Browse Topic: Coolants

Items (1,362)
In automotive applications a power electronic converter is used for energy conversion between battery and electrical machine. For high performance drives a lightweight design is demanded. Additionally, a higher efficiency of the inverter results in lower cooling requirements but is often achieved by increasing component weight. Hence, thermal modeling of the components and their interactions is essential to determine the best compromise between weight, efficiency and cooling requirements. In traction inverters the DC-link capacitors, power modules, high voltage electrical connections and low voltage devices dissipate power. In this paper the focus is on the thermal modeling of the DC-link capacitor, power modules and high voltage electrical connections and their system, as the performance of the inverter is defined by these components. The thermal models are derived based on physical properties and geometries. First, the DC-link capacitor thermal model is presented and considers the
Blaschke, Wolfgang MaximilianMengoni, LeonardPflüger, RobinKulzer, André Casal
One of the most important components of an electric vehicle is the drive motor. Induction motors are often used for this purpose. During operation of these motors, power loss occurs, especially at high speeds. This power loss corresponds, among other things, to the sum of winding losses, iron core losses and mechanical losses. The power losses generate heat, which causes the temperature in the rotor and stator to rise. The increase in temperature of the components inside the motor can lead to premature wear and fatigue failure. To prevent overheating, the motors are air- or water-cooled. Water cooling can be achieved, for example, by means of jacket cooling. Here, the heat generated is dissipated directly by forced convection. However, the cooling jacket makes it difficult to determine the temperature inside the motor. Determining these temperatures is necessary to protect the motor from premature fatigue. The temperatures inside the motor during operation are of particular interest
Schamberger, StephanieReuss, Hans-Christian
This study presents a methodology to develop a new 25kWh battery pack for off-highway application. Initially an enclosure space is extracted from tractor model maintaining minimum space with adjacent components. Based on available space, various combination of cell form factors and different cell chemistries are evaluated considering operating ambient temperature range (-20 to 45 deg C) and charge/discharge rate 1C. Cylindrical NMC type cell with indirect cooling system fulfils all our technical requirements. However, complete battery pack thermal simulation is carried out for ensuring battery pack safety and limited deterioration with different discharge rate and wider temperature range. The battery pack model contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. Cell characterization experimental data is used for estimating cell thermal capacity and IR behavior. Battery pack model is tested with different Charge/discharge rates. Five
Nain, AjayLamba, Shamsherjayagopal, Sdhir, Anish
In the evolving landscape of energy efficiency and sustainability, understanding machine behavior in real-world operating conditions is essential. This solution introduces a data-driven Energy Management Dashboard designed to analyze and report critical machine parameters by leveraging LFI (Leverage Fleet Intelligence) and LFI Data (Local Field Intelligence Data). The tool serves as a robust solution for engineering and operations teams to gain actionable insights into machine performance and exposure. By tracking key parameters—such as engine fan speed, coolant temperature, and machine speed—across a fleet of machines (with support for over 1100 unique signals), the solution enables real-time monitoring and historical analysis. It helps identify when parameters go outside their specified limits and assesses the resulting impact on overall machine performance. The core functionality includes: Monitoring machine operating conditions under real field environments. Correlating parameter
Nandre, RatnapratikJoshi, Aaditya
A cold start occurs when the engine is cranked after being off for a long time, enough for its temperature to drop down to the cold ambient levels. Cold start in an engine is a critical phase as it is characterized by elevated emissions. During a cold start, exhaust components such as catalytic converter do not operate in its optimal temperature zone leading to reduced efficiency in emission control. New regulations for engine emissions are becoming stringent for this condition, hence it is important to accurately determine cold start condition in an engine to optimize the emissions control strategy. Accurate engine off time calculation plays a crucial role in cold start detection, emissions control and On-Board Diagnostics (OBD-II) decision making. This engine off time if greater than 6 hours indicates one of the conditions to confirm a cold start. Other conditions such as Ambient temperature and coolant temperature along with the engine off time confirms a cold start. This paper
MUTHA, MAYURESHTalawadekar, PradnyaKale, Upendra
Single-zone cabin climate control systems have been standard for decades in passenger cars. Looking at the technology trend, which is transitioning from single-zone to multi-zone automatic control systems, it is now possible to provide zonal comfort tailored to the individual requirements of each passenger. In current single-zone climate control systems, maintaining the cabin temperature as stated by the passenger has been straightforward and can be achieved with slight calibration efforts using the present set of parameters and sensors until now. In this work, a multi-zone climate system highlighting the importance of individual calibration parameters in improving cabin comfort when transitioning from a single-zone to a multi-zone climate control system is proposed. As multi-zone climate systems are based on passenger set temperature requests for individual zonal comfort, appropriate controller fine-tuning is challenging when an input is taken from various sensed parameters, including
Varma, MohitSwarnkar, Sumit KumarBHOSALE, KRISHNAPatil, PrashantSardesai, Suresh
High Performance Resistors (HPR), also known as brake resistors are used in zero emission vehicles (ZEVs) to dissipate excess electrical energy produced during regenerative braking, as heat energy. It is necessary to use a suitable cooling technique to release this heat energy into the atmosphere in a regulated manner. Currently in most of the ZEVs, liquid cooled HPR with its dedicated heat exchanger and other auxiliaries such as pump, surge tank, Coolant and coolant lines, is used which increases the cost, packaging space and assembly time. This paper presents air cooling as a substitute heat-exchanging technique for high-performance resistors which eliminates the need of auxiliaries mentioned above, resulting in space optimization and reduction in assembly time. An air cooled HPR, designed for this study consists of a heat exchanger, which accommodates a resistor wire within its tubes. The design was made to fit commercial vehicle use, specific to trucks, due to packaging constraints
Menariya, Pravin GaneshKumar, VishnuArhanth, MahimaUmesha, SathwikJagadish, Harshitha
The design of motorcycle engine cooling systems is often hampered by a trade-off between computational efficiency and simulation accuracy, making optimized design iterative and costly. A streamlined, coupled 1D–3D methodology, validated across diverse engine configurations, is needed to address this challenge. This study develops and validates an iterative simulation framework to efficiently optimize cooling systems for various motorcycle engines. The 1D system model defines the performance targets, while 3D CFD analysis enables detailed component optimization (water jackets, radiator airflow); an iterative process ensures the target fulfillment. The 1D–3D coupling analysis methodology is applied to single-, two-, and four-cylinder engines. Results show that the coolant flow velocity within the water jackets are sufficient to ensure effective heat removal of engines and confirms the rational layout design of water jackets. The radiator inlet coolant temperature for the original design
Tan, LibinYuan, Yuejin
BATSS project objective is to design a safe, effective and sustainable battery pack. To achieve this, the battery system (BS) will be mechanically, electrically and thermally optimized using cutting edge technology. Consequently, the battery system includes innovative 4695 cylindrical cells and advanced thermal management, carried out with the Miba FLEXCOOLER®. This work focuses on the BS thermal optimization using system simulation tools. First a simplified version of the BS is simulated with all physical phenomena involved in thermal behavior to identify first order parameters. It appears that various BS component and heat transfer can be neglected in comparison with the heat transfer due to cooling system. Then the simulation of the full battery system is conducted under nominal condition. Cooling system appears to be performant as it allows a controlled averaged temperature and very low cell-to-cell temperature variability. Finally, impact of both design and operating parameters is
Chevillard, StephanePopp, HartmutGalarza, IgorPetit, Martin
Nowadays, electric vehicles (EVs) are considered one of the most promising solutions for reducing pollutant emissions related to the road transportation sector. Although these vehicles have achieved a high level of reliability, various challenges about Li-ion storage systems and their thermal management systems remain unresolved. This work proposes a numerical and experimental study of a lithium-ion storage cell with a scaled battery thermal management system (BTMS). In particular, a channel plate for liquid cooling is specifically designed and manufactured for the cell under test. The BTMS is based on the development of an indirect liquid cooling system with optimal control of the coolant flow rate to fulfill the thermal requirements of the system. A lumped parameters approach is used to simulate the electro-thermal behavior of the system and to analyze the effects of real-time control strategies on the temperature of the cell under test. An ad-hoc experimental test rig is set up for
Capasso, ClementeCastiglione, TeresaPerrone, DiegoSequino, Luigi
The temperature evolution of lithium-ion cells under operation has a significant impact on their performance, efficiency, and aging. Modeling the thermal status of lithium-ion cells is crucial to predict and prevent undesired working conditions or even failures. In this context, this paper presents a mathematical model to predict the transient temperature distributions of a lithium-ion polymer battery (LiPo) cooled by forced convection via a specially designed channel plate for liquid cooling. For the battery modeling, Newman’s pseudo-2D approach was used to perform a computational fluid dynamics (CFD) analysis. It assumes that the porous electrode is made of equally sized, isotropic, homogeneous spherical particles, which results in smooth, uniform intercalation/de-intercalation of lithium inside the electrode. Also, the channel plate geometry and the cooling liquid fluid-dynamic behavior were simulated with a commercial code based on the finite volume method. The model has been set
Ferrari, CristianMagri, LucaSequino, Luigi
Effective thermal management is essential for optimizing the performance and longevity of lithium-ion battery packs, particularly in electric vehicles facing extreme temperature conditions. This study investigates the performance of an indirect liquid cooling system used for pre-cooling stationary electric vehicle battery packs, focusing on scenarios such as vehicle sleep mode in high-temperature conditions. The cooling system, which utilizes a water-glycol mixture flowing at 1.2 L/min, was tested on a battery pack consisting of 36 prismatic battery cells in a thermally isolated chamber, subjected to initial temperatures of 50.0°C, 60.0°C, and 69.5°C. To assess the thermal behavior, 25 thermocouples were strategically positioned on the battery surface, and inlet coolant temperature was monitored via an additional thermocouple. An exponential cooling response was observed across all temperature cases, with maximum temperature difference between the hottest and coldest cells reaching 7.6
Darvish, HosseinCarlucci, Antonio PaoloFicarella, AntonioLaforgia, Domenico
The primary approach to meet the objectives of the EU Heavy Duty CO2 Regulation involves decarbonizing the road transport sector by battery electric vehicles (BEV) or hydrogen-fueled vehicles. Even though the well-to-wheel efficiency of hydrogen-fueled powertrains like fuel cell electric vehicles (FCEV) and H2-internal combustion engines (H2-ICE) is much lower in comparison to BEV, they are better suited for on-road heavy-duty trucks, long haul transport missions and regions with scarce charging infrastructure. Hence, this paper focuses on heavy-duty FCEVs and their overall energetic efficiency enhancement by intelligently managing energy transfer across coolant circuit boundaries through waste heat recovery, while ensuring that all relevant components remain within required temperature boundaries under both cold and hot ambient conditions. Results were obtained using a 1D-model that comprises all thermal fluid circuits (refrigerant, coolant, air) created through GT-Suite software
Uhde, SophiaLanghorst, ThorstenWuest, MarcelNaber, Dirk
The document provides clarity related to multiple temperature coolant circuits used with on-highway and off-highway, gasoline, and light-duty to heavy-duty diesel engine cooling systems, or hybrid vehicle systems. These multiple temperature systems include engine jacket coolant plus at least one lower temperature system. Out of scope are the low temperature systems used in electric vehicles. This subject is covered in SAE J3073. Note that some content in SAE J3073 is likely to be of interest for hybrid vehicles. Out of scope are the terms and definitions of thermal flow control valves used in either low-temperature or high-temperature coolant circuits. This subject is covered in SAE J3142.
Cooling Systems Standards Committee
The high-performance electric sports cars market is expected to register rapid development in the next years, driven by a different attitude of racing enthusiasts toward electric vehicles. The improvements in battery technology are reinforcing consumer confidence and interest in electric sports vehicles, making them more attractive to enthusiasts and accelerating their adoption. Batteries have been used in high heat generation conditions more often with fast charging and discharging. Therefore, the need for more advanced battery thermal management systems (BTMS) has been increasing in recent years. Vegetable oil, owing to its unique availability and biodegradability, is considered as a viable alternative to fossil fuel-based cooling fluids in immersion cooling systems. In the present work, the feasibility of using vegetable oil in immersion cooling under high discharge conditions is studied by comparing it with four types of fossil fuel-based cooling fluids. Immersion cooling was
Hong, HanchiSong, XiangShi, Xud’Apolito, LuigiXin, Qianfan
Improving electric vehicles’ overall thermal management strategy can directly or indirectly improve battery efficiency and vehicle range [1]. In this study, the effect of the coolant type used in BTMS (battery thermal management system) units used for heating batteries in cold weather conditions was investigated in electric buses. In this investigation, tests were performed with two types of antifreeze, which have different characteristics. The study evaluated the impact of coolant flow, BTMS circulation pump performance, and battery heating using these two types of antifreeze in the BTMS coolant line. In addition to carrying out tests, 1D computational fluid dynamics models’ simulations were carried out for both types of antifreeze, and the results were validated with experimental findings. In this study, a 12-m EV Citivolt vehicle of Anadolu Isuzu was used for tests. As a result, it was observed that differences in the properties of the antifreeze that is used in BTMS coolant line
Çetir, ÖzgürBirgül, Çağrı Emre
The operating temperature of lithium-ion battery (LIB) cells significantly influences their degradation behavior. In indirect liquid cooling systems, temperature variations within a Battery Electric Vehicle (BEV) LIB module are inevitable due to the increasing downstream temperature of the cooling medium as it absorbs heat. This leads to reduced temperature differentials between the cooling medium and the LIB cells. As a result, LIB cells located further along the flow path experience higher average temperatures than those at the front. Typically, a maximum average cell temperature difference of 5 K within LIB modules is considered acceptable. However, results from a conventional cooling system indicate that, when fast charging is exclusively used, this can lead to a 15.5 % difference in the total ampere-hours passed before the End-of-Life (EOL) is reached for the front and back LIB cells. To address this issue, a switchable thermal management system for the traction battery is
Auch, MarcusWeyershäuser, KonstantinKuthada, TimoWagner, Andreas
Lithium-ion batteries (LIBs) are critical components in electric vehicles (EVs) and renewable energy systems. However, conventional cooling techniques for LIBs often struggle to efficiently dissipate heat during fast charging and discharging, potentially compromising performance and safety. This study investigates the thermal performance of immersion cooling applied to an Electric Vehicle (EV) battery module comprised of NCA-chemistry-based cylindrical 21700 format Lithium-ion cells. The effectiveness of immersion cooling in reducing maximum cell temperature, temperature gradient, cell-to-cell temperature differential, and pressure drop within the battery module is evaluated on a detailed 3D model of a 360-cell immersion-cooled battery module that was developed, incorporating a well-established heat generation model based on theoretical analysis and experimental data to simulate the thermal characteristics of the battery system. The effects of the different fluid properties are first
Garcia, AntonioMicó, CarlosMarco-Gimeno, JavierElkourchi, Imad
Efficient thermal management is essential for maintaining the performance and safety of large-capacity battery packs. To overcome the limitations of traditional standalone air or liquid cooling methods, which often result in inadequate cooling and uneven temperature distribution, a hybrid air-liquid cooling structure was designed. A three-dimensional model was developed, and heat transfer and fluid flow characteristics were analyzed using computational fluid dynamics (CFD) simulations. Experimental validation was carried out through discharge temperature rise tests on individual battery cells and flow resistance tests on the liquid cooling plate. The thermal performance of the hybrid system was compared to that of standalone cooling methods under various discharge rates. The results indicated that the hybrid system significantly enhanced cooling performance, reducing the maximum temperature difference by 5.54°C and 3.37°C, and the peak temperature by 11.66°C and 4.5°C, compared to air
Li, HaoGuo, YimingZhou, FupengLi, KunyuanShangguan, Wen-Bin
A method for performance calculation and experimental method of a high voltage heater system in electric vehicles is proposed. Firstly, heater outlet temperature and pressure drop of the heater are used as metrics to compare simulation results with experimental data, thereby validating the established model. Then, simulations are performed on two heater flow channel configurations: a cavity flow channel and a cooling fin flow channel. It is observed that the latter significantly reduces the heating plate temperature. This reduction enhances the protection of heating elements and extends their operational lifespan, demonstrating the advantages of incorporating cooling fins into the flow channel structure. The optimization variables for multi-objective optimization include the fin unit length, fin height, fin thickness, fin width, and spacing between two adjacent rows of fins. The optimization objectives include pressure drop, heat transfer efficiency, and heating plate temperature
Gong, MingWang, XihuiWang, DongdongShangguan, Wen-Bin
This study investigates the impact of thermal imbalances on energy delivery and Battery State of Power (SoP) in immersion-cooled battery cells. It explores how these imbalances, which arise when cells within a module operate at different temperatures, lead to variations in internal resistance and inefficiencies in energy storage and discharge. Such imbalances critically affect the battery's SoP, representing the maximum charge or discharge power the system can support over specific time intervals. By analyzing SoP over 10-second durations and continuous, we assess how thermal imbalances influence both short-term and medium-term power capabilities. Temperature significantly impacts cell aging, and imbalances can accelerate degradation in some cells, ultimately affecting serviceability. To address these issues, we employ a high-level simulation framework that integrates advanced tools. GT-SUITE software optimizes thermal performance by adjusting coolant temperature and flow rate to
Meshginqalam, AtaNegro, SergioAtluri, PrasadTyagi, RamavtarSuzuki, JorgeK B, AnjushaCao, Yuyuan
Ensuring uniform coolant distribution in electric buses is crucial for battery performance, longevity, and thermal stability. This study optimizes the battery thermal management system (BTMS) for an 18-m electric bus, addressing uneven coolant flow to battery packs caused by pressure drop variations. One-dimensional (1D) simulations were chosen for their ability to quickly and efficiently analyze flow and pressure variations, providing a fast solution to optimize coolant distribution across the system. dP-Q curves for the BTMS pump and battery packs were integrated into the 1D model based on supplier data, while the flow resistances of other components (pipes, bends) were calculated using KULI software. To correct flow imbalances, pipe diameters were adjusted to increase resistance in over-cooled areas, redistributing coolant to under-cooled sections. This modification resulted in a balanced flow and improved thermal consistency, contributing to longer battery life. Validation showed
Birgül, Çağrı EmreMeydan, Ömer
With the rapid adoption of new energy vehicles (NEVs), effective thermal management has become a crucial factor for enhancing performance, safety, and efficiency. This study investigates the steady-state and dynamic characteristics of a secondary loop CO₂ (R744) thermal management system designed for electric vehicles. The secondary loop system presents several benefits, such as improved safety through reduced refrigerant leakage and enhanced integration capabilities with existing vehicle subsystems. However, these advantages often come at the cost of decreased thermodynamic efficiency compared to direct systems. Experimental evaluations were conducted to understand the effects of varying coolant flow rates, discharge pressure, and dynamic startup behaviors. Results indicate that while the indirect system generally shows a lower coefficient of performance (COP) than direct systems, optimization of key parameters like coolant flow rate and discharge pressure can significantly enhance
Zong, ShuoHe, YifanGuan, YanDong, QiqiYin, XiangCao, Feng
A mathematical model of the thermal management system (TMS) for an extended-range hybrid electric vehicle is developed. The variation in engine coolant temperature is examined under different water pump and fan control strategies, and its subsequent impact on engine TMS energy consumption is analyzed. Based on the simulation results of energy consumption under various control parameters, machine learning regression models are constructed, and four different regression algorithms are applied. By incorporating temperature-based optimization into the water pump and fan control strategy, system energy consumption can be effectively reduced. The machine learning regression results indicate that the mathematical model of TMS cannot be simply regarded as a linear model. ANN and SVM regression show high degree of agreement with the mathematical model. This study provides a theoretical foundation for the development of data-driven tool for optimizing real-time TMS control strategies.
Pan, ShiyiZhang, NanZheng, JunliSun, TianfuZidi, Li
This paper addresses a series of issues in the thermal management system of proton exchange membrane fuel cells (PEMFC) during power fluctuations, such as slow system response, insufficient stability, significant temperature fluctuations, and the complexity of coupled control between coolant flow and air flow. A solution is proposed by designing separate Linear Active Disturbance Rejection Controllers (LADRC) for the coolant flow and air flow control loops. A one-dimensional model of the PEMFC thermal management system was established on the LMS AMESIM simulation platform, combined with a hydrogen fuel cell vehicle model and a driver model, fully considering various influencing factors such as vehicle power fluctuations and driver demands. Subsequently, the LADRC control algorithm was developed on the Matlab-Simulink platform, and a co-simulation analysis was performed to compare the control effects of PID control and LADRC under both custom operating conditions and the New European
Zhu, ShaopengMei, JingYang, LangZong, YajingLiu, YunmeiZhang, BoChen, Huipeng
Magnesium oxide (MgO) nanofluids are of great interest for enhancing the performance in thermal management especially in automotive applications, where efforts have been made to reduce parasitic losses from traditional cooling systems. These findings highlight the effects of Water–ethylene glycol and MgO nanofluids on viscosity and thermal conductivity in specific filling a gap in research that allows to clarify how these states behave at different temperature (T) and concentration (C) conditions. Test results demonstrate that the thermal conductivity of MgO nanofluids improved adequately /while its corresponding change in viscosity remained under control, affirming a significant improvement for energy savings by means heat transfer enhancement using new generation coolants based on this nano-additive. The results also provide useful information for design and development of automotive cooling systems, including real numbers on performance improvements that lead to more efficient and
Jeyanthi, P.
The aim of the article is to evaluate the effect of the cooling system on the NVH behavior of traction permanent magnets synchronous motors (PMSMs). An effective numerical method is proposed for modeling the fluid–structure interaction in the cooling system of PMSMs. A simplified physical prototype of a cooling jacket of a PMSM is realized by welding two concentric tubes with an internal cavity filled by coolant. A finite element model of the structure is realized. The coolant is modeled as an acoustic domain to account for the fluid–structure interaction in the cavity and a coupled acoustic–structural dynamic problem is solved. The model is validated by experimental modal tests conducted on the prototype of the cooling jacket both with and without the presence of coolant. The validated model is employed to quantify the effect of the cooling system on a real PMSM. The structure of a 10-poles, 12-slots electric machine is modeled by means of finite element method. The model includes the
Barri, DarioSoresini, FedericoBallo, FedericoLucà, FrancescantonioManzoni, StefanoGobbi, MassimilianoMastinu, Giampiero
Nanofluids have emerged as effective alternatives to traditional coolants for enhancing thermal performance in automotive applications. This study conducts a comparative analysis of the viscosity and thermal conductivity of ZnO and Cu hybrid nanofluids. Nanofluids were prepared with ZnO and Cu nanoparticle concentrations of 0.1%, 0.3%, and 0.5% by volume and were characterized over temperatures ranging from 25°C to 100°C. The results demonstrate that ZnO and Cu hybrid nanofluids achieve an increase in thermal conductivity by up to 22% and 28%, respectively, compared to the base fluid. Concurrently, the viscosity of these nanofluids increases by up to 12% at the highest concentration and temperature. This study addresses a critical research gap by investigating the combined effects of ZnO and Cu nanoparticles in hybrid nanofluids, an area that has been underexplored. By providing new insights into optimizing both thermal conductivity and viscosity, this research contributes to the
Sivasubramanian, M.Sundaram, V.Madhu, S.Saravanan, A.Vidhyalakshmi, S.
The research introduces the thermal properties of silicon dioxide (SiO2) nanofluids and the promising application of these fluids in hybrid vehicle cooling systems. How to make fluids is simply to disperse a 50-50 mixture of both Ethylene Glycol and Water; into this solution add SiO2 nanoparticles concentration ranges from 0.1% up to 0.5% volume according desired properties or material characteristics etc. When viscosities and thermal conductivities of nanofluid were measured over the temperature range from 25 to 120 °C using Brookfield viscometer and transient hot-wire method; results were as follows: Viscosity of SiO2 nanofluids at 120°C higher concentrations 0.5%, more viscous fluids, thermal conductivity also rose with results, although there was a plateau at around 40% increase compared to that of water-based slurries. At 0.5% concentration, thermal conductivity increased by up to 20% at 120 °C, compared with the value of pure ethylene glycol. These results suggest that SiO2
Sundaram, V.Madhu, S.Vidhyalakshmi, S.Saravanan, A.Manikandan, S.
In this study, the viscosity and thermal performance of nanofluids based on ZnO-MgO mixed oxide nanoparticles added in different concentrations to ethylene glycol-water mixture are characterized with potential applications in engine cooling. The work began with two needs: the increasing importance of better heat removal in automotive engines, where traditional coolants struggle to adequately maintain good thermal conductivity but at low viscosity to acceptable levels; and a chance opportunity for exploration provided by MMD/MILab Engineer Andrew Cricee. The work wants to improve the cooling properties, but still keeping good fluidity by integrating ZnO-MgO nanoparticles. Preparation method the preparation of ZnO-MgO nanofluids was done using volume concentrations of 0.1%, 0.3% and 0.5%. To determine chemical properties, viscosity measurements were made on the Dragonfly using a Brookfield viscometer at temperatures ranging from 25 ° C to 80 ° C while varying the nanoparticle
Manikandan, S.Vickram, A. S.Madhu, S.Saravanan, A.
In this study, we investigate the thermal conductivity optimization of nanodiamond nanofluids for application in high-performance automotive engines. Nanodiamond particles, known for their superior thermal properties and stability, are dispersed in a base fluid composed of ethylene glycol and water. Various concentrations of nanodiamonds are prepared to evaluate their impact on thermal conductivity and viscosity. The experimental setup includes precise measurements of thermal conductivity using the transient hot-wire method and viscosity using a rotational viscometer over a temperature range of 25°C to 100°C. The results demonstrate significant enhancements in thermal conductivity with acceptable increases in viscosity, suggesting the potential of nanodiamond nanofluids in improving engine cooling efficiency. The study concludes with recommendations for future research to explore the long-term stability and performance of these nanofluids in real-world automotive applications.
Jeyanthi, P.Gulothungan, G.
The lithium-ion battery is the most common type of batteries in modern electric vehicles. During vehicle operation and battery charging, the temperature of the battery cells increases. The temperature of any battery must be controlled and maintained within a specified range to ensure maximum efficiency. Considering the overall thermal effect on the battery, a battery cooling system is of great importance in electric vehicles to maintain the temperature of the battery cells inside the battery pack. There are different types of systems for battery cooling, out of which the water cooled systems are very popular. They use a mixture of water and ethylene glycol to absorb heat from the battery cells. The coolant circulates through the tubes or cold plates surrounded by the cells to absorb the heat. The paper involves the study of variation on temperature and pressure drop including overall thermal performance on the batteries by changing the internal structure. The temperature of battery
Parayil, PaulsonAhmad, TaufeeqDagar, AakashGoel, Arunkumar
Properly sized under hood components in an electric vehicle is important for effective thermal cooling at different load conditions. Powertrain aggregate loop plays significant role in generating heat with heat sources like eMotor, inverter, variable frequency drivers, on board charger and so on. Radiator being the most critical part in electric vehicle which acts as a heat sink for these powertrain components. Radiator with the help of coolant removes heat generated by different components in powertrain loop. It becomes important to understand the heat generated by the powertrain components at different drive/load scenarios and decide on the correctly sized radiator and fan. Rightly sized radiator and fan combination helps to balance the tradeoff of precise thermal needs in eTruck to an oversized/undersized component. Main objective of this study is to estimate heat loads from system model representing powertrain aggregate components to study the existing radiator capacity and propose
Koti, ShivakumarPatel, VedantChalla, KrishnaGurdak, Michael
Innovators at NASA Johnson Space Center have developed an adjustable thermal control ball valve (TCBV) assembly which utilizes a unique geometric ball valve design to facilitate precise thermal control within a spacesuit. The technology meters the coolant flow going to the cooling and ventilation garment, worn by an astronaut in the next generation space suit, that expels waste heat during extra vehicular activities (EVAs) or spacewalks.
Balancing low conductivity, corrosion resistance and optimum heat transfer in next-generation EV coolants while meeting new EV safety regulations. Managing the heating and cooling of electric vehicle propulsion systems may seem to be an easy task compared with combustion engines. After all, ICEs run much hotter-the thermal optimum for a gasoline engine is around 212 F (100 C). By comparison, EV batteries normally generate (as a function of current during charge/discharge cycles) a relatively cool 59-86 F (15-30 C). And while motors and power electronics operate hotter, typically 140-176 F (60-80 C), they still run cooler than ICEs. But among the myriad complexities of EV thermal management are batteries' dislike for temperature extremes, new cell chemistries, heat-generating high-voltage electrical architectures and 800V fast charging. All are putting greater focus on maintaining stable EV battery thermal performance and safety. Experts note that compatibility among the cell chemistry
Brooke, Lindsay
This test method provides a standardized procedure for evaluating the electrochemical resistance of automotive coolant hose and materials. Electrochemical degradation has been determined to be a major cause of EPDM coolant system hose failures. The test method consists of a procedure which induces voltage to a test specimen while it is exposed to a water/coolant solution. Method #1, referred to as a “Brabolyzer” test, is a whole hose test. Method #2, referred to as a “U” tube test, uses cured plate samples or plates prepared from tube material removed from hose (Method No. 2 is intended as a screening test only). Any test parameters other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requester.
Non-Hydraulic Hose Committee
The primary objective of this article is to study the improvement of machining efficiency of EN-31 steel by optimizing turning parameters using newly developed cutting fluids with different proportions of aloe vera gel and coconut oil, utilizing the Taguchi technique. Furthermore, performance metrics including material removal rate (MRR), surface roughness, and tool wear rate (TWR) were assessed. Analysis of variance (ANOVA) suggested that as cutting speed and feed increase, the MRR is positively influenced, but likewise tool wear is intensified. The surface roughness exhibited a positive correlation with cutting speed, and a negative correlation with increasing both cutting speed and feed. It was found that the maximum MRR value was attained at a cutting speed of 275 m/min, a feed rate of 1.00 mm/rev, and a cutting fluid composition of 30% aloe vera and 70% coconut oil. For the best surface smoothness, it is advisable to adjust the cutting speed to 350 m/min and the feed rate to 0.075
Premkumar, R.Ramesh Babu, R.Saiyathibrahim, A.Murali Krishnan, R.Vivek, R.Jatti, Vijaykumar S.Rane, Vivek S.Balaji, K.
The present study develops and analyses a novel thermal management system that utilizes a serpentine cooling plate with fluid flow channels to regulate the temperature of cylindrical lithium-ion batteries in an electric vehicle battery module. The research investigates the impact of many variables affecting the cooling efficiency during discharge processes, including C-rate, number of cooling channels in the cooling plate, inlet fluid velocity and aluminium nanoparticle concentration in the fluid. The study includes 49 lithium-ion batteries with a capacity of 4.9 Ah each using NMC chemistry and a form factor of 21700 connected in series and parallel. A coolant made of water-glycol combination in 70:30 ratio is considered to disperse the thermal energy generated in the batteries. With the increase in the number of cooling channels, the maximum temperature of the batteries is reduced significantly. Increasing the cooling fluid’s velocity reduces the batteries’ maximum temperature
Yogeshwar, DasariRepaka, Ramjee
Electric Trucks offer one of the most promising alternatives to vehicles in the field of transport of goods. In battery electric trucks, heat is generated by components present in the electric truck such as battery of the electric vehicle, electric drive system, Endurance Brake System etc. which require cooling and Thermal management system to control and monitor the cooling system. The thermal management system considered here includes two coolant tanks. The first coolant tank performs thermal management for the battery and Electric-Drive(e-Drive) components which can heat up to 600C and the second coolant tank performs thermal management for HPR circuit, and it is used to break the charging circuit to protect the battery getting charged beyond 100% using regenerative braking concept. HPR (High performance resistor) is the component which can heat up to ~950C and make sure the battery is not getting charged beyond the safe limits. Since HPR is a critical component and operates at high
Pekala, Sagar MohanaZacharias, NevinKulkarni, Krathika
Climate across India varies from extreme Cold to extreme hot. As an objective to improve comfort to drivers during summer, it is mandate by Indian Government to introduce Air Conditioning in Trucks from June 2025. Air Conditioning system includes Evaporator, compressor, Condenser and expansion units. Condenser needs continuous air flow to reject the absorbed heat from driver cabin to surrounding air. This is possible by directing air through condenser by an external fan. For this condenser is remotely mounted with an electric driven fan or directly to the radiator-fan system. In this paper a case study is presented where Cooling system of a Non AC Intermediate Commercial Truck is modified for Air Conditioning application. Condenser is mounted on the radiator and the additional heat load is managed by a minor change in the system. Fan is operated based on coolant temperature and with additional controls for Air Conditioning. Simulations are done in a Thermal management software “KULI
Kiran, NalavadathM S, Vignesh
Motor temperature plays a critical role in controlling pump speed and regulating coolant flow to prevent overheating during motor operation. Presently, negative temperature coefficient (NTC) sensors are commonly used for motor temperature measurement, typically installed at the motor winding’s end for ease of installation. However, in oil spray-cooled motors, the temperature distribution is uneven due to the spray pipe, leading to lower temperatures near the pipe compared to other areas. This results in a challenge where relying solely on NTC measurements at the winding end may not meet the motor’s cooling requirements. To address this issue and improve temperature signal accuracy, a novel approach has been developed that utilizes four signals derived from the motor controller: motor speed, motor torque, along with oil pump speed, oil temperature. Employing the lumped parameter method, a model established in Simulink aims to estimate the average temperature in the motor’s high
Lu, JunjieLi, QiangChen, BinglinZhu, LunzhiWu, JianYan, Pingtao
In the face of the world’s population growth and ensuing demands, the industrial sector assumes a crucial role in the management of limited energy supplies. Superalloys based on nickel, which are well-known for their remarkable mechanical qualities and resilience to corrosion, are now essential in vital applications like rocket engines, gas turbines, and aviation. However, these metals’ toughness presents a number of difficulties during machining operations, especially with regard to power consumption. This abstract explores the variables that affect power consumption during the machining of superalloys based on nickel in great detail and suggests ways to improve energy efficiency in this area. The effects of important variables on power consumption are extensively investigated, including cutting speed, feed rate, depth of cut, tool geometry, and cooling/lubrication techniques. A careful balance between these factors is necessary to maximize machining efficiency and reduce power usage
Başaran, AlperÖzer, MahmutKazan, Hakan
Items per page:
1 – 50 of 1362