Browse Topic: Fire
Direct current (DC) systems are increasingly used in small power system applications ranging from combined heat and power plants aided with photovoltaic (PV) installations to powertrains of small electric vehicles. A critical safety issue in these systems is the occurrence of series arc faults, which can lead to fires due to high temperatures. This paper presents a model-based method for detecting such faults in medium- and high-voltage DC circuits. Unlike traditional approaches that rely on high-frequency signal analysis, the proposed method uses a physical circuit model and a high-gain observer to estimate deviations from nominal operation. The detection criterion is based on the variance of a disturbance estimate, allowing fast and reliable fault identification. Experimental validation is conducted using a PV system with an arc generator to simulate faults. The results demonstrate the effectiveness of the method in distinguishing fault events from normal operating variations. The
NASA has developed a new technology to track the status of, and changes to, enterprise level programmatic operations. Enterprise decision making and operations rely on management of non-traditional configuration management (CM) components like estimates, agreements, goals, policies, etc. Additionally, enterprise operations have unique and diverse contexts/ environments such as reviews, workshops, fire drills, Office of Management and Budget (OMB) and Congressional actions, procurements, etc.
This document is reissued for application to helicopters. It is primarily intended to apply to the engine or engines, but it shall also apply to fire protection of lines, tanks, combustion heaters, and auxiliary powerplants (APU). Post-crash fire protection is also discussed.
New smart sensors can help detect dangerous internal failures in lithium-ion batteries before they escalate into fires or explosions, say researchers from the University of Surrey. Lithium-ion batteries are at the heart of the global shift to electric vehicles and renewable energy — but when they fail, the results can be devastating.
Forest fire prevention and control agencies in São Carlos, in the interior of the state of São Paulo, Brazil, will soon have help from the sky to detect fires more quickly and combat them before they grow out of control and cannot be extinguished.
Author turns classroom quest into a tome for anyone who wants to engineer safer cars. A seasoned engineer with a multi-discipline background in electronics, manufacturing systems, and forensic analysis, Erbis Biscarri brought decades of experience to the topic of automotive safety in his latest work. Biscarri's book, Fires in Conventional and Electrified Vehicles: Theory, Prevention, and Analysis, published by SAE International, offers a comprehensive guide to one of the industry's most pressing challenges: vehicle fire safety. In addition to technical analysis, Biscarri said, the book helps clarify common misconceptions, especially those surrounding electric vehicle fires, by grounding the discussion in documented incident data and established technological principles.
From a quick access port to help firefighters fight EV battery fires faster to preventing public charger vandalism, here are some safety developments that haven't made the big headlines. Most of the news surrounding EV technological development in the past year has been around batteries and charging capacity. But engineers have also been busy working on security and safety issues, from charging stations to finding ways for firefighters to better douse fires. We've rounded up a few of the most notable and novel efforts below.
This document is reissued for application to helicopters.
This SAE Aerospace Recommended Practice (ARP) establishes general criteria for the installation (e.g., type, location, accessibility, stowage) and crew member training needed for portable fire extinguishers.
With the exponential rise in drone activity, safely managing low-flying airspace has become challenging — especially in highly populated areas. Just last month an unauthorized drone collided with a ‘Super Scooper’ aircraft above the Los Angeles wildfires, grounding the aircraft for several days and hampering the firefighting efforts.
Innovators at NASA Johnson Space Center have designed a pneumatic nail penetration trigger system that drives a Li-ion battery cell into thermal runaway using a tungsten nail. By creating a targeted rupture in a battery cell’s outer casing, researchers can initiate an exothermic chain reaction within the battery, much like a short circuit, causing a spike in temperature that can lead to battery failure, fire or explosion.
Conventional solid polymer electrolyte batteries perform poorly due to structural limitations that hinder an optimal electrode contact. This could not eliminate the issue of “dendrites”, where lithium grows in tree-like structures during repeated charging and discharging cycles. Dendrites are a critical issue, as an irregular lithium growth can disrupt battery connections, potentially causing fires and explosions.
Batteries in electric vehicles can fail quickly, sometimes catching fire without much warning. Sandia National Laboratories is working to detect these failures early and provide sufficient warning time to vehicle occupants.
Nowadays, there are many technologies emerging like firefighting robots, quadcopters, and drones which are capable of operating in hazardous disaster scenarios. In recent years, fire emergencies have become an increasingly serious problem, leading to hundreds of deaths, thousands of injuries, and the destruction of property worth millions of dollars. According to the National Crime Records Bureau (NCRB), India recorded approximately 1,218 fire incidents resulting in 1,694 deaths in 2020 alone. Globally, the World Health Organization (WHO) estimates that fires account for around 265,000 deaths each year, with the majority occurring in low- and middle-income countries. The existing fire-extinguishing systems are often inefficient and lack proper testing, causing significant delays in firefighting efforts. These delays become even more critical in situations involving high-rise buildings or bushfires, where reaching the affected areas is particularly challenging. The leading causes of
In the fall of 2023, NASA hot fire tested an aluminum-based, 3D-printed rocket engine nozzle. What made the event remarkable is that aluminum isn’t typically used for additive manufacturing because the process causes it to crack, and it isn’t used in rocket engines due to its low melting point. Yet the test was a success.
Letter from the Focus Issue Editors
Notice of Withdrawal
A global team of researchers and industry collaborators led by RMIT University has invented recyclable ’water batteries’ that won’t catch fire or explode.
Where there’s smoke, there will be no fire because a drone is already on the scene. At least that’s the hope of Zhaodan Kong, Professor in the Department of Mechanical and Aerospace Engineering, and his team at the University of California, Davis.
Northrop Grumman Corporation is developing AN/APG-85, an advanced Active Electronically Scanned Array (AESA) radar for the F-35 Lightning II. Northrop Grumman currently manufactures the AN/APG-81 active electronically scanned array (AESA) fire control radar, the cornerstone to the F-35 Lightning II’s sensor suite.
Rydberg Technologies, an Ann Arbor, Michigan-based quantum technology startup, demonstrated the use of an atomic receiver for long-range RF applications during the NetModX23 event hosted by the U.S. Army Combat Capabilities Development Command (DEVCOM) C5ISR Center in December. The 2023 edition of NetModX featured 10 weeks of experimentation spanning 62 different technologies across 17 focus areas and five modernization priorities including “Future Vertical Lift, Long-Range Precision Fires, Network, Next Generation Combat Vehicle and Soldier Lethality,” according to the Army. A major goal sought by the C5ISR Center with NetModX is to take technologies that are nearing maturity from research labs directly into operational environments for assessments by active warfighters.
Cage structures made with nanoparticles could be a step toward making organized nanostructures with mixed materials, and researchers at the University of Michigan have shown how to achieve this through computer simulations.
The world community is constantly and rapidly moving toward the search for alternative and ecologically clean energy sources, including for transport, and Russia’s war against Ukraine only intensified and accelerated such processes. This trend in transport is reflected in the spread of battery-powered electric vehicles (BEVs) with zero emission of harmful gases. Electric cars are experiencing a rapid increase in numbers, accompanied by the emergence of lesser-known risks. Among these hazards are the occurrence of fires in electric vehicles, primarily caused by component failures, notably the widely prevalent lithium-ion batteries. Fires of such cars have a different character compared to fires of vehicles powered by an internal combustion engine vehicle (ICEV). In this study, using the fire dynamics simulator developed by the National Institute of Standards and Technology, a BEV fire was simulated on the example of the Tesla Model S. For this, a description of the objects and their
Items per page:
50
1 – 50 of 958