Browse Topic: Engine cooling systems

Items (3,508)
In automotive applications a power electronic converter is used for energy conversion between battery and electrical machine. For high performance drives a lightweight design is demanded. Additionally, a higher efficiency of the inverter results in lower cooling requirements but is often achieved by increasing component weight. Hence, thermal modeling of the components and their interactions is essential to determine the best compromise between weight, efficiency and cooling requirements. In traction inverters the DC-link capacitors, power modules, high voltage electrical connections and low voltage devices dissipate power. In this paper the focus is on the thermal modeling of the DC-link capacitor, power modules and high voltage electrical connections and their system, as the performance of the inverter is defined by these components. The thermal models are derived based on physical properties and geometries. First, the DC-link capacitor thermal model is presented and considers the
Blaschke, Wolfgang MaximilianMengoni, LeonardPflüger, RobinKulzer, André Casal
One of the most important components of an electric vehicle is the drive motor. Induction motors are often used for this purpose. During operation of these motors, power loss occurs, especially at high speeds. This power loss corresponds, among other things, to the sum of winding losses, iron core losses and mechanical losses. The power losses generate heat, which causes the temperature in the rotor and stator to rise. The increase in temperature of the components inside the motor can lead to premature wear and fatigue failure. To prevent overheating, the motors are air- or water-cooled. Water cooling can be achieved, for example, by means of jacket cooling. Here, the heat generated is dissipated directly by forced convection. However, the cooling jacket makes it difficult to determine the temperature inside the motor. Determining these temperatures is necessary to protect the motor from premature fatigue. The temperatures inside the motor during operation are of particular interest
Schamberger, StephanieReuss, Hans-Christian
To ensure the effective operation of engine cooling systems in agricultural tractors, several critical parameters must be considered, including grille opening area and location, grille resistance, front-end blockage, fan speed, and coolant flow rate. While grille design has been moderately explored for highway vehicles, research specific to grille configuration in agricultural tractors remains limited. This study investigates the influence of grille location, grille resistance (modeled using porous inertial and viscous resistance coefficients) front-end blockage, fan speed, and coolant flow rate on radiator top tank temperature (TTT) using Computational Fluid Dynamics (CFD). The analysis is conducted in two phases: first, the effects of grille opening area and location, grille resistance, and front-end blockage are evaluated under fixed fan speed and coolant flow rate; second, an orthogonal array design of experiments is employed to rank the influence of grille opening area, fan speed
Subramani, SridharanBaskar, SubramaniyanGopinathan, Nagarajan
Vibration testing is an essential component of automotive product development, ensuring that components such as engines, transmissions, and electronic systems perform reliably under various operating conditions. The adoption of electronics in the automotive industry, particularly during the 1950s and 1960s, marked a shift in vibration testing approaches, moving from primarily low-frequency tests to methods that could address high-frequency vibrations as well. This evolution highlights the need for effective vibration fixture designs that can simulate real-world conditions, enabling manufacturers to detect potential weaknesses before products are integrated into vehicles. A key aspect of vibration testing is the identification of resonant frequencies within components. The coupled mass-spring-damper system, for example, can exhibit multiple resonances characterized by a Bode Diagram, where the Q factor technique is utilized to assess damping levels. Accurate vibration analysis can be
Shinde, PramodkumarShah, Viren
Traditionally, off-highway vehicles like tractors and construction machinery have relied on hydraulic, viscous, or fixed fans to meet the cooling demands of diesel engines. These fans draw power from the engine, impacting fuel consumption and contributing to noise levels that affect operator comfort. Recently, the adoption of electric fans in off-highway applications has increased due to their energy efficiency, lower noise, and flexible design. Electric fans can cool various components, such as radiators and condensers, and can be positioned for optimal performance. They are easily selected from established supplier catalogs based on application requirements like machine voltage, fan size, and type. This study explores various fan arrangements, including pusher and puller types, and multiple electrical fan banking based on cooler zones to improve cooling system performance without changing cooler size or specifications. A mathematical flow model was developed for both setups: the
Durairaj, RenganathanDewangan, NitinAnand, KetanBhujbale, Sagar
This study presents a methodology to develop a new 25kWh battery pack for off-highway application. Initially an enclosure space is extracted from tractor model maintaining minimum space with adjacent components. Based on available space, various combination of cell form factors and different cell chemistries are evaluated considering operating ambient temperature range (-20 to 45 deg C) and charge/discharge rate 1C. Cylindrical NMC type cell with indirect cooling system fulfils all our technical requirements. However, complete battery pack thermal simulation is carried out for ensuring battery pack safety and limited deterioration with different discharge rate and wider temperature range. The battery pack model contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. Cell characterization experimental data is used for estimating cell thermal capacity and IR behavior. Battery pack model is tested with different Charge/discharge rates. Five
Nain, AjayLamba, Shamsherjayagopal, Sdhir, Anish
In the evolving landscape of energy efficiency and sustainability, understanding machine behavior in real-world operating conditions is essential. This solution introduces a data-driven Energy Management Dashboard designed to analyze and report critical machine parameters by leveraging LFI (Leverage Fleet Intelligence) and LFI Data (Local Field Intelligence Data). The tool serves as a robust solution for engineering and operations teams to gain actionable insights into machine performance and exposure. By tracking key parameters—such as engine fan speed, coolant temperature, and machine speed—across a fleet of machines (with support for over 1100 unique signals), the solution enables real-time monitoring and historical analysis. It helps identify when parameters go outside their specified limits and assesses the resulting impact on overall machine performance. The core functionality includes: Monitoring machine operating conditions under real field environments. Correlating parameter
Nandre, RatnapratikJoshi, Aaditya
Engine is the prime mover of an automobile. Tractor is also equipped with engine of higher capacity to meet the power requirement. Apart from powering the wheels, engine also runs different accessories such as water pump, alternator, AC pump, Oil pump and so on. The power from the engine is transferred to accessories via chain drive or belt drive through the crankshaft pulley. During field testing, in one of the tractors, engine pulley mounting bolt failure was reported. The failure resulted in immediate seizure of the engine making the tractor standstill in the field. The root cause of the failure was unknown. Hence, there was a need to develop a component or subsystem level test methodology to address the issue quickly. In the current scope, an attempt was made to develop a subsystem level laboratory test methodology to simulate the failure mode and to validate the design modifications in an accelerated manner. The failure mode was simulated in lab and different design iterations
Chakraborty, Abhirup
Agricultural tractors require self-cleaning and cooling technology, especially in hot and dusty environments. This study introduces a novel reversible fan system designed which is incorporating a manually operated lever-type connection mechanism as an alternative to conventional pneumatic systems. Traditional reversible fans often rely on pneumatic actuators for blade rotation control, which can introduce complexity, maintenance challenges, and energy inefficiency. The proposed design replaces pneumatic components with a mechanically optimized lever linkage system, enabling users to manually reverse the fan’s airflow direction with minimal effort. This innovation enhances operational simplicity, reduces dependency on compressed air systems, and low costs as compared to conventional type reversible fan. The lever mechanism, engineered for ergonomic usability, ensures rapid switching between sucker and pusher modes, optimizing the fan’s utility in applications such as dust removal
Debbarma, RespectParwal, MahendraBaghel, Anand
The water pump is the crucial component of the engine cooling system. It is usually designed considering as rated conditions the ones evaluated when the engine delivers its maximum power. This results in an overdesign of the pump, considering that almost never the engine delivers the maximum power, in usual operation. At these conditions, in fact, flow rate and pressure delivered reach the maximum values, which are not needed to cool the engine in most probable operating conditions. In fact, considering the real operating conditions during a typical driving mission or a homologation cycle, the mechanical power is far away from the maximum datum, as well as the cooling flow rate and pressure delivered by the pump. To a so unbalanced design for the pump corresponds a low efficiency of it, being the technology oriented to use a centrifugal type, whose efficiency is quite dependent on speed of revolution and flow rate delivered. Hence, modifying the design point of the pump causes a
Di Battista, DavideDeriszadeh, AliDi Prospero, FedericoDi Giovine, GiammarcoDi Bartolomeo, MarcoFatigati, FabioCipollone, Roberto
Water injection in diesel engines is a well-known method of lowering combustion temperatures and thus reducing nitrogen oxide (NOx) emissions. In this study, the influence of water injection in hydrogenated vegetable oil (HVO) operation on NOx formation, particulate emissions and ignition delay is analyzed in comparison to diesel operation on a John Deere JD4045 tractor engine. Both the fuel (HVO) and the water injection system were designed as ‘drop-in’ solutions that enable rapid implementation to reduce emissions, even in existing vehicle fleets. The standard engine control unit of the JD4045 engine was therefore used for the tests. A single water nozzle was installed downstream the charge air cooler to integrate a water injection system. The three operating points of interest were: (1) low speed and high load without exhaust gas recirculation (EGR), (2) high EGR rates at low speed and medium load and (3) the engine's ‘sweet spot’ regarding the emission-tradeoff at high speed and
Fuhrmeister, JonasMayer, SebastianGünthner, Michael
Single-zone cabin climate control systems have been standard for decades in passenger cars. Looking at the technology trend, which is transitioning from single-zone to multi-zone automatic control systems, it is now possible to provide zonal comfort tailored to the individual requirements of each passenger. In current single-zone climate control systems, maintaining the cabin temperature as stated by the passenger has been straightforward and can be achieved with slight calibration efforts using the present set of parameters and sensors until now. In this work, a multi-zone climate system highlighting the importance of individual calibration parameters in improving cabin comfort when transitioning from a single-zone to a multi-zone climate control system is proposed. As multi-zone climate systems are based on passenger set temperature requests for individual zonal comfort, appropriate controller fine-tuning is challenging when an input is taken from various sensed parameters, including
Varma, MohitSwarnkar, Sumit KumarBHOSALE, KRISHNAPatil, PrashantSardesai, Suresh
India, being one of the largest automotive markets has considered various policies affecting fuel efficiency to curb vehicle carbon emissions. In a typical light-duty vehicle (LDV), around 20% of the fuel's energy is used to power the wheels and overcome aerodynamic drag resistance. Aerodynamic drag resistance, influenced by the projected surface area, cooling drag and velocity refers to the resistive force encountered by the vehicle. Furthermore, cooling drag resistance is determined by the effective cooling system architecture and aerodynamic design of the front-end module (FEM), which has major impact on the vehicle's performance and ram curve. In the pursuit of enhancing cooling system architecture, this paper investigates thermal performance and structural integrity of using common fins for both the condenser and radiator to improve the inlet aerodynamic performance which lowers cooling fan power consumption. Preliminary results show a 12% notable reduction in motor power
K, MuthukrishnanVijayaraj, Jayanth MuraliN, AswinNarashimagounder, ThailappanMahobia, Tanmay
In automotive systems, efficient thermal management is essential for refining vehicle performance, enhancing passenger comfort, and reducing MAC Power Consumption. The performance of an air conditioning system is linked to the performance of its condenser, which in turn depends on critical parameters such as the opening area, radiator fan ability and shroud design sealing. The opening area decides the airflow rate through the condenser, directly affecting the heat exchange efficiency. A larger opening area typically allows for greater airflow, enhancing the condenser's ability to dissipate heat. The shroud, which guides the airflow through the condenser, plays a vital role in minimizing warm air recirculation. An optimally designed shroud can significantly improve the condenser's thermal performance by directing the airflow more effectively. Higher fan capacity can increase the airflow through the condenser, improving heat transfer rates. However, it is essential to balance fan
Nayak, Akashlingampelly, RajaprasadNeupane, ManojMittal, SachinKumar, MukeshUmbarkar, Shriganesh
High Performance Resistors (HPR), also known as brake resistors are used in zero emission vehicles (ZEVs) to dissipate excess electrical energy produced during regenerative braking, as heat energy. It is necessary to use a suitable cooling technique to release this heat energy into the atmosphere in a regulated manner. Currently in most of the ZEVs, liquid cooled HPR with its dedicated heat exchanger and other auxiliaries such as pump, surge tank, Coolant and coolant lines, is used which increases the cost, packaging space and assembly time. This paper presents air cooling as a substitute heat-exchanging technique for high-performance resistors which eliminates the need of auxiliaries mentioned above, resulting in space optimization and reduction in assembly time. An air cooled HPR, designed for this study consists of a heat exchanger, which accommodates a resistor wire within its tubes. The design was made to fit commercial vehicle use, specific to trucks, due to packaging constraints
Menariya, Pravin GaneshKumar, VishnuArhanth, MahimaUmesha, SathwikJagadish, Harshitha
Thermal management is critical for modern vehicles, particularly for Zero Emission Vehicles (ZEVs), where maintaining optimal temperature ranges directly influences thermal system efficiency and vehicle range. Accurate prediction of underhood airflow behavior is essential for effective thermal management and also to estimate overall energy consumption by cooling system, with air-side dynamics playing a pivotal role in heat transfer over the heat exchangers of cooling package. Simulation tools like GT-Suite are indispensable for this purpose, enabling engineers to evaluate complex thermal interactions without the cost and time constraints of extensive physical testing. While 3D Computational Fluid Dynamics (CFD) models offer detailed insights into flow characteristics, they are computationally expensive and time consuming. In contrast, 1D models provide faster simulation times, making them ideal for system-level analysis and iterative design processes. However, 1D models inherently lack
Mutyala k, AkhilPudota, PraveenFaseel, IhsanGole, PranaliBashir, Murad
Air filters are critical to vehicle Heating, Ventilation, and Air Conditioning (HVAC) systems, ensuring cabin air quality by trapping dust particles that accumulate over time. However, conventional clogging diagnostics—such as physics-based simulations, empirical models or manual inspection—are often too complex or impractical for in-vehicle deployment. To address this, we present a simple and practical diagnostic approach for real-time detection of cabin filter clogging by continuously monitoring the pressure drop across the filter–evaporator assembly at five blower speed settings. Baseline pressure drop values were established for a clean filter in a production-spec Passenger car and the clogged filter threshold was defined by a 10% reduction in airflow. This corresponded to calibrated pressure drop values of 83, 108, 169, 212 and 256 Pa for blower speeds 1 to 5, respectively. These thresholds were programmed into the vehicle’s climate control ECU. During operation, when the measured
Raj, RohitMohite, YashwantNaik, NiranjanGhate, Pravin
A cold start occurs when the engine is cranked after being off for a long time, enough for its temperature to drop down to the cold ambient levels. Cold start in an engine is a critical phase as it is characterized by elevated emissions. During a cold start, exhaust components such as catalytic converter do not operate in its optimal temperature zone leading to reduced efficiency in emission control. New regulations for engine emissions are becoming stringent for this condition, hence it is important to accurately determine cold start condition in an engine to optimize the emissions control strategy. Accurate engine off time calculation plays a crucial role in cold start detection, emissions control and On-Board Diagnostics (OBD-II) decision making. This engine off time if greater than 6 hours indicates one of the conditions to confirm a cold start. Other conditions such as Ambient temperature and coolant temperature along with the engine off time confirms a cold start. This paper
MUTHA, MAYURESHTalawadekar, PradnyaKale, Upendra
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
Trivedi, ArpitaKumar, RaviMadaan, AshishShrivastava, Pawan
Modern mobility solutions increasingly rely on HVAC systems due to growing transport demands, traffic congestion, and harsh environmental conditions. These systems, comprising a compressor, evaporator, condenser, and thermal expansion valve, require adequate airflow for optimal performance. Insufficient airflow, caused by factors like undersized ducts, improper fan settings, clogged filters, or high static pressures from duct restrictions, significantly hinders cooling capacity. The objective of this study is to develop a predictive model for passenger vehicle AC system performance under controlled environmental conditions. Discrepancies between predicted and desired performance will trigger a structured problem-solving process involving iterative testing, root cause analysis, and the development of corrective measures. The improvements will be focused on the vehicle-level HVAC design, adhering to customer specifications. This research will also establish an experimental validation
Meena, Avadhesh KumarAgarwal, RoopakSharma, KamalKishore, Kamal
Internal combustion (IC) engines experience several parasitic losses at the vehicle level, including those from cooling fans, hydraulic pumps, air compressors, and alternators. These losses limit the available output power for various applications. By replacing a conventional mechanical or hydraulic fan—typically driven by the engine crankshaft or hydraulic motor—with an electrically operated fan, engine frictional losses (fan drag) can be reduced, resulting in a gain in power. The fuel conserved due to the absence of fan drag contributes to usable power for applications. Mechanical fans operate at a fixed drive ratio that is directly proportional to engine speed, while hydraulic fans rely on a hydraulic motor, drawing power from the engine's alternator. In contrast, electric fans can run at constant speeds, independent of engine RPM, providing higher airflow at maximum torque speeds, which mechanical fans cannot achieve. The cooling performance of the engine remains uncompromised, as
Dewangan, NitinKattula, NitinKamal, Ankit
The design of motorcycle engine cooling systems is often hampered by a trade-off between computational efficiency and simulation accuracy, making optimized design iterative and costly. A streamlined, coupled 1D–3D methodology, validated across diverse engine configurations, is needed to address this challenge. This study develops and validates an iterative simulation framework to efficiently optimize cooling systems for various motorcycle engines. The 1D system model defines the performance targets, while 3D CFD analysis enables detailed component optimization (water jackets, radiator airflow); an iterative process ensures the target fulfillment. The 1D–3D coupling analysis methodology is applied to single-, two-, and four-cylinder engines. Results show that the coolant flow velocity within the water jackets are sufficient to ensure effective heat removal of engines and confirms the rational layout design of water jackets. The radiator inlet coolant temperature for the original design
Tan, LibinYuan, Yuejin
The latest electric vehicles (EVs) have advanced thermal management systems to regulate heat distribution across the vehicle, thereby improving the driving range. the author thinks that a key factor, which is influencing thermal performance during driving, is the effect of the driving-wind. However, EVs performance is evaluated by using a chassis dynamometer (CHDY), where it remains unclear whether the driving-wind specifications, which defined in the Worldwide Harmonized Light Vehicles Test Procedure (WLTP), adequately replicate real-world conditions. This study investigates both internal combustion engine vehicles and several electrical vehicles to estimate the potential discrepancies in WLTP’s driving wind requirements. Specifically, the author modified the CHDY vehicle-cooling fan to more accurately simulate wind speed at the front and underside of the vehicle under real-world driving conditions, which drove at outside road. The author analyzed the impact of these modifications
Okui, Nobunori
Manufacturers of fans/propellers using hydraulically-actuated pitch control claim energy efficiency gains up to 75% over fixed-pitch solutions. Unfortunately, the added cost, weight, reliability and maintenance considerations of hydraulic solutions has limited the introduction of pitch control for small-to-medium fans and propellers leaving a large market unserved by the efficiency gains associated with changing the pitch of a blade when the blade shaft’s speed changes. Pilot Systems International and Cool Mechatronics are developing an electromagnetically controlled pitch (EMCP) fan/propeller that will produce a new pareto optimal in size, weight, power, cost and cooling (SWaP-C2). The technology will substantially improve the efficiency of military ground vehicle cooling fans which is typically the third greatest power draw (~20kW)1 in the entire vehicle and provide critical performance improvements during silent watch. It will be a key enabler for the electrification of aircraft.
McBain, Jordan
In the present article it is investigated why active grille shutters (AGS) can have very different aerodynamic characteristics, ranging from progressive to strongly degressive, and which factors influence them. For this purpose, the authority concept known from the field of heating, ventilation, and air-conditioning (HVAC) is referred to. According to this theory, the control characteristics of dampers depend primarily on the ratio of the pressure losses at the fully open damper to the pressure losses of the rest of the system. The adaptation of the concept to the automotive field shows that, in addition to the pressure losses, the geometry of the cooling air ducting plays a decisive role in motor vehicles. The effect of driving speed and fan operation on the characteristic curves is also being investigated. In addition, authority theory can also be used to derive the conditions under which the opening characteristic curve of an AGS provides a good prediction of the real characteristic
Wolf, Thomas
In Diesel engines, charge motion usually consists of swirl and squish flow patterns. Traditionally, swirl generation is controlled through the design of the intake ports, presenting a trade-off between swirl and mass flow rate. An alternative approach to generate swirl is to use vortex-generating jets in the intake port. As a comparative basis for this approach a Pareto front was established between swirl and mass flow rate based solely on geometric variations. A new fully parametric geometry was deployed, with two intake ports per cylinder adhering to some constraints. Stationary flow-bench test setup was modeled, where a blower draws air through the intake ports at a constant pressure difference. The Pareto front was generated using semi-randomly selected geometries in combination with automated unsteady RANS (URANS) simulations, while scale adaptive simulations (SAS) were also employed on select geometries. These turbulence modeling approaches were explored using the OpenFOAM
Kahraman, Ali BerkRitter, JohannEilts, PeterScholz, Peter
BATSS project objective is to design a safe, effective and sustainable battery pack. To achieve this, the battery system (BS) will be mechanically, electrically and thermally optimized using cutting edge technology. Consequently, the battery system includes innovative 4695 cylindrical cells and advanced thermal management, carried out with the Miba FLEXCOOLER®. This work focuses on the BS thermal optimization using system simulation tools. First a simplified version of the BS is simulated with all physical phenomena involved in thermal behavior to identify first order parameters. It appears that various BS component and heat transfer can be neglected in comparison with the heat transfer due to cooling system. Then the simulation of the full battery system is conducted under nominal condition. Cooling system appears to be performant as it allows a controlled averaged temperature and very low cell-to-cell temperature variability. Finally, impact of both design and operating parameters is
Chevillard, StephanePopp, HartmutGalarza, IgorPetit, Martin
Nowadays, electric vehicles (EVs) are considered one of the most promising solutions for reducing pollutant emissions related to the road transportation sector. Although these vehicles have achieved a high level of reliability, various challenges about Li-ion storage systems and their thermal management systems remain unresolved. This work proposes a numerical and experimental study of a lithium-ion storage cell with a scaled battery thermal management system (BTMS). In particular, a channel plate for liquid cooling is specifically designed and manufactured for the cell under test. The BTMS is based on the development of an indirect liquid cooling system with optimal control of the coolant flow rate to fulfill the thermal requirements of the system. A lumped parameters approach is used to simulate the electro-thermal behavior of the system and to analyze the effects of real-time control strategies on the temperature of the cell under test. An ad-hoc experimental test rig is set up for
Capasso, ClementeCastiglione, TeresaPerrone, DiegoSequino, Luigi
The temperature evolution of lithium-ion cells under operation has a significant impact on their performance, efficiency, and aging. Modeling the thermal status of lithium-ion cells is crucial to predict and prevent undesired working conditions or even failures. In this context, this paper presents a mathematical model to predict the transient temperature distributions of a lithium-ion polymer battery (LiPo) cooled by forced convection via a specially designed channel plate for liquid cooling. For the battery modeling, Newman’s pseudo-2D approach was used to perform a computational fluid dynamics (CFD) analysis. It assumes that the porous electrode is made of equally sized, isotropic, homogeneous spherical particles, which results in smooth, uniform intercalation/de-intercalation of lithium inside the electrode. Also, the channel plate geometry and the cooling liquid fluid-dynamic behavior were simulated with a commercial code based on the finite volume method. The model has been set
Ferrari, CristianMagri, LucaSequino, Luigi
Effective thermal management is essential for optimizing the performance and longevity of lithium-ion battery packs, particularly in electric vehicles facing extreme temperature conditions. This study investigates the performance of an indirect liquid cooling system used for pre-cooling stationary electric vehicle battery packs, focusing on scenarios such as vehicle sleep mode in high-temperature conditions. The cooling system, which utilizes a water-glycol mixture flowing at 1.2 L/min, was tested on a battery pack consisting of 36 prismatic battery cells in a thermally isolated chamber, subjected to initial temperatures of 50.0°C, 60.0°C, and 69.5°C. To assess the thermal behavior, 25 thermocouples were strategically positioned on the battery surface, and inlet coolant temperature was monitored via an additional thermocouple. An exponential cooling response was observed across all temperature cases, with maximum temperature difference between the hottest and coldest cells reaching 7.6
Darvish, HosseinCarlucci, Antonio PaoloFicarella, AntonioLaforgia, Domenico
The commercial vehicle industry continues to move in the direction of lower emissions while reducing its carbon footprint. This study focuses on hydrogen internal combustion engines (H2-ICE) since it offers a zero-carbon solution to the industry while showing very low NOx emissions when coupled to a conventionally sized aftertreatment SCR system. This work highlights modeling efforts for analyzing key boosting configurations to operate a hydrogen engine at high lambda (relative air–fuel ratio) for lowering NOx, maintain the aftertreatment system reasonable in size, and improving brake thermal efficiency (BTE). GT-Power was used to model H2-ICE engines from 13L to 19L in displacement with different boosting architectures. Key configurations include a variable geometry turbine (VGT) turbocharger coupled with a supercharger (SC), a VGT with higher engine displacement, and a VGT coupled in series with a fixed geometry turbine (FGT) turbocharger. An exhaustive study comparing these boosting
Gurjar, ShubhamMcCarthy, Jr., James E.Manickavasagan, ThirumoolanChaudhari, Amol S.Nimeshkumar, ParmarBachu, PruthviBitsis, Christopher
This SAE Recommended Practice is applicable to all liquid-to-air, liquid-to-liquid, air-to-liquid, and air-to-air heat exchangers used in vehicle and industrial cooling systems.
Cooling Systems Standards Committee
Engine performance is affected by cooling airflow onto the engine cooling module. During initial design, frontal openings, grills, cooling module size, placement, and location are optimized to ensure sufficient airflow onto the cooling module. Currently, design concepts are validated using 3D computational fluid dynamics (CFD) simulations performed iteratively on full vehicle models to predict and optimize cooling airflow onto cooling modules. Each design concept iteration consumes significant time and resources. This study introduces a machine learning (ML) model to streamline underhood airflow prediction, reducing reliance on iterative CFD. Previous CFD simulation data is used to create a training dataset, which calibrates the ML model, describing underhood airflow as a function of input parameters. The relevant ML algorithm is used to calibrate the model, perform data fitting of the training values, after which a testing dataset is created to validate the model for a range of design
Ayyar, EshaanKumar, VivekKulkarni, Prasad
The primary approach to meet the objectives of the EU Heavy Duty CO2 Regulation involves decarbonizing the road transport sector by battery electric vehicles (BEV) or hydrogen-fueled vehicles. Even though the well-to-wheel efficiency of hydrogen-fueled powertrains like fuel cell electric vehicles (FCEV) and H2-internal combustion engines (H2-ICE) is much lower in comparison to BEV, they are better suited for on-road heavy-duty trucks, long haul transport missions and regions with scarce charging infrastructure. Hence, this paper focuses on heavy-duty FCEVs and their overall energetic efficiency enhancement by intelligently managing energy transfer across coolant circuit boundaries through waste heat recovery, while ensuring that all relevant components remain within required temperature boundaries under both cold and hot ambient conditions. Results were obtained using a 1D-model that comprises all thermal fluid circuits (refrigerant, coolant, air) created through GT-Suite software
Uhde, SophiaLanghorst, ThorstenWuest, MarcelNaber, Dirk
The document provides clarity related to multiple temperature coolant circuits used with on-highway and off-highway, gasoline, and light-duty to heavy-duty diesel engine cooling systems, or hybrid vehicle systems. These multiple temperature systems include engine jacket coolant plus at least one lower temperature system. Out of scope are the low temperature systems used in electric vehicles. This subject is covered in SAE J3073. Note that some content in SAE J3073 is likely to be of interest for hybrid vehicles. Out of scope are the terms and definitions of thermal flow control valves used in either low-temperature or high-temperature coolant circuits. This subject is covered in SAE J3142.
Cooling Systems Standards Committee
Items per page:
1 – 50 of 3508