Browse Topic: Hazards and emergency operations

Items (5,799)
Safety concerns surrounding new energy vehicles have gained increasing national and social attention. Bottom impacts to power batteries are a leading cause of fires and explosions in new energy vehicles. Focusing on the safety of power battery bottom impacts, this article first proposes applying honeycomb panels to the battery’s bottom guard plate. Through the ball impact test, the effect of honeycomb panel surface material thickness on bottom protection is studied, and the mechanism of the honeycomb panel’s ball impact protection is explored. Second, the honeycomb panel and the aluminum alloy plate are structurally compounded to improve the ball impact protection ability. Finally, the optimized composite bottom guard plate is assembled on the lower box of the power battery, and the whole package ball impact experiment is successfully verified. This study serves as a reference for future research on power battery bottom impact protection and the industrial application of bottom guard
Hongguang, HuangYong, ZengWeiquan, Zeng
Radiation has garnered the most attention in the research that has been conducted on polyethylene sheets. According to the calculations, there were 145892.35 kGy in total radiation doses administered. An ultraviolet visible spectrophotometer was used to examine the impact that electron beam irradiation had on the optical constants. Two of the most crucial variables taken into account when calculating the optical constants and the absorption coefficient are the reflectance and transmittance of polyurethane sheets. Reduced light transmission through the sheet achieves these characteristics, which are related to the transmittance and reflectance of the Fresnel interface. Cross linking makes it more challenging for the polyurethane molecular chains to become fixed. Both the refractive index and the dispersion properties have been altered as a direct result of this. Despite the fact that the doses of electron irradiation were getting lower, it eventually rose to 105 kGy. Contrary to the
Kaushik, NitishSandeep, ChSrinivasan, V. P.Prakash, B. VijayaKalaiarasan, S.Arunkumar, S.
Re-refining of used lubricating oil is an economically attractive and effective recycling method that contributes significantly to resource conservation and environmental protection. The effective re-refining process of used lubricating oil undergoes thorough purification to remove contaminants and to produce high yield and good quality base oil suitable for reuse in lubricant formulation. Used lubricating oils have various hazardous materials, these can be processed with safe and efficient methods required to recover high-quality base oil products. Typically, used lubricating oil is a mixture of various types of additives, base oils, and viscometric grades as per the different types automotive and industrial applications. Re-refined base oils can be re-used to produce lubricants such as industrial and automotive lubricants like passenger car motor oils, transmission fluids, hydraulic oils, and gear oils. API classified base oils into two categories namely mineral base oils API Group I
Maloth, SwamyJoshi, Ratnadeep S.Mishra, Gopal SwaroopSamant, Nagesh N.Bhadhavath, SankerSeth, SaritaBhardwaj, AnilPaul, SubinoyArora, Ajay KumarMaheshwari, Mukul
This ARP provides design and performance recommendations for emergency exits in the passenger cabin. This ARP does not apply to Crew Emergency Exits
S-9B Cabin Interiors and Furnishings Committee
This specification covers a shampoo type carpet cleaner in the form of a liquid
AMS J Aircraft Maintenance Chemicals and Materials Committee
This SAE Aerospace Standard (AS) provides the minimum design and performance requirements for individual, inflatable life preservers, divided into six categories: “Adult,” “Adult-Child,” “Child,” “Infant-Small Child,” “Adult-Child-Infant-Small Child,” and “Demonstration
S-9A Safety Equipment and Survival Systems Committee
ABSTRACT Abuse response of lithium-ion batteries has been extensively studied over several decades. Most studies on the onset and propagation of battery fires following mechanical deformation are focused on understanding the onset of thermal events following quasi-static loading. Using an array of cylindrical lithium-ion cells as example, we report results from ultra-high strain-rate deformation mechanical events (> 100 /s) that result in electrochemical short-circuits followed by thermal events. We present a methodology that takes stock of gas compositions as a function of state of charge and compute flammability limits. Finally, we discuss implications for flame lengths and propensity for propagation of thermal events. Citation: J. Kim, A. Mallarapu, S. Santhanagopalan, Y. Ding, “Propagation of Fire in Li-Ion Batteries under Ultra-High Strain-Rate Deformation” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Kim, JinyongMallarapu, AnudeepSanthanagopalan, ShriramDing, Yi
ABSTRACT Military ground vehicles are equipped with Automatic Fire Extinguishing Systems (AFES) to protect against enemy threats causing fuel tank ruptures and resulting fuel fires inside military vehicle crew compartments. The fires must be rapidly extinguished without reflash to ensure Soldier protection from burn and toxicity risks. This summary describes the development of a simulation-based acquisition tool which will complement vehicle testing for the optimization of AFES designs for specific vehicles and address their unique clutter characteristics. The simulation-based acquisition tool using Computational Fluid Dynamics (CFD) techniques was validated for an exploratory test box and demonstrated with the evaluation of two different suppressant nozzle configurations for an MRAP vehicle. The result is a cost-savings tool with a negligible development payback period that optimizes Soldier survivability in a fire situation. This modeling tool is currently being applied to predict
Korivi, Vamshi M.Williams, Bradley A.McCormick, Steven J.Deshmukh, Kshitij
ABSTRACT Northrop Grumman has developed a software and hardware solution to provide enhanced 360 degree local situational awareness (LSA) to enable the warfighter with an overmatch capability on today’s modern battlefield. The architecture exploits technological gains in cameras, video processing, and video compression. The approach allows rapid comprehension of local and remote situational views presented with operational relevance for a ground combat platform or tactical wheeled platform crew. The 360 Degree LSA approach provides direct visualization of relative positioning of targets, threats, and lines of fire; and additionally offers common situational understanding / operational picture from the dismounted soldier to higher echelon commands. The approach provides prioritized information through LSA software to provide an enhanced view to the warfighter whereas the squad leader becomes an integral part of the crew with a view of the common operating picture (mounted) and
Viscovich, ChristopherGeoghegan, SusanWorthy, David
ABSTRACT We present a modular architecture that enables advanced surveillance functions exploiting data collected from heterogeneous sensors dispersed over multiple, often mobile platforms in the field. Examples of such functions are red forces tracking with surveillance gaps, detection of different types of anomalies, search and rescue operation monitoring, and threat alerting. This novel approach combines a distributed fusion engine, an intelligent process manager, and a system of ruggedized computers, enabling information processing in the tactical domain. The hybrid AI-based heterogeneous fusion engine consists of different algorithms, including various detectors and classifiers, represented as services in a light-weight information management and interoperability layer. This architecture layer enables context-dependent discovery of the right sensing and processing services at runtime that are combined using a robust Bayesian fusion layer exploiting complex correlations in the data
Pavlin, GregorBoudreault, RaphaëlPenders, Atede Graaf, MauritsLafond, DanielSwiebel, Andy
ABSTRACT Discrete Particles are just as they sound, individual particles that represent Air, Soil and HE (High Explosives). They are not based upon a continuum theory and should not be confused with SPH (Smooth Particle Hydrodynamics) which is a full Lagrangian continuum theory. The modeling of Air, Soil and HE (High Explosives) with discrete particles requires millions of particles to accurately model the blast event. The innovation in software coupled with the advent of GPU Technology provides an efficient and robust solution to perform the analyses. Consider that the latest GPU processor, the Tesla K40, based upon NVIDIA Kepler™ Architecture, has 12 GB of GDDR5 memory and 2880 CUDA Cores. A standard workstation with an NVIDIA Tesla GPU is all that is required to perform the calculations and the benefits are a high degree of accuracy and simplified model setup. To demonstrate the use of Discrete Particles to model the blast event and show the effectiveness of GPU computing, the
Mindle, Wayne L.Gasbarro, Michelle D.Olovsson, Lars
ABSTRACT Raytheon is in the final stages of production of three high performance thermal imaging / fire control systems being integrated on existing USMC and US Army armored vehicles. A goal in the design of these systems was to provide integration into the host vehicle that when viewed by the customer and user provided the enhanced capabilities of today’s latest thermal imaging and image processing technology as well as operating in concert with the vehicle as originally designed. This paper will summarize the technical solutions for each of these programs emphasizing the thermal imaging, fire control, image processing and vehicle integration technologies. It will also outline guiding philosophies and lessons learned used to focus the design team in achieving the successful integration. The programs to be reviewed are; USMC 2nd Gen Thermal Imaging System, the USMC LAV-25 Improved Thermal Sight System (ITSS) and the USMC / US Army M1A1 50 Cal Thermal Sight / DayTV System
LaSala, Paul V.Raaum, Bryan J.
In the fall of 2023, NASA hot fire tested an aluminum-based, 3D-printed rocket engine nozzle. What made the event remarkable is that aluminum isn’t typically used for additive manufacturing because the process causes it to crack, and it isn’t used in rocket engines due to its low melting point. Yet the test was a success
Letter from the Focus Issue Editors
Shen, RuiqingWang, Qingsheng
This document is intended for connectors typically found on aerospace platforms and ground support equipment. The document provides the reasons for proper fiber optic cleaning, an in-depth discussion of available cleaning methods, materials, packaging, safety, and environmental concerns. Applicable personnel include: Managers Designers Engineers Technicians Trainers/Instructors Third Party Maintenance Agencies Quality Personnel Purchasing Shipping/Receiving Production
AS-3 Fiber Optics and Applied Photonics Committee
This document provides recommended best practice methods and processes for the in-service inspection, evaluation and cleaning of all physical contact (PC) fiber optic interconnect components (termini, alignment sleeves and connectors), test equipment and test leads for maintainers qualified to the approved aerospace fiber optic training courses developed in accordance with ARP5602 or ARINC807. This document also provides a decision-making disposition flowchart to determine whether the fiber optic components are acceptable for operation. For definitions of individual component parts refer to ARP5061
AS-3 Fiber Optics and Applied Photonics Committee
The environment and test waveforms defined in this SAE Aerospace Recommended Practice (ARP) account for the best lightning data and analysis currently available. The quantified environment and levels herein represent the minimum currently required by certifying authorities, which is consistent with the approach applied in related lightning documents. Lightning, like other weather phenomenon, is probabilistic in nature. Levels and waveforms vary considerably from one flash to the next. Within this document, standardized voltage and current waveforms have been derived to represent the lightning environment external to an aircraft. These standardized waveforms are used to assess the effects of lightning on aircraft. The standardized external current waveforms have, in turn, been used to derive standardized transient voltage and current test waveforms that can be expected to appear on cable bundles and at equipment interfaces within an aircraft. When deriving these latter internal induced
AE-2 Lightning Committee
Electric Vehicles numbers are increasing at a rapid pace in the Indian market. As per the different feedbacks from the customers and reports available in media, there is an increase in Electric Vehicle (EV) battery fire accidents. The same is because of increased EV numbers, malfunctioning of battery and improper handling of EV systems. EV industry is looking for a solution for preventing these mis happenings by using advanced safety technology. This includes improvement in existing safety system through advanced warning backed by artificial intelligence, programming tools using new computing languages such as Python, Java etc. In present work temperature which happens to be major contributor in battery fire cases is being monitored with the help of programming used in battery management systems. In this process algorithm is being developed with the help of python as programming language. The same was test run on the selected parameters for validation of the developed programs for
Vashist, DevendraSharma, AryanAnand, Aditya
Passenger vehicles like buses tend to soak up heat when they are parked under an open sky. The temperatures inside the vehicle can get very high during daytime due to heating, which reduces the thermal comfort levels. All three modes of heat transfer, i.e., conduction, convection and radiation contribute to the heating process. Cool-down tests are performed to replicate this thermal behaviour and evaluate the time required for cooling the internal bus volume to comfortable temperatures. The phenomenon can also be analysed using CFD, and accounts of numerous such studies are available however, the effects of all three modes of heat transfer for practical application are rarely studied. In view of this, an effort has been made to develop a fast and reasonably accurate transient numerical method to predict the thermal behaviour of the cool-down process for a school bus cabin. The effects of all three modes of heating (conduction, convection, and solar radiation) have been evaluated, and
Sharma, ShantanuSingh, RamanandZucker, JamesMoore, Chris
It is well known that target state estimation and prediction methods can have a substantial influence on the outcome of long range, precision-oriented engagements. Due to this fact, a collection of techniques and algorithms have been developed for the purpose of minimizing the delivery error caused by target motion over the flight time of a munition. These legacy compensation techniques have typically come from direct fire, accuracy-oriented assets such as main battle tanks and attack helicopters. However, with the proliferation of unmanned vehicles in the battle space, the target state estimation and prediction capabilities could be extended into the indirect fire domain. The work conducted within examines the challenge of utilizing a reconnaissance drone partnered with a decoupled weapon platform to track a target, predict its motion, and calculate a lead. The information presented within establishes the framework required to enable this capability, develops the individual solution
Bober, Tomas
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12
A-10 Aircraft Oxygen Equipment Committee
This SAE Aerospace Recommended Practice (ARP) recommends design features for facilitating relocation of portable slide/rafts for deployment at an alternate exit under ditching conditions
S-9A Safety Equipment and Survival Systems Committee
Because they can go where humans can’t, robots are especially suited for safely working with hazardous nuclear waste. Now, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have designed and tested a remote-controlled, dual-arm telerobotics system with human-like capabilities that has the potential to revolutionize hazardous waste clean-up and holds potential for broader applications
Researchers at the National Institute of Standards and Technology (NIST) and colleagues have developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information
Researchers at Tufts School of Engineering have developed a method to detect bacteria, toxins, and dangerous chemicals in the environment with a biopolymer sensor that can be printed like ink on a wide range of materials — including wearables
Advances in optical sensors and imaging technologies are ever more rapidly assimilated into how humans interact, understand themselves, and explore the world around them. The scope of inquiry for optical devices is broad and they enable technologies within, such as implanted transdermal bioMEMS devices, and beyond, or as space-flight surveyors deployed as near and deep space instruments. Central to the functionality of modern optical devices, ultra-narrow bandpass (UNBP) thin-film optical filters enable discrimination of sub-nanometer bands inside broad spectra. These filters, pioneered as NIR DWDM filters for the telecommunications industry, are now essential in extracting meaningful signal from imaging and sensing devices operating anywhere between the deep ultraviolet and the mid infra-red bands
Sensor packaging, particularly for microelectromechanical systems (MEMS), is a critical aspect of modern electronics. MEMS developers have demonstrated a variety of innovative microsensors for almost every possible sensing modality including temperature, pressure, inertial forces, chemical species, magnetic fields, radiation, etc. While MEMS sensors are revolutionizing various industries with their precision and miniaturization, they can present unique product development challenges and risks during design, development, and manufacturing
Efficient fire rescue operations in urban environments are critical for saving lives and reducing property damage. By utilizing connected vehicle systems (CVS) for firefighting vehicles planning, we can reduce the response time to fires while lowering the operational costs of fire stations. This research presents an innovative nonlinear mixed-integer programming model to enhance fire rescue operations in urban settings. The model focuses on expediting the movement of firefighting vehicles within intricate traffic networks, effectively tackling the complexities associated with collaborative dispatch decisions and optimal path planning for multiple response units. This method is validated using a small-scale traffic network, providing foundational insights into parameter impacts. A case study in Sioux Falls shows its superiority over traditional “nearest dispatch” methods, optimizing both cost and response time significantly. Sensitivity analyses involving clearance speed, clearance time
Wei, ShiboGu, YuLiu, Han
This SAE Aerospace Information Report (AIR) describes the aspects of hydraulic system design and installation to minimize the effects of lightning. Techniques for effective electrical bonding, hydraulic system lightning protection, and lightning protection verification techniques are discussed
A-6A1 Commercial Aircraft Committee
In any human space flight program, safety of the crew is of utmost priority. In case of exigency in atmospheric flight, the crew is safely and quickly rescued from the launch vehicle using Crew Escape System (CES). CES is a critical part of the Human Space Flight which carries the crew module away from the ascending launch vehicle by firing its rocket motors (Pitch Motor (PM), Low altitude Escape Motor (LEM) and High altitude Escape Motor (HEM)). The structural loads experienced by the CES during the mission abort are severe as the propulsive, aerodynamic and inertial forces on the vehicle are significantly high. Since the mission abort can occur at anytime during the ascent phase of the launch vehicle, trajectory profiles are generated for abort at every one second interval of ascent flight period considering several combinations of dispersions on various propulsive parameters of abort motors and aero parameters. Depending on the time of abort, the ignition delay of PM, LEM and HEM
S, SubashBabu P, GirishDaniel, Sajan
A novel method for Single Event Effect (SEE) Radiation Testing using Built-In Self-Test (BIST) feature of indigenously developed Vikram1601 processor is discussed. Using BIST avoids need of exhaustive test vectors to ensure test coverage of all internal registers and a physical memory to store test vectors. Thus, processor is the only element vulnerable to radiation damage during testing. In the first part, a brief introduction, need and methods of radiation testing of electronics especially SEE of radiation on Silicon based devices, different radiation effects, radiation damage mechanisms and testing methods are described. A brief introduction to Vikram1601 processor, the instruction – TST, used as BIST and testing scheme implementation using TST for studying the SEE is explained. Radiation test facilities are explained with respect to the types of testing possible, capabilities, radiation particle species and maximum energies possible, size limitations of Silicon under test and
Joseph, Dominic GeorgeDaniel, JojiK, PadmakumarL, JayalekshmyDevi, Athula
A global team of researchers and industry collaborators led by RMIT University has invented recyclable ’water batteries’ that won’t catch fire or explode
Unmanned Aerial Vehicles (UAVs) are useful for a multitude of applications in today’s age, covering a wide variety of fields such as defense, environmental science, meteorology, emergency responders, search and rescue operations, entertainment robotics, etc. One such category of UAVs is the lighter-than-air aircraft that provides advantages over the other types of UAVs. Blimps are among the participants of the lighter-than-air category that are expected to offer advantages such as higher endurance and range and safer and more comfortable human-machine interactions, as compared to fixed-wing and rotor-wing UAVs due to their design. This study details the development of a Robot Operating System (ROS)-based control system designed for the autonomous operation of the blimp. The paper explores the integration and implementation of ultrasonic sensors and Inertial Measurement Unit (IMU) technology to enhance collision avoidance capabilities during flight. Furthermore, the research includes an
S, Syam NarayananGangurde, YogeshMarella, HiteshRannee, ThivyaRajalakshmi, P
Remember that party where you were swinging glow sticks above your head or wearing them as necklaces? Fun times, right? Science times, too. Turns out those fun party favors are now being used by a University of Houston researcher to identify emerging biothreats for the United States Navy
Northwestern University researchers have developed new devices based on a low-cost material to aid in the detection and identification of radioactive isotopes. Using cesium lead bromide in the form of perovskite crystals, the research team found that they were able to create highly efficient detectors in both small, portable devices for field researchers and in very large detectors. The results are more than a decade in the making
This AS provides the minimum performance requirements for the following types of inflatable emergency evacuation devices (hereinafter referred to as device[s]): 1 Type I - Inflatable Slide: A device suitable for assisting occupants in descending from a floor-level airplane exit or from an airplane wing to the ground. A Type I off-wing slide is a device that does not include a ramp. 2 Type II - Inflatable Slide/Raft: A device suitable for assisting occupants in descending from a floor-level airplane exit or an airplane wing to the ground that is also designed to be used as a life raft. A Type II off-wing slide/raft is a device that does not include a ramp. 3 Type III - Inflatable Exit Ramp: A device suitable for assisting occupants in descending from certain overwing exits to an airplane wing. 4 Type IV - Inflatable Ramp/Slide: A device suitable for assisting occupants from an overwing exit or airplane wing to the ground. It is a combination ramp and wing-to-ground device. 5 Type V
S-9A Safety Equipment and Survival Systems Committee
Where there’s smoke, there will be no fire because a drone is already on the scene. At least that’s the hope of Zhaodan Kong, Professor in the Department of Mechanical and Aerospace Engineering, and his team at the University of California, Davis
Two full-scale burn tests were conducted to evaluate the propagation of an engine compartment fire into the passenger compartment of consumer vehicles. In particular, the effect of penetrations in the bulkhead separating the engine compartment from the passenger compartment was examined. The first burn test involved two vehicles of the same year, make, and model. One of the vehicles was left in the original equipment manufacturer (OEM) configuration. The other vehicle was modified by welding steel plates over the pass-through locations in the bulkhead between the engine and passenger compartments. After the fire was initiated in the engine compartment and had reached the onset of flashover, the heat and flames from this fire began to effect the passenger compartment. At about this same time, flames extending from the engine compartment around the hood began impinging directly on the outer face of the windshield. The passenger compartment temperature first increased on both vehicles at
Papageorge, MichaelColwell, Jeff
Focused on the permanent magnet synchronous motor (PMSM) used in electric, this paper proposes an online insulation testing method based on voltage injection under high-temperature and high-humidity conditions. The effect of constant humidity and temperature on the insulation performance has been also studied. Firstly, the high-voltage insulation structure and principle of PMSM are analyzed, while an electrical insulation testing method considered constant humidity and temperature is proposed. Finally, a temperature and humidity experimental cycling test is carried out on a certain prototype PMSM, taking heat conduction and radiation models, water vapor, and partial discharge into account. The results show that the electrical insulation performance of the motor under constant humidity and temperature operation environment exhibits a decreasing trend. This study can provide theoretical and practical references for the reliable durability design of PMSM
Zhang, WeiQiu, ZizhenKong, ZhiguoHuang, XinWang, Fang
The inverter of the electrical driven compressor (EDC) is subjected to high thermal loads which are resulting from external temperature exposure and from compressor solicitations from the vehicle thermal loop (refrigerant nature, flow rate, compression rate, initial temperature). An incorrect thermal management of the inverter might lead to a significant decrease of efficiency which degrades the performance, product lifetime (electronics components failure) and even worse, might lead to a hazardous thermal event (HTE). The need of the automotive market to drastically decrease project development time, requires decreasing design and simulation activities lead time without degrading the design robustness, which is one additional complexity and challenge for the R&D team. Analytical calculations are performed to understand the significant impact of the main physical parameters (refrigerant temperature, material properties, electronics component power dissipation, …) on the initial design
Banumurthy, HariharanRibot, HerveLeon, RenanFrancois, NicolasSattouf, MousaMarouf, Ayyoub
Determining occupant kinematics in a vehicle crash is essential when understanding injury mechanisms and assessing restraint performance. Identifying contact marks is key to the process. This study was conducted to assess the ability to photodocument the various fluids on different vehicle interior component types and colors with and without the use of ultraviolet (UV) lights. Biological (blood, saliva, sweat and skin), consumable and chemical fluids were applied to vehicle interior components, such as seatbelt webbing, seat and airbag fabrics, roof liner and leather steering wheel. The samples were photodocumented with natural light and UV light (365 nm) exposure immediately after surface application and again 14 days later. The review of the photos indicated that fabric type and color were important factors. The fluids deposits were better visualized on non-porous than porous materials. For example, blood was better documented on curtain airbags than side or driver airbags. Blood and
Boysen, KevinParenteau, ChantalToomey, DanielGregg, Richard H.
Battery electric vehicles (EVs) bring significant benefits in reducing the carbon footprint of fossil fuels and new opportunities for adopting renewable energy. Because of their high-energy density and long cycle life, lithium-ion batteries (LIBs) are dominating the battery market, and the consumer demand for LIB-powered EVs is expected to continue to boom in the next decade. However, the chemistry used in LIBs is still vulnerable to experiencing thermal runaway, especially in harsh working conditions. Furthermore, as LIB technology moves to larger scales of power and energy, the safety issues turn out to be the most intolerable pain point of its application in EVs. Its failure could result in the release of toxic gases, fire, and even explosions, causing catastrophic damage to life and property. Vehicle fires are an often-overlooked part of the fire problem. Fire protection and EV safety fall into different disciplines. To bridge the gap between these two disciplines and summarize the
Shen, RuiqingQuan, YufengMcIntosh, James D.Salem, AsadWang, Qingsheng
Northrop Grumman Corporation is developing AN/APG-85, an advanced Active Electronically Scanned Array (AESA) radar for the F-35 Lightning II. Northrop Grumman currently manufactures the AN/APG-81 active electronically scanned array (AESA) fire control radar, the cornerstone to the F-35 Lightning II’s sensor suite
Items per page:
1 – 50 of 5799