Browse Topic: Hazards and emergency operations
In order to meet the demand for the transformation of traditional manufacturing industries into intelligent manufacturing, a virtual monitoring system for the production workshops of nuclear - key products has been built. There are problems such as poor environment, long distance and remote collaborative office in this production workshop, and managers lack information tools to master the workshop status in real time. In order to minimize the harm of nuclear radiation to the human body, in view of the problems of low transparency, poor real - time performance and low data integration in traditional two - dimensional forms, configuration software and video monitoring, a remote monitoring system for virtual workshops driven by digital models has been developed. This system realizes the remote dynamic display of real - time information in the workshop based on data collection and three - dimensional modeling technologies. Virtual monitoring technology improves the management efficiency of
Direct current (DC) systems are increasingly used in small power system applications ranging from combined heat and power plants aided with photovoltaic (PV) installations to powertrains of small electric vehicles. A critical safety issue in these systems is the occurrence of series arc faults, which can lead to fires due to high temperatures. This paper presents a model-based method for detecting such faults in medium- and high-voltage DC circuits. Unlike traditional approaches that rely on high-frequency signal analysis, the proposed method uses a physical circuit model and a high-gain observer to estimate deviations from nominal operation. The detection criterion is based on the variance of a disturbance estimate, allowing fast and reliable fault identification. Experimental validation is conducted using a PV system with an arc generator to simulate faults. The results demonstrate the effectiveness of the method in distinguishing fault events from normal operating variations. The
This specification covers a fluorosilicone (FVMQ) rubber in the form of molded rings.
This specification covers an acrylonitrile-butadiene rubber in the form of molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
This document is reissued for application to helicopters. It is primarily intended to apply to the engine or engines, but it shall also apply to fire protection of lines, tanks, combustion heaters, and auxiliary powerplants (APU). Post-crash fire protection is also discussed.
From a quick access port to help firefighters fight EV battery fires faster to preventing public charger vandalism, here are some safety developments that haven't made the big headlines. Most of the news surrounding EV technological development in the past year has been around batteries and charging capacity. But engineers have also been busy working on security and safety issues, from charging stations to finding ways for firefighters to better douse fires. We've rounded up a few of the most notable and novel efforts below.
Author turns classroom quest into a tome for anyone who wants to engineer safer cars. A seasoned engineer with a multi-discipline background in electronics, manufacturing systems, and forensic analysis, Erbis Biscarri brought decades of experience to the topic of automotive safety in his latest work. Biscarri's book, Fires in Conventional and Electrified Vehicles: Theory, Prevention, and Analysis, published by SAE International, offers a comprehensive guide to one of the industry's most pressing challenges: vehicle fire safety. In addition to technical analysis, Biscarri said, the book helps clarify common misconceptions, especially those surrounding electric vehicle fires, by grounding the discussion in documented incident data and established technological principles.
Plastic materials are used for a wide variety of spacecraft applications including seals, bearings, fasteners, electrical insulators, thermal isolators, and radomes. Selecting plastics for use in space is complex due to wide operating temperature ranges, vacuum conditions, and exposure to radiation and atomic oxygen. Additionally, some spacecraft applications require sealing flammable propellants such as hydrogen and oxygen. This article will present some design considerations when selecting plastics for use in spacecraft. It will provide rich data on the performance characteristics of plastics as well as examples of successful spacecraft applications.
This document is reissued for application to helicopters.
The increased functionality of today’s medical devices is astounding. Optical devices, for example, analyze chemicals, toxins, and biologic specimens. Semiconductor devices sense, analyze, and communicate. Microelectromechanical system (MEMS) devices utilize inertial methods to detect motion, direct light, and move components over short distances. Radiofrequency (RF) devices communicate wirelessly to other devices directly and remotely over the Internet. Handheld acoustic devices scan the body and build a virtual 3D model that shows conditions in the body. The innovation currently happening in the medical device industry is staggering, limited only by imagination and finding technical methods to implement the vision.
This specification establishes the engineering requirements for producing an anodic coating on titanium and titanium alloys and the properties of the coating.
This specification covers an alkaline rust remover compound in the form of a liquid concentrate or a water-soluble powder for dilution with water.
This specification covers a solvent-based compound in the form of a liquid.
This SAE Aerospace Standard (AS) provides design criteria for onboard stairways intended for use by passengers aboard multi-deck transport category airplanes. It is not intended for stairways designed for use only by crewmembers, supernumeries, or maintenance personnel. Additionally, this AS does not apply to fuselage mounted or external stairways used for boarding passengers, which are covered by ARP836.
This SAE Aerospace Recommended Practice (ARP) establishes general criteria for the installation (e.g., type, location, accessibility, stowage) and crew member training needed for portable fire extinguishers.
Researchers have developed a new type of sensor platform using a gold nanoparticle array. The sensor is made up of a series of gold disk-shaped nanoparticles on a glass slide. When an infrared laser is pointed at a precise arrangement of the particles, they start to emit unusual amounts of ultraviolet (UV) light.
This study presents a novel methodology for optimizing the acoustic performance of rotating machinery by combining scattered 3D sound intensity data with numerical simulations. The method is demonstrated on the rear axle of a truck. Using Scan&Paint 3D, sound intensity data is rapidly acquired over a large spatial area with the assistance of a 3D sound intensity probe and infrared stereo camera. The experimental data is then integrated into far-field radiation simulations, enabling detailed analysis of the acoustic behavior and accurate predictions of far-field sound radiation. This hybrid approach offers a significant advantage for assessing complex acoustic sources, allowing for quick and reliable evaluation of noise mitigation solutions.
With the exponential rise in drone activity, safely managing low-flying airspace has become challenging — especially in highly populated areas. Just last month an unauthorized drone collided with a ‘Super Scooper’ aircraft above the Los Angeles wildfires, grounding the aircraft for several days and hampering the firefighting efforts.
Lead-filled aprons are currently used for atomic number (Z)-grade radiation shielding in the medical industry to protect personnel from hazardous gamma radiation. These apron garments are made with lead-filled elastomeric sheets encased in polymeric fabrics and are both heavy and bulky to meet necessary shielding requirements. In addition, there are environmental safety concerns surrounding disposal of these garments due to their lead content. An innovator at NASA Langley Research Center has developed a novel method for making thin, lightweight radiation shielding that can be sprayed or melted onto common textiles used in clothing such as cotton, nylon, polyester, Nomex, and Kevlar.
Innovators at NASA Johnson Space Center have designed a pneumatic nail penetration trigger system that drives a Li-ion battery cell into thermal runaway using a tungsten nail. By creating a targeted rupture in a battery cell’s outer casing, researchers can initiate an exothermic chain reaction within the battery, much like a short circuit, causing a spike in temperature that can lead to battery failure, fire or explosion.
Conventional solid polymer electrolyte batteries perform poorly due to structural limitations that hinder an optimal electrode contact. This could not eliminate the issue of “dendrites”, where lithium grows in tree-like structures during repeated charging and discharging cycles. Dendrites are a critical issue, as an irregular lithium growth can disrupt battery connections, potentially causing fires and explosions.
U.S. Army Combat Capabilities Development Command Chemical Biological Center (DEVCOM CBC) researchers are developing a way to scan for chemical biological agent on surfaces on the fly. Literally on the fly as it consists of an AI-enabled spectrometer mounted on an unmanned aerial vehicle (UAV) or unmanned ground vehicle (UGV) sending back vital data in real time. It is called Hyperspectral Threat Anomaly Detection, or HyperThreAD for short.
Batteries in electric vehicles can fail quickly, sometimes catching fire without much warning. Sandia National Laboratories is working to detect these failures early and provide sufficient warning time to vehicle occupants.
This document is intended to describe how to conduct lightning direct effects tests and indirect system upset effects tests. Indirect effects upset and damage tolerance tests for individual equipment items are addressed in RTCA DO-160/ED-14. Documents relating to other aspects of the certification process, including definition of the lightning environment, zoning, and indirect effects certification, are listed in Section 2. This document presents test techniques for simulated lightning testing of aircraft and the associated systems. This document does not include design criteria, nor does it specify which items should or should not be tested. Acceptable levels of damage and/or pass/fail criteria for the qualification tests must be approved by the appropriate airworthiness authority for each particular case. When lightning tests are a part of a certification plan, the test methods described herein are an acceptable means, but not the only means, of meeting the test requirements of the
While DNA damage caused by space radiation exposure has long been recognized as a major threat to astronaut health, a recent study published in Redox Biology (Stolc et al., 2024) reveals an unexpected culprit in the atmosphere of the International Space Station (ISS) itself: elevated carbon dioxide (CO2) levels. In this study, mice were sent into space where they spent 5–6 week aboard the ISS.
Nowadays, there are many technologies emerging like firefighting robots, quadcopters, and drones which are capable of operating in hazardous disaster scenarios. In recent years, fire emergencies have become an increasingly serious problem, leading to hundreds of deaths, thousands of injuries, and the destruction of property worth millions of dollars. According to the National Crime Records Bureau (NCRB), India recorded approximately 1,218 fire incidents resulting in 1,694 deaths in 2020 alone. Globally, the World Health Organization (WHO) estimates that fires account for around 265,000 deaths each year, with the majority occurring in low- and middle-income countries. The existing fire-extinguishing systems are often inefficient and lack proper testing, causing significant delays in firefighting efforts. These delays become even more critical in situations involving high-rise buildings or bushfires, where reaching the affected areas is particularly challenging. The leading causes of
X-rays are a common component of diagnostic testing and industrial monitoring, used for everything from monitoring your teeth to scanning your suitcase at the airport. But the high-energy rays also produce ionizing radiation, which can be dangerous after prolonged or excessive exposures. Now, researchers publishing in ACS Central Science have taken a step toward safer x-rays by creating a highly sensitive and foldable detector that produces good quality images with smaller dosages of the rays.
Spaceflight outside of the Earth’s protective magnetic field is dangerous from a cosmic radiation perspective. Inside Earth’s magnetic field, where the manned International Space Station (ISS) orbits, the radiation encountered is minimal and almost all is deflected by our planet’s magnetic fields. However, outside that protective shield, the Sun’s solar wind (high energy radiation, solar energetic particles or SEPs) consisting of protons, electrons, alpha particles, and plasmas continuously bombards the spacecraft for the months or years of spaceflight.
Items per page:
50
1 – 50 of 5528