Browse Topic: Wheels
This SAE Recommended Practice describes the classification of off-road tires and rims for use on earthmoving machines (refer to SAE J1116), defines related terminology in common use, and shows representative construction details of component parts.
Many performance sport passenger vehicles use drilled or grooved cast iron brake rotors for a better braking performance or a cosmetic reason. Such brake rotors would unfortunately cause more brake dust emission, appearing with dirty wheel rims. To better understand the effects of such brake rotors on particle emission, a pin-on-disc tribometer with two particle emission measurement devices was used to monitor and collect the emitted airborne particles. The first device was an aerodynamic particle sizer, which is capable of measuring particles ranging from 0.5 to 20 μm. The second device was a condensation particle counter, which measures and collects particles from 4 nm to 3 μm. The testing samples were scaled-down brake discs (100 mm in diameter) against low-metallic brake pads. Two machined surface conditions (plain and grooved) with uncoated or ceramic-coated friction surfaces were selected for the investigation. The results showed that the grooved friction surface led to a higher
Imagine a portable 3D printer you could hold in the palm of your hand. The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation.
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, and seal. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, N, P, R, U, and W.
This SAE practice is intended for the sample preparation of test pieces for automotive wheels and wheel trim. The practice provides a consistent scribing method for use on test panels and or component parts with substrate chemical pretreatment and coating systems. Test specimens can then be subjected to various corrosion tests in order to evaluate performance without significant variations of the degree of exposure of the substrate. The scribing is used to create a break in the coating/finishing as can occur in the field through gravel and other damaging conditions. NOTE— Significant variability is attributed to surface contour, coating hardness/softness, operator reproducibility, and the scribing tool and it’s condition.
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, gas temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin. The approach is cheap in terms of computational effort (likewise ICE order
When dealing with the structural behavior of a car body, analyzing the dynamic distortion in all body closure openings in a complete vehicle, provides a better understanding of the body characteristics compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures where mass distribution and in particular battery mass and stiffness play a completely different effect with respect to the internal combustion engine vehicles. A methodology typically adopted to measure the body response, e.g. when driving a vehicle on a rough pavé road, is the so-called Multi Stethoscope (MSS). The MSS is measuring the distortion in each body closure opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint
While conventional methods like classical Transfer Path Analysis (TPA), Multiple Coherence Analysis (MCA), Operational Deflection Shape (ODS), and Modal Analysis have been widely used for road noise reduction, component-TPA from Model Based System Engineering (MBSE) is gaining attention for its ability to efficiently develop complex mobility systems. In this research, we propose a method to achieve road noise targets in the early stage of vehicle development using component-level TPA based on the blocked force method. An important point is to ensure convergence of measured test results (e.g. sound pressure at driver ear) and simulation results from component TPA. To conduct component-TPA, it is essential to have an independent tire model consisting of wheel-tire blocked force and tire Frequency Response Function (FRF), as well as full vehicle FRF and vehicle hub FRF. In this study, the FRF of the full vehicle and wheel-tire blocked force are obtained using an in-situ method with a
REE Automotive is aiming to be a major disruptor in the medium-duty truck space with the rollout of its P7 EV chassis. The P7 frame is built around its “REEcorners” suspension, which are modular suspension units featuring REE's x-by-wire design. By packaging components into the area between the chassis and the wheel, REE claims that it was able to design the P7 with a completely flat chassis with up to 35% more interior volume for passengers, cargo and batteries. “The REEcorners suspension system is the core of the technology that we built this truck around,” Peter Dow, VP of engineering for REE Automotive, said during an interview with Truck & Off-Highway Engineering. “It also allows us to achieve the level of vehicle dynamics we were looking for. We were trying to make a truck that was very exciting and easy to drive.”
As data science technologies are being widely applied on various industries, the importance of data itself increased. A typical manufacturer company has a vast data set of products as 2D&3D drawing formats, but a common problem was that building a database from the 2D&3D drawings costs much, and it is hard to update the database after it once built. Also, it is high-cost job when the new factor researched and necessary to investigate the new factors on previously fixed or uploaded drawings. As new products are developed with time, these problems are getting more difficult. In this paper, an automated database building method using CATIA introduced and future probabilities are suggested. An aluminum wheel part was used as an example. An automated logic used CATIA V5’s VBA functions and was handled by python programming language. Product database was established by using the automated logic for extracting engineering design features, and data mining process was deployed based on the
Items per page:
50
1 – 50 of 2590