Browse Topic: Radiators

Items (1,047)
This paper presents an advanced control system design for an engine cooling system in an internal combustion engine (ICE) vehicle. Building upon our previous work, we have derived models for crucial temperatures within the engine, including combustion wall temperature, coolant-out temperature, block temperature, as well as temperatures in external components such as heat exchangers and radiator. To accurately predict these temperatures in a rapid manner, we have utilized a lumped parameter concept with a mean-value approach. This approach allows for precise temperature estimation while maintaining computational efficiency. Given the complexity of the cooling system, we have proposed a linear time-varying (LTV) model predictive control (MPC) system to regulate the temperatures. This control system linearizes the model at each time step and applies linear MPC over the control and prediction horizons. By doing so, we effectively control the highly nonlinear and time-delayed system
Chang, InsuSun, MinEdwards, David
This study points to potentiality of studying Aluminum Oxide (Al2O3) nanofluid on viscosity (μ) and thermal conductivity (K) for automotive cooling system. The Al2O3 nanoparticles dispersed in 50:50 ethylene glycol-water with5 varying concentrations of 0.1, 0.2, 0.3, 0.4 and 0.5 vol%. The viscosity at 25°C, 40°C, 60°C and 80°C was measured by using a Brookfield viscometer; and thermal conductivity was measured by the transient hot wire method. The results indicate that the viscosity increases with the concentration of nanoparticles but decreases with the temperature. Due to comparative importance of thermal conductivity with increasing temperatures and nanoparticle concentrations. In nanofluid Al2O3 can enhance heat transfer automotive cooling system can be good performance and efficient as well as engine, in 0.5% concentration, thermal conductivity at 25°C and increase 27% at 60°C, paranormal found for development and Al2O3 nanofluids apply can be effective improvement at heat
Vickram, A.S.Manikandan, S.Madhu, S.Saravanan, A.
Cooling system for an IC engine, consisting of the Water pump (WP), Radiator and Fan, plays an important role in maintaining thermal efficiency of the engine and protects the engine from overheating. Based on the vehicle application requirement, Fan will be mounted directly either on Crankshaft or WP pulley. But wherever increase in Fan speed ratio are in demand, it is preferred to mount the Fan on WP pulley. So it important to understand the WP housing structural strength with respect to vibration loads contributed from Radiator Fan assembly. This paper presents investigation of Failure of WP Housing during engine validation at engine test bed with Electronic Viscous Fan, based on the different operating conditions of the engine and fan as per the validation cycle. While the accessories are loading and the corresponding stresses are high when the fan is engaged. But in the current case, the failure of WP housing happened only during Fan clutch disengaged condition. Experimental
R, Mahesh Bharathi
Properly sized under hood components in an electric vehicle is important for effective thermal cooling at different load conditions. Powertrain aggregate loop plays significant role in generating heat with heat sources like eMotor, inverter, variable frequency drivers, on board charger and so on. Radiator being the most critical part in electric vehicle which acts as a heat sink for these powertrain components. Radiator with the help of coolant removes heat generated by different components in powertrain loop. It becomes important to understand the heat generated by the powertrain components at different drive/load scenarios and decide on the correctly sized radiator and fan. Rightly sized radiator and fan combination helps to balance the tradeoff of precise thermal needs in eTruck to an oversized/undersized component. Main objective of this study is to estimate heat loads from system model representing powertrain aggregate components to study the existing radiator capacity and propose
Koti, ShivakumarPatel, VedantChalla, KrishnaGurdak, Michael
This research study investigates the influence of undercover design on three critical aspects of vehicle performance: water entering into air intake filter, Aerodynamic performance, thermal performance on vehicle engine room components (Condenser, Radiator and Air Intake System). Undercover serves the purpose of protecting Engine, underhood components and also improves aerodynamics of the vehicle. Through CFD simulations, various undercover design configurations: Full Undercover, no undercover and half undercover cases are evaluated to assess their effectiveness in mitigating the water ingress into the air intake system. Additionally, we explore the implications of these design alterations on the thermal performance and aerodynamic drag. By systematically exploring these interactions, results provided valuable insights on the effect of three undercover configurations related to vehicle performance which can help automotive engineers to develop the undercovers that strike a balance
Padakandla, Kishore KumarNagendra, K. YallaBisoyi, Ram Prasad
Climate across India varies from extreme Cold to extreme hot. As an objective to improve comfort to drivers during summer, it is mandate by Indian Government to introduce Air Conditioning in Trucks from June 2025. Air Conditioning system includes Evaporator, compressor, Condenser and expansion units. Condenser needs continuous air flow to reject the absorbed heat from driver cabin to surrounding air. This is possible by directing air through condenser by an external fan. For this condenser is remotely mounted with an electric driven fan or directly to the radiator-fan system. In this paper a case study is presented where Cooling system of a Non AC Intermediate Commercial Truck is modified for Air Conditioning application. Condenser is mounted on the radiator and the additional heat load is managed by a minor change in the system. Fan is operated based on coolant temperature and with additional controls for Air Conditioning. Simulations are done in a Thermal management software “KULI
Kiran, NalavadathM S, Vignesh
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation. This study aims to develop an evaporative cooling system using water as a by-product of the stacks, and to identify the effects of
PARK, Ui JoonKwon, Soon BeomChoi, Kyung JunLee, Gil WooOh, Dong Seok
Recently, regulations on automobile emission have been significantly strengthened to address climate change. The automobile industry is responding to these regulations by developing electric vehicles that use batteries and fuel-cells. Automobile emissions are environmentally harmful, especially in the case of vehicles equipped with high-temperature and high-pressure diesel engines using compression-ignition, the proportion of nitrogen oxides (NOx) emissions reaches as high as 85%. Additionally, air pollution caused by particulate matter (PM) is six to ten times higher compared to gasoline engines. Therefore, the electrification of commercial vehicles using diesel engines could potentially yield even greater environmental benefits. For commercial vehicles battery electric vehicles (BEVs) require a large number of batteries to secure a long driving range, which reduces their maximum payload capacity. However, fuel-cell electric vehicles (FCEVs) use hydrogen as a fuel to generate
Lee, Dong KeonKim, Dong SeokByun, Hyung SukKang, Hyun SungShin, Yoon HyukLee, Ho Seong
The hybrid system's thermal strategy is centered around controlling the cooling of the motor, inverter, DCDC and evaporator. In this electric drive circuit system, the water temperature sensor is positioned at the radiator outlet rather than within it. Consequently, when determining the required air volume for radiator cooling and water demand for sub-components of the electric drive circuit, an estimation of the inlet water temperature becomes necessary. This estimation relies on a heat transfer formula that converts heat released by circuit sub-components into their contribution to temperature rise within the circuit plus the outlet temperature from the previous round through the radiator to determine inlet water temperature. The inverter's heat transfer power depends on voltage and current levels. Adjusting motor torque leads to rapid changes in current flow while maintaining a low speed for optimal flow rate through the electric drive pump. As a result, there should be a
Jing, JunchaoWang, ZhentaoLiu, YiqiangHuang, WeishanDai, Zhengxing
To study the heat dissipation performance of the multi-fan cooling module composed of multiple fans and a radiator, numerical models of the radiator and the multi-fan cooling module were established, and heat dissipation performance prediction analysis and application analysis were conducted. In modeling, the Effectiveness-Number of Transfer Units (ε − NTU) method is used to predict the heat dissipation performance of the radiator. The aerodynamic performance of the fan at any speed is obtained by the similarity theorem using the data obtained from the tests at a certain speed. The influence between the fan and the radiator was established by using the flow addition scheme. To validate the established model, heat dissipation performance using 36 radiators and 11 multi-fan cooling modules is measured, and the measured data are compared with the calculations. The results show that: (1) For the radiator model, relative errors of heat dissipation are below 15.03%, and the absolute error of
Guo, Yi MingXiao, BinHuang, YuLi, GuoqiangShangguan, Wen-Bin
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line. With the
S, Nataraja MoorthyRao, ManchiRaghavendran, PrasathManivannan, Giridharan
In the automotive industry, thermal management plays a very important role to solve the problems of energy saving and emission. The under hood thermal management is one of the critical aspects in vehicle thermal management since it caters to critical aspects of engine cooling, charge air cooling, air conditioning and turbocharger cooling. The appropriate thermal management of these critical components is necessary for ensuring the appropriate performance by the vehicle. Hence, under-hood thermal management is the core of the integrated vehicle thermal management. In the thermal management analysis approaches, the numerical simulation is widely adopted as an important approach. Hence, in this paper a model is developed in MATLAB to handle 1D parametric analysis of the cooling system, while reducing the testing time and resources taken for the product development. The developed model can be used to evaluate multiple aggregate options for CAC, Radiator, Engine, Fan etc. The model predicts
P V, NavaneethPrasad, Suryanarayana A NML, Sankar
Environmental Protection Agency (EPA) study indicates that a typical passenger vehicle emits about 4.6 metric tons of carbon dioxide per year. The Automotive industry facing a challenge of meeting stringent CO2 emission targets of 95g per kilometer for passenger car application. Thermal efficiency of internal combustion engine is one of the crucial technical parameters, which plays an important role in meeting CO2 emission targets. Global Automotive industry tends to achieve for cleaner, lower emission, low noise & improved performance for automotive products. Engine Overheating is affecting thermal efficiency & thus brake specific fuel consumption of the vehicle. Radiator is one of the critical components in Engine cooling system, which will ensure optimum operating range of internal combustion engine through precise control on coolant flow rate by Thermostat valve. Heat dissipation through radiator is directly proportional to volumetric mass flow rate of atmospheric air. The demand
Palve, ChandrakantThakur, PaurnimaChavan, VishalAher, Amit
One of the key components in engine cooling system design in internal combustion vehicles is the radiator, which is responsible not only for regulating the engine coolant temperature but also for the required airflow crossing the grille openings. Considering different construction techniques and materials, the radiator design and its characteristics influence the overall vehicle performance. This work proposes a study on the influences of the radiator in the overall performance of a conceptual vehicle design, when considering different parameters. The main radiator characteristics evaluate in this study are the construction type, heat exchange thin number and tube number in different configuration arrays. Virtual cfd simulations are used to perform this study, where the drag influence in verified in three velocities: 40, 60 and 80 kph and compared with a baseline vehicle. The water flow rate is also evaluated and compared with same baseline model, in order to provide the best radiator
Buscariolo, Filipe FabianGonzales, José Fernando PazAlves, Julio Cesar Lelis
Heat transfer optimization is a crucial aspect of the design process for Formula Student race cars, particularly for the radiator, usually housed in a side pod. For the car to operate at peak performance, a well-designed radiator-sidepod system is essential such that it can dissipate heat generated by the engine faster, for the car to run in optimal performance. Testing the car physically for various radiator-sidepod design iterations is a very difficult task, also considering the costs to manufacture the radiator-sidepod setup. The objective of this study is to develop a comprehensive methodology for analysing heat transfer through radiator setup using Computational Fluid Dynamics and to validate it through experimental investigations, to enhance performance and efficiency of the radiator setup. It further explains how to find out its heat transfer efficiency, and to choose the right radiator-sidepod setup, giving optimal performance. The flow of coolant inside the radiator, as well
Suresh, SankarSundar, MahimaBhaskara Rao, Lokavarapu
In view of the stringent emission norms laid out by government of India, BSVI Engines are with additional heat rejection requirements with limited packaging space for Cooling system. An appropriate Radiator, Charge Air Cooler and Fan is decided within the available packaging space based on the Engine heat rejection needs. In this paper an approach is defined to arrive at a Cooling system architecture which is very compact in design and packaged between the Engine and Front member in a limited space. Modelling is done in Thermal simulation software KULI. Good correlation is achieved between simulation to test results.
N, PalpandiVadduri, RaviprasadKiran, Nalavadath
Radiator is one of critical component used in automobiles which is used to cool engine under operating conditions. To cool down engine, a coolant is passed through engine block, where it absorbs heat from the engine. The hot coolant is then fed into inlet tank of radiator located either on top of radiator, or along one side from which it is distributed across radiator core through tubes to another tank on opposite end of radiator. As coolant passes through radiator tubes on its way to opposite tank, it transfers much of its heat to tubes which, in turn, transfer heat to fins that are lodged between each row of tubes. The fins then release heat to ambient air. Fins are used to greatly increase contact surface of tubes to air, thus increasing exchange efficiency. The cooled liquid is fed back to engine, and the cycle repeats. Due to the temperature gradient across the radiator, there will be thermal stress on the radiator especially on header joints. Another important area is header
Parayil, PaulsonGoel, ArunkumarAgarwal, Roopak
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are undergoing a rapid development, due to the ever-growing interest towards their use to decarbonize power generation applications. In the transportation sector, a key technological challenge is their thermal management, i.e. the ability to preserve the membrane at the optimal thermal state to maximize the generated power. This corresponds to a narrow temperature range of 75-80°C, possibly uniformly distributed over the entire active surface. The achievement of such a requirement is complicated by the generation of thermal power, the limited exchange area for radiators, and the poor heat transfer performance of conventional coolants (e.g., ethylene glycol). The interconnection of thermal/fluid/electrochemical processes in PEMFCs renders heat rejection as a potential performance limiter, suggesting its maximization for power density increase. To this aim, suspensions of coolants and nanoparticles (nanofluids) have been proposed for
D'Adamo, AlessandroCorda, GiuseppeBerni, FabioDiana, MartinoFontanesi, Stefano
Due to the emerging technologies and globalization, expectations of the customers on commercial vehicles are getting increased over the period. It is an important duty of an OEM to deliver a perfectly configured product to suit the customer requirements. When it comes to configuration of a vehicle, engine power is one of the key factors which indicate the performance of that vehicle. There is a tough competition between every OEM to increase the engine power for enhancing the overall operational performance. One method to increase power is to improve its volumetric efficiency. This is achieved with help of turbocharger and Charge Air Cooler (CAC). CAC improves volumetric efficiency by increasing intake air-charge density. Any failure on CAC leads to lower the volumetric efficiency and increase in turbocharger loading. This paper deals with the validation of CAC assembly using different test conditions by analyzing potential failure modes against the field issues. Optimum test
G, ManthiramoorthyNarasimman, Obuli KarthikeyanNagarajan, GopikannanSiva Kumar, Natarajan
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants, refer to ASTM D3306, ASTM D4985, and ASTM D6210.
Cooling Systems Standards Committee
The influence of engine cooling fan on the working state of engine cooling system under different driving forms and control strategy is studied, and a simulation model of engine thermal management system of a commercial vehicle is established. The model takes into account the measured performance parameters of the cooling system components, the gear shift logic of the transmission, the effect of vehicle speed on the airflow rate of the radiator, and proposes a modeling method for different cooling fan driving forms. The performance parameters such as engine outlet coolant temperature and corresponding cooling fan speed under different vehicle speeds and engine loads are calculated and analyzed by using the established model. The road measurement test of the engine thermal management system under the same working condition was carried out to read the relevant data from the engine ECU and confirm the reliability of the data. The correctness of the model is proved by the comparison
Xu, ZichenWang, XihuiShangguan, WenbinWang, XinlingDuan, Yaolong
A battery cooling system model of electric vehicle was established. The system model consists of a battery pack, a pump, a radiator, and a fan. A cooling plate was used to cool the battery pack, and the coolant flow rate in the cooling plate was controlled by the pump. The heat in the battery cooling system was released into the ambient air through the radiator. A finite element analysis model of the cooling plate was established to calculate the pressure drop of the cooling plate. A coupled dynamics model of the battery pack-radiator cooling system was established to simulate the temperature of the battery pack during charging and discharging. Tests were carried out to obtain the pressure drop of the cooling plate and the temperature of the battery pack under different working conditions. The simulation results and test results were compared and analyzed, and the accuracy of the models were verified. The effects of coolant flow rate and radiator wind speed on the liquid cooling
Deng, BinYin, ZhiShangguan, Wen-BinZhou, Fu-PengZheng, Quanxin
A flow channel design of the battery liquid cooling plate is carried out through the variable density topology optimization method according to the heat dissipation requirements of lithium-ion power batteries under actual working conditions. Firstly, given the non-uniform heat generation of lithium battery cells, the heat generation mechanism is studied so that the battery electro-thermal model is established, then the distribution regularity of heat generation rate in the cell at different discharge rates is obtained. Subsequently, through COMSOL Multiphysics simulation software, the multi-objective topology optimization of the primary configuration radiator is conducted. The weights of the optimization objectives minimum temperature and minimum flow resistance are determined by practical engineering application. Finally, an optimized model with a volume fraction of 50% was obtained. Based on this optimized design result, research and analysis of related fluid flow and heat transfer
Lin, ZhenmaoDing, KangjieXie, Beichen
Vehicle thermal management system (VTMS) is a means of monitoring and controlling temperatures of vehicular components and aggregates to within optimum limits, thereby ensuring the proper functioning of the component or aggregate in an automobile. An integrated approach is required for developing VTMS, to satisfy the complex requirements of performance, reliability, fuel economy and human thermal comfort in modern vehicles. Fan motors and blowers play a crucial role in vehicle thermal management. These fan motors/ blower systems need to be designed in a manner such that there is minimum parasitic load on the prime mover. This work comprises performing Transient Powertrain Cooling (T-PTC) and Transient Air-conditioning (T-AC) simulation on a vehicle for prediction of parameters affecting fan operation of Condenser Radiator Fan Module (CRFM) during simulated city drive cycles. T-PTC model is built with addition of engine point mass, thermostat and heat conduction components to an
Jaybhay, SambhajiKapoor, SangeetKulkarni, Shridhar DilipraoVarma, Mohit
The automotive industry is a gigantic industry as millions of vehicles are running on the road and it’s growing at a rapid rate. The emissions are causing various global problems such as global warming, green house effects, air pollutions etc. due to the use of fossil fuels in abundance. This drives to think for alternative solutions, which are eco-friendly and having less or no emissions. The electric vehicles (EVs) are the most reliable solution as it is having high performance and efficiency with zero emissions. The evolution of EVs has fuelled the two-wheeler EVs industry to flourish at a fast pace. Li-ion battery and traction motor are the most important components in two-wheeler EVs and the thermal management for battery is more important for higher efficiency with longer life and better reliability along with the traction motor to have long range and better durability. This paper elaborates the radiator based thermal management solutions for the battery pack and the traction
Suman, SaurabhKushwah, Yogendra Singh
Effective thermal management of an EV becomes a complex and yet essential topic due to strong dependence of electric powertrain performance on the thermal system performance. Once the powertrain sizing is decided for any new EV, electric vehicle thermal management is major challenge and opportunity to improve on overall energy efficiency. This is more pertinent in the context of a commercial vehicle where range is of utmost importance. A novel approach is proposed hereby to integrate different interfacing systems & subsystems of a vehicle that play a critical role for determination of thermal system sizing. This includes starting from vehicle model, electric powertrain (ePT) HVAC and cooling systems and simulate these in one environment under different scenarios as per customer expectations. A simplified controller is designed and integrated to monitor and control the functioning of such thermal systems for desired performance. Transient simulations are performed to mimic real world
Kumar, VikashCHALLA, KRISHNABanik, SoumenduBorado, Pramod
Electric radiator fan is a vital component within IC and EV passenger vehicle cooling system. However, due to its operation, it induces noise and in-cab vibration affecting human comfort level. This paper primarily focus on FMS (Fan Motor Shroud) assembly induced steering wheel vibrations in a vehicle under idle + AC ON condition. The entire NVH performance was cascaded from vehicle level to component level to evaluate for high steering wheel vibration and its transfer path analysis. Unit level vibrations study was also carried out using a rigid rig under controlled conditions. Based on FMS vibration analysis, it was observed that fan blade rotating imbalance leads the high vibrations within system. Thus, a balancing method with higher precision and accuracy was used to measure and balance the fan under all operating conditions. Sensitivity analysis had been carried out for fan imbalanced boundary conditions and operating speeds. FMS assembly standalone imbalanced value and steering
Titave, Uttam VasantJha, KartikNikam, Krishnakalsule cEng, ShrikantA, Milind Ambardekar
The techniques outlined in this SAE Recommended Practice were developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for cooling systems using the types of drives listed below. This power consumption may then be used in determining engine net power per SAE J1349. For more
Cooling Systems Standards Committee
The dischargeable heat output and the cooling drag of motor vehicles are largely determined by the radiator size and the cooling air mass flow rate. In the present work, the effect of varying the radiator size on the cooling air requirement and the cooling drag of a motor vehicle is investigated. The starting point is the assumption that the transferred cooling power remains constant when the radiator size is changed. Based on the physical principles of heat and momentum transfer, a simple mathematical representation of the relationship between the radiator size, cooling air demand, and cooling drag is developed for this case, enabling an overall representation in clear diagrams. The results are validated by an experimental example from the literature. In addition, the application of the new equations is demonstrated in a real vehicle project where the aerothermodynamic challenge was a reduction in radiator size. The developed equations and diagrams allow a quick overview of the
Wolf, Thomas
This specification covers procedures which will provide protection of elastomeric seals and seal assemblies such as O-rings, cap seal assemblies, and other designs from contamination by foreign materials and handling / transportation / storage damage prior to installation and ensure positive identification by part number of each piece until it is installed.
AMS CE Elastomers Committee
GT-POWER and Simulink software are used to explore the influence of factors such as external temperature and radiator layout on the battery thermal management system, and prepare for the subsequent exploration of the joint simulation of the battery thermal management system under low temperature radiator threshold control and fuzzy control. The cooling and energy-saving effects of the fan and compressor using fuzzy control are analyzed. The results show that cooling the power battery with refrigerant is not affected by the external temperature. Under the condition of good temperature consistency of battery pack, compared with the threshold control, the fuzzy control strategy for fan and compressor speed can save about 23.1% and 14% of energy consumption respectively, which helps to improve the driving range of the vehicle.
Shen, WeiWang, Ning
The cross flow design of a radiator and its heat transfer and temperature drop was simulated then validated by using a data acquisition system during both static and dynamic running conditions of a Formula SAE car. The data acquisition system simulated and validated the radiator's cross flow design and heat transfer, as well as the temperature drop, under static and dynamic conditions in a car. The optimal radiator design determines the engine's operating temperature and the desired temperature drop gain through proper design of the inner core, number of fins and tubes, and radiator material. The purpose of a properly designed radiator is to prevent the combustion engine from heating up above its operating temperature [1]. The radiator's design is based on the operating temperature of the CBR 600RR engine. The highest temperature recorded was around 105°C, and in the worst case scenario, it can reach 110°C. As a result, an 8-10°C temperature drop is required for proper operation at
Jain, JeeveshRajagopal, ThundilSelvaraj, ArunsacoDevaraj, Elangovan
Abstract The active grill shutters (AGS) on the vehicle have been widely used in recent years due to increased demand on fuel economy and CO2 emission. The closed AGS helps to reduce air drag by preventing air going into underhood, which results in less engine torque and less fuel consumption. The AGS also need to ensure adequate cooling air for radiator, condenser and other components in the underhood, so that the control strategy should be carefully designed for both thermal management and energy consumption. A sport utility vehicle (SUV) equipped AGS is analyzed, and the AGS control strategy is developed with the help of simulation and experiment. Drag coefficients for series of shutter rotation angles are evaluated using a 3-D full-vehicle model. The maximum air drag coefficient benefit is found to be 9 counts, and most of the benefit is obtained around fully closed status. The fan control is considered as inputs for AGS strategy design, and a four-requirement strategy is developed
Yan, JunjieLiu, XiaobingCheng, JunfengFeng, YanyanZan, JianmingSun, Richard
Improving the heat dissipation performance of the engine radiator in the real working environment is of great significance to the cooling of the engines. The purpose of this paper is to study the influence of the radiator’s geometric parameters on its heat dissipation performance in the cooling module environment and optimize the geometric parameters to improve the heat dissipation performance of the radiator. Based on the performance data obtained from relevant component tests and the engine thermal balance test, the simulation model of the engine thermal management system is established, and the reliability of the model is verified. The heat dissipation performances of the single radiator and the radiator in the cooling module are compared by using the validated model. The geometric parameters of the radiator are analyzed and optimized combined with the method of design of experiments to improve the allowable ambient temperature of the cooling system in the actual working environment
Zhang, DezhengNi, JiminJiang, Nan
A single radiator cooling system architecture has been widely applied in ground vehicles for safe equipment (e.g., engine block, electronics, and motors) temperature control. The introduction of multiple smaller heat exchangers provides additional energy management features and alternate pathways for continued operation in case of critical subsystem failure. Although cooling performance is often designed for maximum thermal loads, systems typically operate at a fraction of the peak values for most of their life cycle. In this project, a two-radiator configuration with variable flow rates and valve positions has been mathematically modelled and experimentally validated to study its performance feasibility. A multi-node resistance-capacitance thermal model was derived using the ε−NTU approach with accompanying convective and conductive heat transfer pathways within the system. This engineering model provides an analytical description of the system behavior that can be leveraged for
Syed, ZakerMiller, RichardWagner, John
This SAE Standard covers reinforced and flexible hoses intended for use in water and ethylene glycol-based engine-coolant system applications.
Non-Hydraulic Hose Committee
The radiator as heat exchanger plays a very significant role in an engine cooling system by maintaining the coolant at an optimum temperature. The present study aims at improving the performance of an automobile radiator by using nano-coolants. Nano-scale particles have been tested and proven to have enhanced thermal conductivity than their bulk counterparts due to their increased surface area-to-volume ratio. Thus the nanoparticles dispersed in the base fluids called nanofluids are used as a radiator coolant to improve the performance of the radiator. Aluminum oxide (Al2O3)-based nanofluid at 0.04%, 0.08%, 0.15% by volume concentrations is used in two different base fluids, one being water and the other ethylene glycol (30%) (EG)-water mixture. Coolant is supplied at three different inlet temperatures at 40°C, 50°C, and 60°C and at five different flow rates ranging from 2 L/min to 6 L/min at an interval of 1 L/min. For all the experiments, the air velocity is maintained constant using
Venugopal, T.Pendli, SaiPratikPatel, HarshGupta, ManshuNatarajan, Gobinath
Technological advancements and growth in electric motors and battery packs enable vehicle propulsion electrifications, which minimize the need for fossil fuel consumption. The mobility shift to electric motors creates a demand for an efficient electric motor thermal management system that can accommodate heat dissipation needs with minimum power requirements and noise generation. This study proposes an intelligent hybrid cooling system that includes a gravity-aided passive cooling solution coupled with a smart supplementary liquid cooling system. The active cooling system contains a radiator, heat sink, variable frequency drive, alternating current (AC) fan, direct current (DC) pump, and real-time controller. A complete nonlinear mathematical model is developed using a lumped parameter approach to estimate the optimum fan and pump operations at each control interval. Four different control strategies, including nonlinear model predictive controller, classical proportional-integral (PI
Shoai Naini, ShervinMiller, Richard StevenRizoo, DeniseWagner, John
During high engine load, adequate engine cooling is necessary to prevent irregularly highly machine temperatures and spark knock that are issues affecting high power from being achieved. However, excessive cooling during low engine load or cooling locations that do not require cooling relatively exacerbates fuel consumption. Therefore, optimization of the engine cooling system is needed to achieve higher performance of motorcycle engines. First of all, in water-cooled engines, conventional water cooling system adjusts the cooling amount via flow channel switching with a thermostat, which is opened in high water temperature. However, with the bypass channel, water may bypass the radiator but still continues to circulate, thereby leading to loss arising from heat transfer from the cylinders. Moreover, use of a thermostat allows water to flow through the radiator even during low engine loads under high water temperature operation, thereby resulting in further heat transfer from the
The purpose of the article is to evaluate the cooling performance efficiency of a Compressed Natural Gas (CNG) medium commercial vehicle with a viscous fan, fresh air cleaner, and choked air cleaner in comparison with limits prescribed in the Indian Standard (IS) 14557. Due to the increase in CNG availability, a shift is observed in the market demand for CNG vehicles. The earlier CNG vehicle duty cycle was limited to plain roads and some limited cities, but now vehicles are being used for a short trip to nearby hilly routes thereby shifting the application of the use of a CNG vehicle. CNG vehicles can now be operated in hilly areas where power and torque demand is maximum and operates at lower vehicle speeds and in lower gears. The subjected vehicles are designed for haulage applications to operate with conventional fixed fans, which are permanently engaged, and smaller radiators. The subjected vehicle was previously designed as per the requirements of the existing road application
Gupta, MohitYadav, DevendraSingh, Pushpinder
Water and ethylene glycol are considered as conventional coolants from years in automotive industry for engine cooling. With the advancements in nanotechnology, Nano fluids have become prominent in increasing the rate of heat transfer compared to that of conventional fluids. Present study enlightens the CFD simulation of Nano-fluids in a radiator with base fluid as Ethylene glycol- water and Al2O3 as nanoparticles at different volume concentrations. The Nano fluid rheology is simulated in Ansys-Fluent CFD tool using standard k-ε two equation turbulence model with enhanced wall treatment and a standard y plus values. Various available fluent single phase and multiphase models are evaluated and compared with the experimental results in a simple circular pipe to setup the standard simulation methodology for radiator analysis. The effective temperature dependent thermos-physical properties of Nano fluids were estimated from the literatures. The result shows that alumina oxide nano fluids
Dewangan, NitinKattula, NitinKumar PhD, Kirannaidu, Ramesh
Power density (power/engine cubic capacity) of the latest passenger car Diesel and Gasoline engine keeps increasing with a focus to deliver best in class performance along with meeting CAFE and emission norms. This increase in power density increases the thermal load onto the coolant system. Coolant temperature sensor monitoring the coolant temperature, proper radiator sizing, optimum water pump flow capacity and thermostat tuned to the required coolant temperature range are the typical measures taken to ensure safe operation of the engine and avoid any over-heating. Typical cooling system failures are mostly due to low coolant level, a defective thermostat, non-operative water pump & fan and blockage in the coolant circuit, etc. Most of these failures can be detected with the help of a coolant temperature sensor and pre-emptive measures can be taken to avoid engine loss. However, in the event of complete loss of coolant in the engine, the coolant temperature sensor will become
Sithick basha, AbubakkerNAMANI, PrasadSebastian, Ranjit GeorgeMalekar, AmitVellandi, Vikraman
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system. It has been observed that engine (dominant order or firing order) and radiator fan (1st order) excitation frequencies in proximity to system natural frequency drivesresonance and amplifies the
Titave, Uttam Vasantpilane, DattatrayaJha, KartikA, Milind Ambardekar
The present work deals with the 3-D, transient, system level CFD simulation of an automotive coolant system using a 3D CFD solver Simerics MP+®. The system includes actual CAD of radiator, cooling jacket, coolant pump, bypass valve and thermostat valve. This work is in continuation of the work done by Srinivasan et al. [1] where wax melting, conjugate heat transfer, Fluid Structure Interaction (FSI) of the valve had been solved. Thermostat valve was controlled by wax phase change model which also incorporates the hysteresis effect of wax melting and solidification. The previous work dealt with the simulation of complete cycle, opening, and closing of the thermostat valve system. Besides the physics considered in the previous study, the current model also includes the treatment of cavitation to account for the presence of dissolved gases and vaporization of the liquid coolant. A methodology has been developed and implemented where the run-time of such a system has been made considerably
Varshney, MehulBallani, AbhishekPasunurthi, Shyam SundarMaiti, DipakSrinivasan, Chiranth
Radiators are types of heat exchangers, which are used to transfer the heat from one fluid to another fluid. It is mainly used in automobile engine cooling systems and the radiators are the major source of heat rejection from the system by cooling the working fluid (generally water or glycol mixture). The application of radiators in the two-wheeler vehicle segment plays a vital role in increasing engine efficiency by maintaining the optimum temperature inside the engine assembly. As the technology advances with higher power requirements for the two-wheeler vehicle segment, thermal management of combustion engine becomes a critical part of it, resulting in the advancement of radiator technology in terms of compactness and thermal performance. In order to cater to the increasing demand for high-powered engines, performance optimization of two-wheeler radiators becomes an important aspect of design. This paper investigates the existing design parameters i.e. both the geometrical and
Suman, SaurabhKushwah, Yogendra Singh
This test method provides a standardized procedure for evaluating the electrical resistance of automotive coolant hose covers. It is known that an electrical potential exists between the engine and the radiator. Coolant hose cover conductivity has been determined to be a factor to reduce hose clamp life when vehicle build variations allow possible contact of the hose or the clamp to metal components on the radiator and engine thus completing an electrical circuit. The ensuing electrical current can undercut the clamp protective coating, leaving it vulnerable to the corrosive effects of road salts, moisture, and other environmental contaminants. SAE Recommended Practice J1684 addresses the electrochemical resistance of the tube portion of the coolant hose.
Non-Hydraulic Hose Committee
This paper presents the numerical analysis of four different nanoparticles namely Aluminium oxide (Al2O3), Silver nitrate (AgNO3), (Fe2O3) and Carbon nanotubes (CNT) mixed with mixture of water and ethylene glycol as fluid medium in an automobile radiator using louvered fin arrangement using forced convection technique under turbulent flow regime. The flow rate of coolant varied from 2 l/min to 5 l/min, while the velocity of air and temperature are constant. The use of nano fluids enhanced the rate of heat transfer of in the radiator as compared to water and ethylene glycol binary mixture as cooling medium. From the numerical analysis, it is found that CNT-H2O nano fluids exhibited better heat transfer characteristics as compared to Al2O3, Fe2O3 and AgNO3 nano particle in the base fluid. Furthermore, the increase in concentration of nanoparticles with the base fluid increases the convective heat transfer coefficient and Nusselt number (Nu). Also, it is found that the rate of increase
Sathyamurthy, RavishankarChandran, PrasadPrakash, NKaliappan, Vishnu Kumar
Items per page:
1 – 50 of 1047