Browse Topic: Aircraft certification

Items (154)
In the domain of aircraft certification, Development Assurance is what some would call a useful tool to gain confidence in the development of complex systems, and what others would call a necessary evil. But what does it actually do? Why is it necessary for certification of modern aircraft? What, epistemologically, does it bring to the table? This paper aims to show how Development Assurance (DA) activities, at all levels from aircraft to item, close the epistemological holes created when complex systems are chosen for implementation. It will map the different sources and types of uncertainty encountered in system and aircraft verification and explain how each type is dealt with within a certification context, working from simple mechanical systems up to complex and highly integrated systems using software and airborne electronic hardware and beyond. It will show that Development Assurance, far from being an arbitrary set of activities, systematically brings personal and corporate
Laflin, Cory R.
Airworthiness certification of aircraft requires an Airworthiness Security Process (AWSP) to ensure safe operation under potential unauthorized interactions, particularly in the context of growing cyber threats. Regulatory authorities mandate the consideration of Intentional Unauthorized Electronic Interactions (IUEI) in the development of aircraft, airborne software, and equipment. As the industry increasingly adopts Model-Based Systems Engineering (MBSE) to accelerate development, we aim to enhance this effort by focusing on security scope definitions – a critical step within the AWSP for security risk assessment that establishes the boundaries and extent of security measures. However, our findings indicate that, despite the increasing use of model-based tools in development, these security scope definitions often remain either document-based or, when modeled, are presented at overly abstract levels, both of which limit their utility. Furthermore, we found that these definitions
Hechelmann, AdrianMannchen, Thomas
This SAE Aerospace Recommended Practice (ARP) is intended to provide guidance on verifying the integrity of inflation pressure sealing systems of aircraft wheel/tire assemblies.
A-5A Wheels, Brakes and Skid Controls Committee
Headquartered in San Juan, Puerto Rico, Unusual Machines describes itself as a “classic American technology company born from garage tinkerers and hobbyists, focused on serving the emerging drone industry with unique and innovative products.” The company recently launched a new low-cost flight controller for drones, the Riot Brave F7, that achieved “Blue UAS” certification from the Department of Defense's (DoD) Defense Innovation Unit (DIU) in August. The Riot Brave F7 - just $58 - features a STMF722RET6 processor equipped with Bosch accelerometer and barometer, and has 16Mb of built in Blackbox Memory. While the company developed Riot Brave F7 primarily as a low cost flight controller option for FPV drones, there are broader possibilities for it, including military applications.
The scope of this ARP is as follows: Use of M&S for type certification of the Advanced Air Mobility (AAM) aircraft, product, or system. However, this does not preclude this ARP being used for certification of other aircraft types and associated products and systems. This ARP is not applicable to flight simulation training device (FSTD) qualifications or pilot certification. If a qualified FSTD is proposed for aircraft, product, or system certification, it must demonstrate sufficient M&S substantiation to meet the related requirement. Structural design and modeling are not addressed by this document. EMI/EMC certification is not addressed by this document.
G-35, Modeling, Simulation, Training for Emerging AV Tech
This SAE Aerospace Information Report (AIR) provides information on air quality and some of the factors affecting the perception of cabin air quality in commercial aircraft cabin air. Also a typical safety analysis process utilizing a Functional Hazard Assessment approach is discussed.
AC-9 Aircraft Environmental Systems Committee
The extent of automation and autonomy used in general aviation (GA) has been steadily increasing for decades, with the pace of development accelerating recently. This has huge potential benefits for safety given that it is estimated that 75% of the accidents in personal and on-demand GA are due to pilot error. However, an approach to certifying autonomous systems that relies on reversionary modes limits their potential to improve safety. Placing a human pilot in a situation where they are suddenly tasked with flying an airplane in a failed situation, often without sufficient situational awareness, is overly demanding. This consideration, coupled with advancing technology that may not align with a deterministic certification paradigm, creates an opportunity for new approaches to certifying autonomous and highly automated aircraft systems. The new paths must account for the multifaceted aviation approach to risk management which has interlocking requirements for airworthiness and
Dietrich, Anna MracekRajamani, Ravi
Additive manufacturing (AM) is currently being used to produce many aerospace components, with its inherent design flexibility enabling an array of unique and novel possibilities. But, in order to grow the application space of polymer AM, the industry has to provide an offering with improved mechanical properties. Several entities are working toward introducing continuous fibers embedded into either a thermoplastic or thermoset resin system. This approach can enable significant improvement in mechanical properties and could be what is needed to open new and exciting applications within the aerospace industry. However, as the technology begins to mature, there are a couple of unsettled issues that are beginning to come to light. The most common question raised is whether composite AM can achieve the performance of traditional composite manufacturing. If AM cannot reach this level, is there enough application potential to warrant the development investment? The answers are highly
Hayes, MichaelMuelaner, JodyRoye, ThorstenWebb, Philip
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system. However, the principles used at the braking system level can be applied at the
S-18 Aircraft and Sys Dev and Safety Assessment Committee
As model-based systems engineering is proliferating throughout the aerospace industry as a method to manage the development of complex cyber-physical systems, opportunities to leverage formal methods for verification and validation purposes are significant. As a system model described in SysML can contain the level of semantics required to define strict system requirements, it is possible to create a translation tool to generate SRL (SADL (Semantic Application Design Language) Requirements Language) to leverage ASSERT™ (Analysis of Semantic Specifications and Efficient generation of requirements-based Tests) for verification and validation of the system requirements. SADL [13] is a controlled English grammar that translates directly into OWL (Web Ontology Language) [14]. As part of the validation of the SRL requirements, ASSERT™ leverages a theorem prover to look for conflict and completeness errors. For verification, ASSERT™ uses a Satisfiability Modulo Theories (SMT) solver for the
McMillan, CraigLee, LawrenceRussell, DanielPrince, DanielHasanovic, NihadDurling, MichaelSiu, KitVaranasi, Sarat ChandraMeng, BaoluoKleven, Everett
Protecting against atmospheric icing conditions is critical for the safety of aircraft during flight. Sensors and probes are often used to indicate the presence of icing conditions, enabling the aircraft to engage their ice protection systems and exit the icing cloud. Supercooled large drop icing conditions, which are defined in Appendix O of 14 CFR Part 25, pose additional aircraft certification challenges and requirements as compared to conventional icing conditions, which are defined in Appendix C of 14 CFR Part 25. For this reason, developing sensors that can not only indicate the presence of ice, but can also differentiate between Appendix O and Appendix C icing conditions, is of particular interest to the aviation industry and to federal agencies. Developing detectors capable of meeting this challenge is the focus of SENS4ICE, a European Union sponsored project. While participating in the SENS4ICE Project, Collins Aerospace has developed an ice detection and differentiation
Hamman, MatthewGelao, GiancarloRidouane, El HassanChabukswar, RohanBotura, Galdemir
The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT. In this investigation, an experimental setup was constructed to further investigate the applicability of the TVT to flexible airframes
Al-bess, LohayKhouli, Fidel
Advanced flight control system, aviation battery and motor technologies are driving the rapid development of eVTOL to offer possibilities for Urban Air Mobility. The safety and airworthiness of eVTOL aircraft and systems are the critical issues to be considered in eVTOL design process. Regarding to the flight control system, its complexity of design and interfaces with other airborne systems require detailed safety assessment through the development process. Based on SAE ARP4754A, a forward architecture design process with comprehensive safety assessment is introduced to achieve complete safety and hazard analysis. The new features of flight control system for eVTOL are described to start function capture and architecture design. Model-based system engineering method is applied to establish the functional architecture in a traceable way. SFHA and STPA methods are applied in a complementary way to identify the potential safety risk caused by failure and unsafe control action. PSSA with
Ning, ChengweiZhang, HaoWeng, HaiminMa, Ran
ARP4761A and its EUROCAE counterpart, ED-135, present guidelines for performing safety assessments of civil aircraft, systems, and equipment. They may be used when addressing compliance with certification requirements (e.g., 14 CFR/CS Parts 23, 25, 27, and 29 and 14 CFR Parts 33, 35, CS-E, and CS-P). ARP4761A/ED-135 may also be used to assist a company in meeting its own internal safety assessment standards. While the safety assessment processes described are primarily associated with civil aircraft, systems, and equipment, these processes may be used in many other applications. The guidelines herein identify a systematic safety assessment process, but other processes may be equally effective. The processes described herein are usually applicable to the new designs or to existing designs that are affected by changes to design or functions. In the case of the implementation of existing design(s) in a derivative application, complementary means such as service experience in a similar
S-18 Aircraft and Sys Dev and Safety Assessment Committee
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the development of aircraft and systems, taking into account aircraft functions and operating environment. It provides practices for ensuring the safety of the overall aircraft design, showing compliance with regulations, and assisting a company in developing and meeting its own internal standards. These practices include validation of requirements and verification of the design implementation for safety, certification, and product assurance. The guidelines in this document were developed in the context of U.S. Title 14 Code of Federal Regulations (14 CFR) Part 25 and European Union Aviation Safety Agency (EASA) Certification Specification (CS) CS-25. They may be applicable in the context of other regulations, such as 14 CFR Parts 23, 27, 29, 33, and 35, and CS-23, CS-27, CS-29, CS-E, and CS-P. This document addresses the development cycle for aircraft and systems that implement aircraft and system functions. It
S-18 Aircraft and Sys Dev and Safety Assessment Committee
Unmanned Aircraft Systems (UAS) have been growing over the past few years and will continue to grow at a faster pace in future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain challenges and is still evolving. Hence it is essential to study on how blockchain can help UAS. G-31 technical committee of SAE International responsible for electronic transactions for aerospace has published AIR 7356 [1] entitled Opportunities, Challenges and Requirements for use of Blockchain in Unmanned Aircraft Systems Operating below 400ft above ground level for Commercial Use. This paper is a teaser for AIR 7356 [1] document. It presents the current opportunities, challenges of UAS operating at or below 400 ft
Manoharan, DineshG.V.V., Ravi KumarR, PrithivirajGhimire, RiteshRencher, RobertMarkou, ChrisFabre, ChrisRoboff, MarkBudeanu, DragosRajamani, RaviWalthall, RhondaVeluri, Sastry
In an application first, the physics of why the sky is blue is used to measure gas flows without obstructive sensors. A longstanding industry partnership between Virginia Polytechnic Institute and State University (Virginia Tech) and Pratt & Whitney has resulted in a new laser-optical technology that aims to revolutionize in-flight thrust measurement.
Hazardous atmospheric icing conditions occur at sub-zero temperatures when droplets come into contact with aircraft and freeze, degrading aircraft performance and handling, introducing bias into some of the vital measurements needed for aircraft operation (e.g., air speed). Nonetheless, government regulations allow certified aircraft to fly in limited icing environments. The capability of aircraft sensors to identify all hazardous icing environments is limited. To address the current challenges in aircraft icing detection and protection, we present herein a platform designed for in-flight testing of ice protection solutions and icing detection technologies. The recently developed Platform for Ice-accretion and Coatings Tests with Ultrasonic Readings (PICTUR) was evaluated using CFD simulations and installed on the National Research Council Canada (NRC) Convair-580 aircraft that has flown in icing conditions over North East USA, during February 2022. This aircraft is a flying laboratory
Nichman, LeonidFuleki, DanSong, NaihengBenmeddour, AliWolde, MengistuOrchard, DavidMatida, EdgarBala, KennySun, ZhigangBliankinshtein, NataliaRanjbar, KeyvanDiVito, Stephanie
Distinct atmospheric conditions containing supercooled large droplets (SLD) have been identified as cause of severe accidents over the last decades as existing countermeasures even on modern aircraft are not necessarily effective against SLD-ice. Therefore, the detection of such conditions is crucial and required for future transport aircraft certification. However, the reliable detection is a very challenging task. The EU funded Horizon 2020 project SENS4ICE targets this gap with new ice detection approaches and innovative sensor hybridization. The indirect ice detection methodology presented herein is key to this approach and based on the changes of airplane flight characteristics under icing influence. A performance-based approach is chosen detecting an abnormal flight performance throughout the normal operational flight. It is solely based on a priori knowledge about the aircraft characteristic and the current measurable flight state. This paper provides a proof of concept for the
Deiler, ChristophSachs, Falk
This paper presents impingement analysis on a nacelle inlet, multibody airfoil, and swept tail under Supercooled Large Droplet (SLD) conditions in icing tunnels. Impingement and collection efficiency calculations are crucial for ice shape and protection analyses. The aerospace icing community selected three cases for simulation, focusing on SLD conditions, which require specific mathematical models for accurate representation. The present authors used a Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD) tool to evaluate pressure coefficients and collection efficiency, comparing them with experimental data. CFD simulations incorporated fully turbulent flow using various turbulence models and Eulerian droplet transport, considering experimental droplet distribution. The results showed acceptable deviations despite SLD simulation challenges and experimental data problems. A secondary conclusion suggests simplifying a 27-bin distribution to a 10-bin distribution to take
Da Silva, GuilhermePio, DiogoRafael, CaioVillela, PedroRezende, SabrinaTeixeira Da Silva, Jayme
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplements the requirements of the detail specification or drawings of specific components or assemblies (e.g., regulators, masks, cylinders, etc.). Where a conflict exists between this standard and detail specifications, detail specifications shall take precedence.
A-10 Aircraft Oxygen Equipment Committee
Autonomy is a key enabling factor in uncrewed aircraft system (UAS) and advanced air mobility (AAM) applications ranging from cargo delivery to structure inspection to passenger transport, across multiple sectors. In addition to guiding the UAS, autonomy will ensure that they stay safe in a large number of off-nominal situations without requiring the operator to intervene. While the addition of autonomy enables the safety case for the overall operation, there is a question as to how we can assure that the autonomy itself will work as intended. Specifically, we need assurable technical approaches, operational considerations, and a framework to develop, test, maintain, and improve these capabilities. We make the case that many of the key autonomy functions can be realized in the near term with readily assurable, even certifiable, design approaches and assurance methods, combined with risk mitigations and strategically defined concepts of operations. We present specific autonomy functions
Bartlett, PaulChamberlain, LyleSingh, SanjivCoblenz, Lauren
This SAE Aerospace Information Report (AIR) focuses on opportunities, challenges, and requirements in use of blockchain for Unmanned Aircraft Systems (UAS) operating at and below 400 feet above ground level (AGL) for commercial use. UAS stakeholders like original equipment manufacturers (OEMs), suppliers, operators, owners, regulators, and maintenance repair and overhaul (MRO) providers face many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain—defined as a distributed ledger technology that includes enterprise blockchain—can help address some of these challenges. Blockchain technology is evolving and also poses certain concerns in adoption. This AIR provides information on the current UAS challenges and how these challenges can be addressed by deploying blockchain technology along with identified areas of concern when using this technology. The scope of this AIR includes elicitation of key requirements for blockchain in UAS across
G-31 Digital Transactions for Aerospace
This SAE Aerospace Standard (AS) provides general design and test requirements for a flat cut-off pressure compensated, variable delivery hydraulic pump for use in a civil aircraft hydraulic system with a rated system pressure up to 5000 psi (34500 kPa). NOTE: Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard.
A-6C4 Power Sources Committee
This guide provides detailed information, guidance, and methods for demonstrating electromagnetic compatibility (EMC) on civil aircraft. This guide addresses aircraft EMC compliance for safety and functional performance of installed electrical and electronic systems. The EMC guidance considers conducted and radiated electromagnetic emissions and transients generated by the installed electrical and electronic systems which may affect other installed electrical and electronic systems on the aircraft. Application of appropriate electrical and electronic equipment EMC requirements are discussed. Methods for aircraft EMC tests and analysis are described. This guide does not address aircraft compatibility with the internal electromagnetic environments of portable electronic devices (PED) or with the external electromagnetic environments, such as high-intensity radiated fields (HIRF), lightning, and precipitation static.
AE-4 Electromagnetic Compatibility (EMC) Committee
A-5A Wheels, Brakes and Skid Controls Committee
This document contains minimum operational performance specification (MOPS) of active on-board INFLIGHT ICING DETECTION SYSTEMS (FIDS). This MOPS specifies FIDS operational performance which is the minimum necessary to satisfy regulatory requirements for the design and manufacture of the equipment to a minimum standard and guidance towards acceptable means of compliance when installed on an AIRCRAFT. Detection of ICE accreted on the AIRCRAFT during ground operations is not considered in this document. This MOPS was written for the use of FIDS on AIRCRAFT as defined in 1.3 and 2.3. Expected minimum performance specifications for FIDS and their functions are provided in Section 3. The minimum performance requirements as defined in Section 3 do not consider SYSTEM performance as installed on the AIRCRAFT. Performance in excess of the minimum performance may be required by the SYSTEM installed on an AIRCRAFT in order to meet regulatory or operational requirements. This topic is considered
AC-9C Aircraft Icing Technology Committee
The advent of electrified propulsion in the aerospace sector, captured in microcosm by the fast-emerging eVTOL market, both threatens to upset the establishment of major aerospace players and offers significant new opportunities for start-up companies. In all cases, it is forcing a marriage of system simulation and architecture definition techniques from markets already meeting these challenges, such as automotive. The demands of these aerospace applications are causing engineers on both sides to find the best blend of tools and approaches to meet their goals.
This document covers information concerning the use of oxygen when flying into and out of high elevation airports for both pressurized and non-pressurized aircraft. Oxygen requirements for pressurized aircraft operating at high altitudes have for decades emphasized the potential failures that could lead to a loss of cabin pressurization coupled with the potential severe hypoxic hazard that decompressions represent. This document is intended to address the case where the relationship between cabin and ambient pressures are complicated by operations at high terrestrial altitudes. Operators who fly into these high-altitude airports should address the issues related to this environment because it carries the potential for insidious hypoxia and other conditions which can affect safety. It provides information to consider in developing operational procedures to address hypoxia concerns consistent with regulatory mandates. In some sections, procedures are discussed that may mitigate the
A-10 Aircraft Oxygen Equipment Committee
Various emergency situations may require the dispensing of oxygen to all occupants of aircraft during flight. During an emergency event, depending on the aircraft operational flight capability, all cabin occupants must be serviced by a mask presentation system connected to an operational oxygen source. Several regulations specify the functional characteristics and requirements of the oxygen systems for aircraft in support of different missions. These should be referred to for the exact functional performance requirements. It is not the intent of this document to ensure conformance with these regulations, but only to recommend general concepts for the location of the oxygen masks and oxygen system outlets for proper accessibility by the aircraft occupants, whether cabin occupants or crew members. Different requirements may apply when the mission of the pressurized aircraft or the operational altitude of the aircraft is not in excess of FL250. When the aircraft is operating above FL100
A-10 Aircraft Oxygen Equipment Committee
This document establishes the general requirements for the quality management of aircraft ground deicing/anti-icing systems and processes. It covers the areas of: Quality system, documentation, and control of records; Management responsibility; Resource management; Product realization; and Measurement, analysis, and improvement. This document defines these areas and their key aspects so they can be practically managed, and that deicing operations can become safer with time. In alignment with AS6285 and AS6286, the primary focus of this standard is on the deicing/anti-icing of aircraft using deicing and anti-icing fluids.
G-12T Training and Quality Programs Committee
This document describes a method for measuring forces during an impact between a soft or frangible projectile and a relatively rigid flat normal surface. The document describes the hardware and instrumentation required, as well as the processing and data reduction required to compute force. In this test, a projectile impacts one end of a long cylindrical bar with flat ends, called a Hopkinson bar. The impact occurs on the centerline of the bar in the axial direction. The diameter of the cylindrical bar is large compared to the lateral dimension of the projectile so that, during and after the impact, the projectile material moves radially or backward, rather than extruding around the perimeter of the impact surface. The bar is instrumented with strain gages at some distance from the impacted end to measure the longitudinal strain in the bar. The bar must be sufficiently long so that the duration of the impact is less than the time it takes for the transient stress wave generated by the
G-28 Simulants for Impact and Ingestion Testing Committee
This SAE Aerospace Information Report (AIR) provides guidance on the definition, development, integration, qualification/certification, and deployment of Structural Health Monitoring (SHM) technologies applied to commercial and military rotorcraft. Increased implementation of SHM is believed to have numerous potential benefits, including enhanced operational safety and reduced maintenance burden. The focus is on augmenting ARP6461 to address specific unique aspects of implementing SHM on rotorcraft without unnecessarily duplicating guidance already contained in the ARP that is generally applicable to both fixed-wing and rotary-wing aircraft. For the purpose of this document, SHM is defined as “the process of acquiring and analyzing data from on-board sensors in order to determine the health of a structure”. Note that this is irrespective of whether the on-board sensors are a permanent or temporary installation. On-board sensors could include any presently installed aircraft sensors as
Aerospace Industry Steering Committee on Structural Health
The Federal Aviation Administration (FAA) defined the aircraft certification requirements concerning the fungus testing for aircraft components. The fungus testing, focused currently mostly on the materials composing the component, has a relatively long duration, could lead to false failures, and disregards the operation conditions in the aircraft. The present study introduces aerospace engineering and certification personnel to information used to develop a successful fungus analysis to use for aircraft certification and recommends academia future fungus studies specific to the aerospace industry. The article includes a literature review of fungus research in the context of aircraft, with a focus on bay and engine components certification, and presents empirical data about the survivability of fungi on aircraft engine components.
Gafencu, George
This ARP provides detailed information, guidance, and methods in support of the Federal Aviation Administration (FAA) Advisory Circular (AC) 20-136. AC 20-136 provides a means, but not the only means, for demonstrating compliance with Title 14 of the Code of Federal Regulations (14 CFR) 23.1306 (Amendment 23-61), 23.2515 (Amendment 23-64), 25.1316, 27.1316, and 29.1316. It is also intended for this ARP to provide the same information, guidance, and methods, to the European Aviation Safety Agency (EASA) certification specifications CS 23.1306 (Amendment 23/4), 23.2515 (Amendment 23/5), 25.1316, 27.1316, and 29.1316, and associated Acceptable Means of Compliance (AMC) 20-136. This ARP provides references relevant to identifying: (1) acceptance criteria for the indirect effects of lightning compliance approaches, (2) verification (analysis and test) methods including those associated with multiple stroke and multiple burst, (3) recommended design options to optimize needed system immunity
AE-2 Lightning Committee
This SAE Aerospace Standard (AS) establishes minimum ice and rain performance criteria for electrically-heated pitot and pitot-static probes intended for use on the following classes of fixed-wing aircraft and rotorcraft. The classes of fixed-wing aircraft are defined by aircraft flight envelopes and are shown in Figure 1. The flight envelopes generally fall into the classes as shown below: The user of this standard must evaluate the aircraft level installation requirements for the probe against the class definition criteria to ensure adequate coverage for the application. It may be necessary to step up in class or modify the test conditions in order to meet the applicable installation requirements. NOTE: Class 2 is divided into two subgroups identified as either Class 2a or Class 2b. Class 2a probe applications typically include aircraft that operate within the mid to lower end of the Class 2 altitude range and that only use probe output to display basic airspeed and/or altitude. As
AC-9C Aircraft Icing Technology Committee
This document defines the technical guidelines for the safe integration of Proton Exchange Membrane (PEM) Fuel Cell Systems (FCS), fuel (considered to be liquid and compressed hydrogen storage types only), fuel storage, fuel distribution and appropriate electrical systems into the aircraft. Editorial Note: Today PEM systems and fuel storage represent the most mature FCS technology and currently forms the basis for this standard. Other types of fuel cell systems and fuels (including reforming technologies and electrolyzers), may be covered by a further update to this document.
AE-7F Hydrogen and Fuel Cells
This AIR provides a detailed example of the aircraft and systems development for a function of a hypothetical S18 aircraft. In order to present a clear picture, an aircraft function was broken down into a single system. A function was chosen which had sufficient complexity to allow use of all the methodologies, yet was simple enough to present a clear picture of the flow through the process. This function/system was analyzed using the methods and tools described in ARP4754A/ED-79A. The aircraft level function is “Decelerate Aircraft On Ground” and the system is the braking system. The interaction of the braking system functions with the aircraft are identified with the relative importance based on implied aircraft interactions and system availabilities at the aircraft level. This example does not include validation and verification of the aircraft level hazards and interactions with the braking system. However, the principles used at the braking system level can be applied at the
S-18 Aircraft and Sys Dev and Safety Assessment Committee
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, aircraft), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is to help a company establish and meet its own internal standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness. Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. This ongoing safety assessment process includes safety problem identification and corrective action
S-18C Ongoing Safety Assessment Committee
Flight in icing for transport category aircraft certification presents a particularly challenging set of considerations to establish adequate safety commensurate with the associated risk while balancing design complexity and efficiency. A review highlighting important aspects of the regulatory evolution and guiding principles for flight in icing certification is presented, including the current standards and recent rulemaking activity. While historical icing certification relied on a simple yet subjective requirement to demonstrate that an aircraft is capable of operating safely within the prescribed icing envelopes, the certification requirements associated with demonstrating an adequate level of safety have progressively evolved into more explicit quantitative performance and qualitative handling qualities standards now scattered throughout the Federal Aviation Administration (FAA) Title 14 Code of Federal Regulations (CFRs) Part 25 Subpart B Flight standards which are largely
Leopold, David
Air cargo pallets and their cargo restraint nets constitute aircraft Unit Load Devices, defined by industry standards and airworthiness certified based on Technical Standard Order (TSO) C90c in accordance with the requirements of NAS 3610. This guarantees their design to be intrinsically safe for flight on board compatible aircraft types. However, actual flight safety also requires these certified pieces of equipment to be properly used: numerous occurrences have demonstrated a certified ULD can nevertheless jeopardize flight safety if loaded or restrained in an inadequate manner.
AGE-2 Air Cargo
This Aerospace Recommended Practice (ARP) addresses direct touch interactive electronic display systems installed in the cockpit/flight deck for use by pilots. Direct touch refers to interactivity where the display screen is the input surface. This entire direct interactive electronic display system is referred to as the touch system throughout this document and covers those items related to direct interactive touch on display devices. In cases where only the display and touch device are being considered, this is referred to as the touch screen. The ARP covers system design guidelines as well as the considerations and recommendations for system performance and human factors. This ARP is intended to cover systems installed in 14 CFR Part 23, 25, 27, and 29 aircraft. As an ARP this document collects what are considered good practices by developers, users, and regulators of touch systems. The state of touch technology and the application of that technology is still evolving. As a result
G-10TDS Touch Interactive Display Systems Committee
This AIR lists and describes a collection of regulations, policy, and guidance documents applicable to design approval applicants, aircraft operating certificate holders, and maintenance repair and overhaul (MRO) organizations. The aircraft industry should consider these rules when installing IVHM technology for use in aircraft maintenance. This is a starting basis and should not be considered as complete when certification of an IVHM system is expected. The AIR’s objectives are: 1 To set the foundation for aircraft certification applicants seeking to design IVHM solutions as part of the type certificate (TC), supplemental type certificate (STC), amended TC, or amended STC activities; and 2 To set the foundation for aircraft operating certificate holders to engage with regulators to get authorization for using IVHM applications as part of an aircraft maintenance program. NOTE: This AIR’s scope is limited to the United States (U.S.) Federal Aviation Administration (FAA) information only
HM-1 Integrated Vehicle Health Management Committee
Items per page:
1 – 50 of 154