electric vehicle motor, with sufficient propulsion and regenerative braking. Inverters is used to transfer DC power from the lithium-ion eEV battery to alternating current for the motor, while DC-DC converters manage voltage levels for various vehicle systems. These components maximize EV energy efficiency, reduce energy losses, and extend driving range. Power electronics also support fast and efficient battery charging, critical for widespread EV adoption. Advanced charging solutions enable rapid
Pipaliya, Akash PravinbhaiHatkar, Chetan
Electrification applications are increasingly moving towards higher voltage systems to enable greater power delivery and faster battery charging. This trend is particularly evident in the shift from 400V to 800V systems, which offers several benefits and poses unique technical challenges. Higher voltage systems reduce current flow, minimizing energy losses, and improving overall efficiency. This is crucial for applications like electric vehicles and off-highway machinery, where efficient power management is essential. One of the primary benefits of increasing the DC link voltage beyond the 400V is the ability to support higher power levels. Additionally, higher voltage systems can reduce the size and weight of power components, contributing to more compact and lightweight designs. However, transitioning to 800V systems introduces several technical challenges in power electronics design. Key components such as power components (IGBT, MOSFET etc.) must be optimized to handle higher
Hatkar, Chetan ManoharPipaliya, Akash
The electric power of most electric two-wheelers on the market ranges between 2 and 12 kW. For this power range, the traction voltage level is mostly between 48V and 96V. There appears to be no strong correlation between electric power and traction voltage, suggesting that the current voltage choice is rather arbitrary. This paper briefly describes the e-motor model used in this study and introduces variations of four design parameters: DC voltage, maximum phase current, e-motor active length, and the number of turns in the e-motor winding. The consequences of these variations on peak performance, continuous performance, and efficiency maps are presented. Specific cases of parameter combinations are also studied. Two e-motors designed for 48V and 96V systems will be compared, showing that size, cost, and performance (power and losses) are equivalent. Additionally, the paper discusses how increasing the maximum phase current rating of the inverter can improve e-motor power in a 48V
Albert, Laurent
The study emphasizes on detection of different faults and refrigerant leakage as well as performance investigation of automobile air conditioning system for an electric vehicle by varying various operating conditions. A refrigerant leak in an EV isn't just an inconvenience; it's a potential threat to vehicle range and usability, lifespan and health of the expensive battery pack, overall vehicle performance, passenger safety and comfort, component longevity (motor, power electronics), environmental responsibility. Due to the refrigerant leakage, the cooling system performance degrades, and components tend to fail. Because of that this study is focusing on deriving an algorithm to have an early detection of fault and leakage in the vehicle. The performance of the system is predicted for actual conditions of operation encountered by the automobile air conditioning system. The objective of the present work includes predicting the causes and effects of refrigerant leakage in AC system of
Bezbaruah, PujaYadav, AnkitPilakkattu, Deepak
Thermal management solutions in power electronics applications are of prime importance to meet the needs of the ever-increasing demands on higher power and torque density of the traction motor and controller. Traction inverters are essential power electronic devices that convert direct current (DC) supply from the battery pack of the vehicle to three-phase alternating current (AC) output and vice versa. Estimation of die junction temperatures and cooling system pressure drop is necessary for assessing the maximum heat load capacity of the traction inverter system and coolant pump capacity requirements. The system comprises of a power module and a water–glycol–based cooling domain with heat sink. This article proposes a 1D model for accurate predictions of junction temperatures on the SiC die, temperature rise of the cooling medium, and pressure drop across a custom heat sink fluid domain. The model is built to handle steady-state and transient conditions for varying heat loads on the
Ravindra, VidyasagarPrasad, PraveenSingh, IshanSureka, Sumit
In pursuit of increased operational duration and future high-power capabilities for U.S. military ground vehicles, the transition towards vehicle electrification has been heavily adopted. High power-density and high temperature inverters play a key role in progressing vehicle electrification adoption across the U.S. military. This paper presents the design and development of high power-density and high temperature inverter, Enercycle™ DC-1000 Inverter, using SiC MOSFET devices to enable ground vehicle electrification. The DC-1000 inverter is a bi-directional inverter with a power density of 11.4 kW/L, which is capable of operating at 600VDC and delivering 500kW continuous output power and transient output power up to 640kW. Details of mechanical design as well as experimental results of electrical and thermal performance to validate the capability of DC-1000 inverter are presented in this paper. Moreover, challenges and next steps for further improvement of design have been discussed.
Sadigh, ArashNolden, RandyYates, James RyanShiroma, Iris
This study provides an overview of the 5 kW Ruggedized Integrated Hybrid Generator System (RIHGS) developed by Enginuity Power Systems for the U.S. Army. Designed to replace three existing generator models (MEP-531A, MEP-831A, and RMP-1030A), the RIHGS features; variable-speed load following (1 to 5 kW output at 120/208V), multi-fuel capability (JP8 and Diesel #2), liquid-cooled permanent magnet motor, silicon-carbide power electronics with a bidirectional inverter, software-based controls for efficient operation, thermal management-focused enclosure design. Experimental results confirm the system maintains normal operating temperatures at full power. When using JP8 fuel, engine performance remained stable at 3000 RPM and matched Diesel #2, though fuel economy declined at lower speeds. Compared to the RMP-1030A, the RIHGS improved fuel efficiency by 4.6% on a weighted load factor. Additionally, it demonstrated fast transient load responses (<1 sec) when stepping up from 1 to 5 kW. This
Zoldak, PhilipSchimmels, PhilippHarman, AndrewBrooks, IanDeMaggio, PhillipRosenberger, Kelly
Increasing the mission capability of ground combat and tactical vehicles can lead to new concepts of operation that enhance safety and effectiveness of warfighters. High-temperature power electronics enabled by wide-bandgap semiconductors such as silicon carbide can provide the required power density to package new capabilities into space-constrained vehicles and provide features including silent mobility, boost acceleration, regenerative braking, adaptive cooling, and power for future protection systems and command and control (C2) on the move. An architecture using high voltage [1] would best satisfy the ever-increasing power demands to enable defense against unmanned aerial systems (UAS) and offensive directed energy (DE) systems for advanced survivability and lethality capabilities.
Eddins, R.Lambert, C.Habic, D.Haynes, A.Spina, J.Schwartz, E.
In recent years, the powertrains of agricultural tractors have been transitioning toward hybrid electric configurations, paving the way for a greener future agricultural machinery. However, stability challenges arise in hybrid electric tractors due to the relative small capacity to perform power-intensive tasks, such as plowing and harvesting. These operations demand significant power, which are supplied by the electric power take-off system. The substantial disturbances introduced by the electric power take-off system during these tasks render conventional small-signal analysis methods inadequate for ensuring system stability. In this article, we first develop a large-signal model of the onboard power electronic systems, which includes components such as the diesel engine–generator set, batteries, in-wheel motors, and electric power take-off system. By employing mixed potential theory, we conduct a thorough analysis of this model and derive a stability criterion for the onboard power
Li, FangyuanLi, ChenhuiGao, LefeiMa, QichaoLiu, Yanhong
In the rapidly advancing field of EV applications, the design of high-efficient inverters is one of the key factors in improving overall vehicle performance. This paper presents the design of a three-level (3-L) automotive inverter based on GaN technology, aimed at enhancing the performance and efficiency of electric vehicles (EVs). GaN components, sourced from Cambridge GaN Devices (CGD), are utilized to leverage their superior switching characteristics and efficiency. The work is supported by both simulation and experimental results, which confirm the advantages of integrating GaN components and the 3-L inverter topology. The findings demonstrate improved performance, lower losses, and enhanced overall efficiency, making this design a promising solution for the future of EV power electronics.
Battiston, AlexandreAghaei Hashjin, SaeidFindlay, JohnHaje Obeid, NajlaSiad, Ines
The interaction of electric, electronic (E/E) and mechanical components defines the quality of a BEV’s powertrain. Component selection, their integration and calibration aim at meeting legal requirements for EMC and safety as well as competitive targets for efficiency, NVH and driving comfort. These tasks in particular need attention on electromagnetic events on the DC bus, the high-power electronics of inverters, the e-motors, and the drive shaft. Each component within this environment is defined by its electromechanical features with variabilities selected from a large set of operating parameters. Consequently, a complete powertrain and its controllers give rise to endless combinations for powertrain operation. How to understand and avoid risk laden and ineffective parameter options, how to find powertrain control parameters for safe, efficient and comfortable operation? And how to find solutions within competitive development timeframes? Particular issues include high voltage risks
Winklhofer, ErnstBerglez, ManuelKiss, GergelyPlatzer, Thomas
In this article, the authors present the various choices made to design a magnet free and directly recyclable pure synchro-reluctant (Pure-SynRel) machine with asymmetrical poles operating at a maximum speed of ~21,000 rpm dedicated to automotive. This project focused on identifying design levers and optimizing the magnetic circuit to address three well-known challenges of this topology that limit its application as an automotive traction machine. These challenges include: maximizing the power factor to reduce inverter rating and cost, minimizing sources of NVH (noise, vibration, and harshness) and torque ripples, and ultimately maximizing efficiency to bridge the performance gap with magnet-based technologies (PMaSynRel). The sizing of stator components—such as the choice of winding (concentric or distributed, full or fractional pitch, round or hairpin wire)—and rotor components (e.g., the number of pole pairs, shape, and number of barriers) are explained. Additionally, the
Applagnat-Tartet, AntoineMilosavljevic, MisaDelpit, Pierre
State-of-the-art testing of traction inverters is conducted using PHIL-based testbeds. These systems, which include a battery emulator and an e-motor emulator (EME), offer significant advantages over dynamometer testbeds in terms of test duration, reproducibility, parameterization and protection of the unit under test. In these advanced systems, the physical modeling of the AC side (e-motor) is highly detailed, accounting for factors such as iron saturation effects, current harmonics, and loss models. State-of-the-art DC side models are limited to a constant voltage and an internal resistance model, as outlined in [1], neglecting other components like additional traction inverters or DC/DC converters connected to the HV electrical system and their impact on voltage and current ripples – high-frequency oscillations in the current that can arise from power electronic systems. This research project aims to address this gap by developing an HV electrical system emulator that considers
Merath, StefanWinzer, PatrickReick, Benedikt
A new low-cost, scalable technology can seamlessly integrate high-speed gallium nitride transistors onto a standard silicon chip. Massachusetts Institute of Technology, Cambridge, MA The advanced semiconductor material gallium nitride will likely be key for the next generation of high-speed communication systems and the power electronics needed for state-of-the-art data centers. Unfortunately, the high cost of gallium nitride (GaN) and the specialization required to incorporate this semiconductor material into conventional electronics have limited its use in commercial applications.
The advanced semiconductor material gallium nitride will likely be key for the next generation of high-speed communication systems and the power electronics needed for state-of-the-art data centers.
Smaller devices that can do the same or more efficient work than silicon can lead to markedly smaller EV powertrain components. This story starts in 2017, when the Department of Energy's U.S. DRIVE partnership laid out targets for power electronics for 2025 in a technical team roadmap: power density of 100 kW/l for a powertrain that would last either 300,000 miles or 15 years, at a cost of no more than $2.70 per kW. Progress in the intervening years led to an updated roadmap in 2024, specifying stricter 2025 targets of 150 kW/l power density at a cost of no more than $1.80 per kW, based on a 600-volt system. Along with that came more refined targets for 2030 and 2035. For 2030, the goal is an 800-volt system that produces peak power of 200 kW maintained for 30 seconds, and a power density of 200 kW/l that costs no more than $1.35 per KW. The goal for 2035 now sits at 225 kW/L for $1.20.
Ramsey, Jonathon
The automotive industry is undergoing a major shift from internal combustion engines to hybrid and battery electric vehicles, which has led to significant advancements and increased complexity in drivetrain design and thermal management systems. This complexity reflects the growing need to optimize energy efficiency, extend vehicle range, and ensure system reliability in modern electric vehicles. At the Institute of Automotive Engineering, a specialized synthesis tool for drivetrain optimization is used to identify the best drivetrain configurations based on specific boundaries and requirements. Building up on this toolchain a modular and adaptable thermal management framework has been developed, addressing another critical aspect of vehicle and drive development: efficient thermal circuit layout and its impact on energy consumption and overall system reliability. The thermal framework emphasizes the dynamic interactions between key components, such as electric machines, power
Notz, FabianSturm, AxelSander, MarcelKässens, ChristophHenze, Roman
Electric drive units (EDU) of battery electric vehicles and electric drivetrain components of hybrid vehicles require significant development effort and planning to ensure that a refined NVH sound quality is achieved. New tools and methods are required to understand the NVH performance throughout the development process and to ensure that NVH risks can be quickly identified and mitigated within the correct EDU subsystems. This paper discusses the development of a methodology (EDSL – Electric Drive Sound Level) aimed at addressing this need. It also outlines how the EDSL process can be used to address radiated noise issues and understand the NVH performance of the various subsystems within an electrified drivetrain component. The first use of the EDSL methodology is to characterize component-level radiated noise test results and compare the different mechanical and electrical noise sources to targets. The results from this are used to guide EDU development in the appropriate areas
Pruetz, Jeffrey E.Steffens, ChristophFu, TongfangFord, Alex
Low density polyurethane foam was first proposed as an alternative to expandable baffles and tapes for sealing vehicle body cavities towards the end of the last century. Despite several inherent advantages for cavity sealing, the high equipment cost of dispensing amongst other reasons, this technology has not spread as widely as expected. With the advent of electric vehicles, there is an increased emphasis on controlling higher frequencies from motors, inverters and other components, and polyurethane foam can be a viable solution by providing more robust sealing. Polyurethane foam sealing is already being employed in the new breed of electric vehicles, but its NVH advantages have not been fully studied or published in literature. Using an existing electric vehicle with conventional expandable baffles & tape sealing measures, a comprehensive evaluation of NVH performance using the closed-cell polyurethane foam solution was conducted. Testing included component level bench test on body
Kavarana, FarokhGuertin, Bill
Electric vehicles (EVs) present a distinct set of challenges in noise, vibration, and harshness (NVH) compared to traditional internal combustion engine (ICE) vehicles. As EVs operate with significantly reduced engine noise, other sources of noise, such as motor whine, power electronics, and road and wind noise, become more noticeable. This review paper explores the key NVH issues faced by EVs, including high-frequency tonal noise from electric motors, gear meshing, and vibrations. Additionally, it examines recent advancements and trends in NVH mitigation techniques, such as active noise control, improved material insulation, and advanced vibration isolation systems. Furthermore, this paper discusses the role of computational tools, simulation technologies, and testing methodologies in predicting and addressing NVH concerns in EVs. By providing an in-depth analysis of the challenges and the latest innovations, this review aims to contribute to the ongoing development of quieter and
Hazra, SandipKhan, Arkadip Amitava
Items per page:
1 – 50 of 491