Browse Topic: Security systems
Remember what it’s like to twirl a sparkler on a summer night? Hold it still and the fire crackles and sparks but twirl it around and the light blurs into a line tracing each whirl and jag you make
The Association for Uncrewed Vehicle Systems International (AUVSI) is bringing this year's XPONENTIAL 2023 to the Colorado Convention Center in Denver, Colorado. The event, which runs from May 8 - 11, will feature three days of educational programming and more than 600 exhibitors representing all aspects of the unmanned vehicle and robotics industries showcasing their latest technology to attendees from all over the world. So, what's on tap for this year's XPONENTIAL 2023? The theme for this year's XPONENTIAL is “The Blueprint for Autonomy” and AUVSI has updated the event with new features based on attendee feedback
DSIT Solutions Givat Shmuel, Israel +(972-3) 531-3333
Silent Sentinel Hertfordshire, UK +44 (0) 1920 871734
Silent Sentinel Hertfordshire, UK +44 (0) 1920 871734
In today’s digital age, the use of “Internet-of-Things” devices (embedded with software and sensors) has become widespread. These devices include wireless equipment, autonomous machinery, wearable sensors, and security systems. Because of their intricate structures and properties there is a need to scrutinize them closely to assess their safety and utility and rule out any potential defects. But, at the same time, damage to the device during inspection must be avoided
The objective of this research was to explore the potential benefits of equipping U.S. national security spacecraft with low-impact and inexpensive targeted space environment sensors, review the systems engineering and acquisition challenges that exist in executing this proposal, and provide recommendations for overcoming these challenges to meet the needs of national security space
Silent Sentinel, Ltd Hertfordshire, UK +44 (0) 1920 871734
One of the most important aspects of any manufacturing facility is security — whether protecting machinery or data. Tech Briefs posed questions to executives at companies providing network and facility security solutions to get their views on issues such as cybersecurity, the cloud, wireless devices, and securing a remote workforce
The high popularity of automobiles has led to frequent collisions. According to the latest statistics of the United Nations, about 1.25 million people worldwide die from road traffic accidents each year. In order to improve the safety of vehicles in driving, the active safety system has become a research hotspot of various car companies and research institutions around the world. Among them, the more mature and popular active security system are Forward Collision Warning(FCW) and Autonomous Emergency Braking(AEB). However, the current active safety system is based on traditional sensors such as radar and camera. Therefore, the system itself has many limitations due to the shortage of traditional sensors. Compared to traditional sensors, Vehicle to Everything (V2X) technology has the advantages of richer vehicle parameter information, no perceived blind spots, dynamic prediction of dangerous vehicle status, and no occlusion restriction. In order to overcome the many shortcomings of the
This SAE Recommended Practice defines the various types of information required by the collision repair industry to properly restore light-duty, highway vehicles to their pre-accident condition. Procedures and specifications are defined for damage-related repairs to body, mechanical, electrical, steering, suspension, and safety systems. The distribution method and publication timeliness are also considered
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible
Automotive security has become one of important topics in recent years under new automotive Electronic and Electrical Architecture (EEA). With the development of Intelligent Connected Vehicle (ICV), it has become possible to hack an automotive through in-vehicle networks. The introduction of Information Communications Technology (ICT) brings more risk threats to automotive. Researchers have shown that an attacker can easily tamper with many automotive functions via On-Board Diagnostic II (OBD-II) or In-Vehicle Infotainment (IVI). In order to protect automotive against malicious attacks, automotive security risks were analyzed and then security mechanisms based on network firewall were designed in this paper. Automotive network firewall is a security system that monitors and controls incoming and outgoing network traffics of automotive based on predetermined security rules. The main functions of network firewall include packet filter, anti-DoS and access control. Because of deferent
By using light waves instead of electric current to transmit data, photonic chips — circuits for light — have advanced fundamental research in many areas from timekeeping to telecommunications. But for many applications, the narrow beams of light that traverse these circuits must be substantially widened in order to connect with larger, off-chip systems. Wider light beams could boost the speed and sensitivity of medical imaging and diagnostic procedures, security systems that detect trace amounts of toxic or volatile chemicals and devices that depend on the analysis of large groupings of atoms
Perimeter surveillance of forward operating locations, such as Forward Arming and Refueling Points (FARPs), is crucial to ensure the survivability of personnel and materiel. FARPs are frequently located well outside the protective cover of the main forward operating bases. Therefore, they must provide their own organic perimeter defenses. Such defenses are manpower intensive. Research shows how cheap, remote, unattended sensors using commercial off-the-shelf (COTS) components can help reduce the manpower requirement for this task and yet not compromise the security of the operating location
The results of this work is allowed to identify a number of cybersecurity threats of the automated security-critical automotive systems, which reduces the efficiency of operation, road safety and system safety. Wired or wireless access of the information networks of the modern vehicles allows to gain control over power unit, chassis, security system components and comfort systems. According to the evaluating criterion of board electronics, the presence of poorly-protected communication channels, the 75% of the researched modern vehicles do not meet the minimum requirements of cybersecurity due to the danger of external blocking of vital systems. The revealed vulnerabilities of the security-critical automotive systems lead to the necessity of developing methods for mechanical and electronic protection of the modern vehicle. The law of normal distribution of the mid-points of the expert evaluation of the cyber-security of a modern vehicle has been determined. Based on the system approach
Panoramic irradiators are commonly used to disinfect and sterilize products such as medical supplies, cosmetic raw materials, food, food containers, and medical supplies. The irradiators typically use Cobalt 60 as a source of radiation — a material that could potentially be used to build a “dirty bomb.” As a result, the Nuclear Regulatory Commission requires installation of a security system for each irradiator; however, current electronic security systems have a short lifespan due to the fact that the radiation source must be stored in a pool of water
The requirements of 9100 apply with the following clarification for software. This standard supplements the 9100 standard requirements for deliverable software and contains quality management system requirements for organizations that design, develop, and/or produce deliverable software and services for the aviation, space, and defense industry. This includes, as required, support software that is used in the development and maintenance of deliverable software and services. The deliverable software may be stand-alone, embedded, mobile application, or loadable into a target computer. This deliverable software may also be part of services (e.g., cloud environment, web hosted solutions or platforms). Where the use of Hardware Description Language (HDL) or high order language is utilized as the design source of electronic hardware [e.g., Application Specific Integrated Circuit (ASIC), Programmable Logic Device (PLD)]; the organization and customer, and/or supplier shall agree on the extent
Nowadays, the passenger cars are employing more and more electronic devices for controlling various mechanisms. This has increased the demand for such equipments in the passenger car. The electronic devices for controlling the mechanisms such as keyless entry, window, wiper controllers, mirror controls, engine performance monitors, security systems, lighting control are mounted on Printed Circuit board (PCB) which is enclosed inside the plastic cover assembly called Body Control Module (BCM). The BCM is attached inside the dashboard assembly which is subjected to various loading conditions. In addition, space and height constraints should also be taken into consideration. In present work, dynamic analysis of existing design of BCM is carried out. It has been observed that, the existing design fails under impact loading condition. To overcome the failure, modifications in design are proposed. The modified design of BCM has been tested through both, numerical simulations and experiments
The detailed study of cosmic ray's influence is recent, as well as the invention of the transistor. Ionizing particles from space that focus on silicon integrated circuits (IC) can cause many undesirable effects. These particles are mainly from solar activity, and can be classified into two basic groups: charged particles, e.g, electrons, protons or heavy ions, and electromagnetic radiation (photons), as X-rays, Gamma -rays, or Ultraviolet (UV) light. When they collide in an IC, these energetic particles cause a current pulse, which can affect the correct functioning of the device. These electronic circuits have become increasingly susceptible to the effects of radiation, due to miniaturization, thus increasing the incidence of failures. In this sense many researches are being conducted in order to develop integrated devices tolerant to radiation and can benefit satellite development, military security systems, medical and transportation, usually different materials or process are
From simple collisions to major tragedies, car accidents happen every day. Automobile industry has been investing a lot in security systems (e.g., airbags, ABS brakes, vehicle proximity warning systems). However, drivers are still the ones who have to act in order to avoid collisions, by using the brakes or maneuvering the car. The purpose of this project is to develop an anti-collision logic that can be used on automobile vehicles to avoid collisions with both static and moving objects by interfering on the vehicle behavior. The control system is based on a fuzzy modeled controller using the MATLAB and Simulink tools from Math Works. The prototype chosen to test the logic was the Robotino, a mobile robot system made by Festo Didactic, and used for educational, training and research purposes. Robotino is able to integrate to Simulink tool natively, and provides out-of-the-box sensors and actuators, so the developers are able to focus the efforts on the software itself. Integrated
The need for physical security in the health care industry is no longer limited to grounds, buildings, and rooms. Today, security must extend down to medical enclosures, including cabinets, dispensing carts, charting stations, and new portable diagnostic equipment. For many health care facility owners and operators, monitoring security at the enclosure or cart level can be a challenge, and they are looking to the manufacturers of these enclosures for solutions
Basic Function: Vehicle remote is used for vehicle lock/unlock/search/Hazard lights /approach light functions for customer convenience and vehicle security system. Conventional approach: 1 Use of separate RF (Radio Frequency) receiver -Additional Cost impact. 2 High remote RF power - Reduced remote battery life and bigger remote size required 3 High sensitivity RF receiver - High cost. Low Cost approach: It involves the followings: 1 Integration of RF receiver inside the Body Control Module (BCM). 2 Low Power Remote and Optimization of Remote PCB layout to get the maximum power. 3 External wired antenna taken out from BCM and proper routine need be ensured to get the best performance. 4 BCM mounting location to get the best remote range in all vehicle directions. This paper relates to the methodology for low cost approach for the RF communication between remote transmitter and receiver with achieving the best remote performance at vehicle level condition
This SAE Recommended Practice defines the various types of information required by the collision repair industry to properly restore light-duty, highway vehicles to their pre-accident condition. Procedures and specifications are defined for damage-related repairs to body, mechanical, electrical, steering, suspension, and safety systems. The distribution method and publication timeliness are also considered
Items per page:
50
1 – 50 of 73