Browse Topic: Radiators
This paper presents an advanced control system design for an engine cooling system in an internal combustion engine (ICE) vehicle. Building upon our previous work, we have derived models for crucial temperatures within the engine, including combustion wall temperature, coolant-out temperature, block temperature, as well as temperatures in external components such as heat exchangers and radiator. To accurately predict these temperatures in a rapid manner, we have utilized a lumped parameter concept with a mean-value approach. This approach allows for precise temperature estimation while maintaining computational efficiency. Given the complexity of the cooling system, we have proposed a linear time-varying (LTV) model predictive control (MPC) system to regulate the temperatures. This control system linearizes the model at each time step and applies linear MPC over the control and prediction horizons. By doing so, we effectively control the highly nonlinear and time-delayed system
Cooling system for an IC engine, consisting of the Water pump (WP), Radiator and Fan, plays an important role in maintaining thermal efficiency of the engine and protects the engine from overheating. Based on the vehicle application requirement, Fan will be mounted directly either on Crankshaft or WP pulley. But wherever increase in Fan speed ratio are in demand, it is preferred to mount the Fan on WP pulley. So it important to understand the WP housing structural strength with respect to vibration loads contributed from Radiator Fan assembly. This paper presents investigation of Failure of WP Housing during engine validation at engine test bed with Electronic Viscous Fan, based on the different operating conditions of the engine and fan as per the validation cycle. While the accessories are loading and the corresponding stresses are high when the fan is engaged. But in the current case, the failure of WP housing happened only during Fan clutch disengaged condition. Experimental
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line. With the
Radiator is one of critical component used in automobiles which is used to cool engine under operating conditions. To cool down engine, a coolant is passed through engine block, where it absorbs heat from the engine. The hot coolant is then fed into inlet tank of radiator located either on top of radiator, or along one side from which it is distributed across radiator core through tubes to another tank on opposite end of radiator. As coolant passes through radiator tubes on its way to opposite tank, it transfers much of its heat to tubes which, in turn, transfer heat to fins that are lodged between each row of tubes. The fins then release heat to ambient air. Fins are used to greatly increase contact surface of tubes to air, thus increasing exchange efficiency. The cooled liquid is fed back to engine, and the cycle repeats. Due to the temperature gradient across the radiator, there will be thermal stress on the radiator especially on header joints. Another important area is header
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants, refer to ASTM D3306, ASTM D4985, and ASTM D6210.
Vehicle thermal management system (VTMS) is a means of monitoring and controlling temperatures of vehicular components and aggregates to within optimum limits, thereby ensuring the proper functioning of the component or aggregate in an automobile. An integrated approach is required for developing VTMS, to satisfy the complex requirements of performance, reliability, fuel economy and human thermal comfort in modern vehicles. Fan motors and blowers play a crucial role in vehicle thermal management. These fan motors/ blower systems need to be designed in a manner such that there is minimum parasitic load on the prime mover. This work comprises performing Transient Powertrain Cooling (T-PTC) and Transient Air-conditioning (T-AC) simulation on a vehicle for prediction of parameters affecting fan operation of Condenser Radiator Fan Module (CRFM) during simulated city drive cycles. T-PTC model is built with addition of engine point mass, thermostat and heat conduction components to an
The automotive industry is a gigantic industry as millions of vehicles are running on the road and it’s growing at a rapid rate. The emissions are causing various global problems such as global warming, green house effects, air pollutions etc. due to the use of fossil fuels in abundance. This drives to think for alternative solutions, which are eco-friendly and having less or no emissions. The electric vehicles (EVs) are the most reliable solution as it is having high performance and efficiency with zero emissions. The evolution of EVs has fuelled the two-wheeler EVs industry to flourish at a fast pace. Li-ion battery and traction motor are the most important components in two-wheeler EVs and the thermal management for battery is more important for higher efficiency with longer life and better reliability along with the traction motor to have long range and better durability. This paper elaborates the radiator based thermal management solutions for the battery pack and the traction
Electric radiator fan is a vital component within IC and EV passenger vehicle cooling system. However, due to its operation, it induces noise and in-cab vibration affecting human comfort level. This paper primarily focus on FMS (Fan Motor Shroud) assembly induced steering wheel vibrations in a vehicle under idle + AC ON condition. The entire NVH performance was cascaded from vehicle level to component level to evaluate for high steering wheel vibration and its transfer path analysis. Unit level vibrations study was also carried out using a rigid rig under controlled conditions. Based on FMS vibration analysis, it was observed that fan blade rotating imbalance leads the high vibrations within system. Thus, a balancing method with higher precision and accuracy was used to measure and balance the fan under all operating conditions. Sensitivity analysis had been carried out for fan imbalanced boundary conditions and operating speeds. FMS assembly standalone imbalanced value and steering
The techniques outlined in this SAE Recommended Practice were developed as part of an overall program for determining and evaluating fuel consumption of heavy-duty trucks and buses, but it is applicable to off highway vehicles as well. It is recommended that the specific operating conditions be carefully reviewed on the basis of actual installation data. Cooling requirements are affected by all heat exchangers that are cooled by the fan drive system. These may include radiators, condensers, charge air coolers, oil coolers, and others. Because of the variation in size, shape, configuration, and mountings available in cooling fans and fan drive systems, specific test devices have not been included. Using known power/speed relationships for a given fan, this procedure can be used to calculate the fan drive system’s power consumption for cooling systems using the types of drives listed below. This power consumption may then be used in determining engine net power per SAE J1349. For more
The dischargeable heat output and the cooling drag of motor vehicles are largely determined by the radiator size and the cooling air mass flow rate. In the present work, the effect of varying the radiator size on the cooling air requirement and the cooling drag of a motor vehicle is investigated. The starting point is the assumption that the transferred cooling power remains constant when the radiator size is changed. Based on the physical principles of heat and momentum transfer, a simple mathematical representation of the relationship between the radiator size, cooling air demand, and cooling drag is developed for this case, enabling an overall representation in clear diagrams. The results are validated by an experimental example from the literature. In addition, the application of the new equations is demonstrated in a real vehicle project where the aerothermodynamic challenge was a reduction in radiator size. The developed equations and diagrams allow a quick overview of the
This specification covers procedures which will provide protection of elastomeric seals and seal assemblies such as O-rings, cap seal assemblies, and other designs from contamination by foreign materials and handling / transportation / storage damage prior to installation and ensure positive identification by part number of each piece until it is installed.
GT-POWER and Simulink software are used to explore the influence of factors such as external temperature and radiator layout on the battery thermal management system, and prepare for the subsequent exploration of the joint simulation of the battery thermal management system under low temperature radiator threshold control and fuzzy control. The cooling and energy-saving effects of the fan and compressor using fuzzy control are analyzed. The results show that cooling the power battery with refrigerant is not affected by the external temperature. Under the condition of good temperature consistency of battery pack, compared with the threshold control, the fuzzy control strategy for fan and compressor speed can save about 23.1% and 14% of energy consumption respectively, which helps to improve the driving range of the vehicle.
This SAE Standard covers reinforced and flexible hoses intended for use in water and ethylene glycol-based engine-coolant system applications.
The radiator as heat exchanger plays a very significant role in an engine cooling system by maintaining the coolant at an optimum temperature. The present study aims at improving the performance of an automobile radiator by using nano-coolants. Nano-scale particles have been tested and proven to have enhanced thermal conductivity than their bulk counterparts due to their increased surface area-to-volume ratio. Thus the nanoparticles dispersed in the base fluids called nanofluids are used as a radiator coolant to improve the performance of the radiator. Aluminum oxide (Al2O3)-based nanofluid at 0.04%, 0.08%, 0.15% by volume concentrations is used in two different base fluids, one being water and the other ethylene glycol (30%) (EG)-water mixture. Coolant is supplied at three different inlet temperatures at 40°C, 50°C, and 60°C and at five different flow rates ranging from 2 L/min to 6 L/min at an interval of 1 L/min. For all the experiments, the air velocity is maintained constant using
The purpose of the article is to evaluate the cooling performance efficiency of a Compressed Natural Gas (CNG) medium commercial vehicle with a viscous fan, fresh air cleaner, and choked air cleaner in comparison with limits prescribed in the Indian Standard (IS) 14557. Due to the increase in CNG availability, a shift is observed in the market demand for CNG vehicles. The earlier CNG vehicle duty cycle was limited to plain roads and some limited cities, but now vehicles are being used for a short trip to nearby hilly routes thereby shifting the application of the use of a CNG vehicle. CNG vehicles can now be operated in hilly areas where power and torque demand is maximum and operates at lower vehicle speeds and in lower gears. The subjected vehicles are designed for haulage applications to operate with conventional fixed fans, which are permanently engaged, and smaller radiators. The subjected vehicle was previously designed as per the requirements of the existing road application
Water and ethylene glycol are considered as conventional coolants from years in automotive industry for engine cooling. With the advancements in nanotechnology, Nano fluids have become prominent in increasing the rate of heat transfer compared to that of conventional fluids. Present study enlightens the CFD simulation of Nano-fluids in a radiator with base fluid as Ethylene glycol- water and Al2O3 as nanoparticles at different volume concentrations. The Nano fluid rheology is simulated in Ansys-Fluent CFD tool using standard k-ε two equation turbulence model with enhanced wall treatment and a standard y plus values. Various available fluent single phase and multiphase models are evaluated and compared with the experimental results in a simple circular pipe to setup the standard simulation methodology for radiator analysis. The effective temperature dependent thermos-physical properties of Nano fluids were estimated from the literatures. The result shows that alumina oxide nano fluids
Power density (power/engine cubic capacity) of the latest passenger car Diesel and Gasoline engine keeps increasing with a focus to deliver best in class performance along with meeting CAFE and emission norms. This increase in power density increases the thermal load onto the coolant system. Coolant temperature sensor monitoring the coolant temperature, proper radiator sizing, optimum water pump flow capacity and thermostat tuned to the required coolant temperature range are the typical measures taken to ensure safe operation of the engine and avoid any over-heating. Typical cooling system failures are mostly due to low coolant level, a defective thermostat, non-operative water pump & fan and blockage in the coolant circuit, etc. Most of these failures can be detected with the help of a coolant temperature sensor and pre-emptive measures can be taken to avoid engine loss. However, in the event of complete loss of coolant in the engine, the coolant temperature sensor will become
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system. It has been observed that engine (dominant order or firing order) and radiator fan (1st order) excitation frequencies in proximity to system natural frequency drivesresonance and amplifies the
The present work deals with the 3-D, transient, system level CFD simulation of an automotive coolant system using a 3D CFD solver Simerics MP+®. The system includes actual CAD of radiator, cooling jacket, coolant pump, bypass valve and thermostat valve. This work is in continuation of the work done by Srinivasan et al. [1] where wax melting, conjugate heat transfer, Fluid Structure Interaction (FSI) of the valve had been solved. Thermostat valve was controlled by wax phase change model which also incorporates the hysteresis effect of wax melting and solidification. The previous work dealt with the simulation of complete cycle, opening, and closing of the thermostat valve system. Besides the physics considered in the previous study, the current model also includes the treatment of cavitation to account for the presence of dissolved gases and vaporization of the liquid coolant. A methodology has been developed and implemented where the run-time of such a system has been made considerably
Radiators are types of heat exchangers, which are used to transfer the heat from one fluid to another fluid. It is mainly used in automobile engine cooling systems and the radiators are the major source of heat rejection from the system by cooling the working fluid (generally water or glycol mixture). The application of radiators in the two-wheeler vehicle segment plays a vital role in increasing engine efficiency by maintaining the optimum temperature inside the engine assembly. As the technology advances with higher power requirements for the two-wheeler vehicle segment, thermal management of combustion engine becomes a critical part of it, resulting in the advancement of radiator technology in terms of compactness and thermal performance. In order to cater to the increasing demand for high-powered engines, performance optimization of two-wheeler radiators becomes an important aspect of design. This paper investigates the existing design parameters i.e. both the geometrical and
This test method provides a standardized procedure for evaluating the electrical resistance of automotive coolant hose covers. It is known that an electrical potential exists between the engine and the radiator. Coolant hose cover conductivity has been determined to be a factor to reduce hose clamp life when vehicle build variations allow possible contact of the hose or the clamp to metal components on the radiator and engine thus completing an electrical circuit. The ensuing electrical current can undercut the clamp protective coating, leaving it vulnerable to the corrosive effects of road salts, moisture, and other environmental contaminants. SAE Recommended Practice J1684 addresses the electrochemical resistance of the tube portion of the coolant hose.
This paper presents the numerical analysis of four different nanoparticles namely Aluminium oxide (Al2O3), Silver nitrate (AgNO3), (Fe2O3) and Carbon nanotubes (CNT) mixed with mixture of water and ethylene glycol as fluid medium in an automobile radiator using louvered fin arrangement using forced convection technique under turbulent flow regime. The flow rate of coolant varied from 2 l/min to 5 l/min, while the velocity of air and temperature are constant. The use of nano fluids enhanced the rate of heat transfer of in the radiator as compared to water and ethylene glycol binary mixture as cooling medium. From the numerical analysis, it is found that CNT-H2O nano fluids exhibited better heat transfer characteristics as compared to Al2O3, Fe2O3 and AgNO3 nano particle in the base fluid. Furthermore, the increase in concentration of nanoparticles with the base fluid increases the convective heat transfer coefficient and Nusselt number (Nu). Also, it is found that the rate of increase
Items per page:
50
1 – 50 of 1047