Browse Topic: Water pumps

Items (285)
India, with its low per capita income vast population and growing middle class, represents a significant market for low-cost, fuel-efficient automobiles. As the largest two-wheeler market globally, a transition to four-wheelers is underway, further driving the demand for affordable vehicles. This necessitates the design and development of low-priced vehicles equipped with efficient and economical powertrains. Globally, stringent regulations like Corporate Average Fuel Economy (CAFE), Worldwide Harmonized Light Vehicles Test Cycles (WLTC), and Real Driving Emissions (RDE) are pushing manufacturers to develop fuel-efficient vehicles. India has also adopted similar regulations, including CAFE2 and Bharat Stage 6-Phase 2 (BS6-2), to improve fuel economy and reduce emissions. These regulations, coupled with the growing demand for affordable vehicles, have spurred innovation in engine technology. In response to these challenges, Maruti Suzuki India Limited (MSIL) has consistently focused on
Singh, AmandeepSingh, JaspreetJalan, AnkitKumar, Narinder
Proton exchange membrane fuel cell (PEMFC) is widely used in transportation and high-efficiency energy systems for their high power density and rapid start-up capability. The temperature control of its thermal management system is characterized by slow response and system oscillation, and the temperature control process suffers from problems such as large temperature fluctuations and slow temperature rise during cold starts. To effectively control the fuel cell thermal management system, this paper proposes a fuzzy PID-based control strategy to optimize the temperature control of the stack by comprehensively controlling the cooling fan, thermostat, temperature control valve, and heat components. By modeling the 60kW PEMFC thermal management system on the MATLAB/Simulink platform, the flow distribution and heat exchange of each component are analyzed and the optimized fuzzy control strategy is compared with the traditional PID control strategy. The simulation results show that the
Zhang, YilongZhang, YunqingGuo, JunWu, Jinglai
A mathematical model of the thermal management system (TMS) for an extended-range hybrid electric vehicle is developed. The variation in engine coolant temperature is examined under different water pump and fan control strategies, and its subsequent impact on engine TMS energy consumption is analyzed. Based on the simulation results of energy consumption under various control parameters, machine learning regression models are constructed, and four different regression algorithms are applied. By incorporating temperature-based optimization into the water pump and fan control strategy, system energy consumption can be effectively reduced. The machine learning regression results indicate that the mathematical model of TMS cannot be simply regarded as a linear model. ANN and SVM regression show high degree of agreement with the mathematical model. This study provides a theoretical foundation for the development of data-driven tool for optimizing real-time TMS control strategies.
Pan, ShiyiZhang, NanZheng, JunliSun, TianfuZidi, Li
Cooling system for an IC engine, consisting of the Water pump (WP), Radiator and Fan, plays an important role in maintaining thermal efficiency of the engine and protects the engine from overheating. Based on the vehicle application requirement, Fan will be mounted directly either on Crankshaft or WP pulley. But wherever increase in Fan speed ratio are in demand, it is preferred to mount the Fan on WP pulley. So it important to understand the WP housing structural strength with respect to vibration loads contributed from Radiator Fan assembly. This paper presents investigation of Failure of WP Housing during engine validation at engine test bed with Electronic Viscous Fan, based on the different operating conditions of the engine and fan as per the validation cycle. While the accessories are loading and the corresponding stresses are high when the fan is engaged. But in the current case, the failure of WP housing happened only during Fan clutch disengaged condition. Experimental
R, Mahesh Bharathi
Front End Accessory Drive (FEAD) systems are used in automobiles to transfer power from the engine-to-engine accessory components such as the alternator, water pump, etc. using a Belt and Tensioner. The emergence of Mild hybrid technologies has led to the replacement of alternator with Belt-driven Integrated Starter-generator (B-ISG). In conventional configuration of FEAD, the power transfer is in single direction but in mild hybrid engine power transfer is bidirectional: tight and slack side of the Belt changes as per Torque assist or Regeneration mode. The presence of an integrated starter-generator (ISG) in a belt transmission places excessive strain on the FEAD System and necessitates checking the dynamic performance of FEAD System thoroughly. Study of Increase in Engine Torque in existing Vehicle was done to understand its effect on various system. This vehicle is Mild Hybrid and consists of Belt-driven Integrated Starter generator system. Increase in Engine torque lead to
Kumar, AdityaGupta, AvinashBharti, Anil Kant
The high-efficiency dedicated hybrid engine (DHE) has led to increasingly complex challenges in engine thermal management. On one hand, the high compression ratio of up to 16:1 makes the engine more susceptible to knocking, necessitating meticulous thermal management to mitigate the potential sensitivity to metal temperature. On the other hand, extensive use of external cooled exhaust gas recirculation (EGR) helps reduce knocking and improve thermal efficiency, but it also raises temperature levels and requires additional cooling measures. For the 1.5L DHE developed by SAIC Motor, a split cooling structure was employed in the engine cooling system design, with the cylinder head water jacket and cylinder block water jacket arranged in parallel and equipped with different coolant outlets. By utilizing a dual thermostat to control flow, this design allows for adjustable flow distribution, providing effective cooling to the cylinder head while reducing cooling to the cylinder block. The
Xu, ZhengXia, QiWeiPeng, Chaowang, YanJun
The discussed invention is centered on the evaporative cooling of a vehicle cabin, introducing a novel concept of humidity control. Unlike conventional Air Conditioning (AC) systems that operate on the Vapor Compression Refrigeration Cycle (VCRC), which tend to be costly and contribute to higher fuel consumption due to the engine-driven compressor in automobiles, there is currently no other Original Equipment Manufacturer (OEM) fitted cabin cooling option available to address this issue. This paper introduces the idea of a humidity-controlled evaporative cooler. The objective of humidity control is achieved through a controller unit that receives feedback from a humidity sensor, subsequently regulating the operation of the water pump. The ambient air is passed through a humidified honeycomb pad, cooling through the principle of evaporation. To prevent any leftover water droplets from entering the cabin, a polyester nonwoven filter has been integrated into the system. This invention not
Dube, DevashishUpkare, Piyush Pradip
This SAE Recommended Practice is applicable to all engine cooling systems used in (1) heavy-duty vehicles, industrial applications, and (2) automotive applications. There are two categories of coolant reservoir tanks covered in the document: a Pressurized tanks b Unpressurized tanks
Cooling Systems Standards Committee
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants, refer to ASTM D3306, ASTM D4985, and ASTM D6210.
Cooling Systems Standards Committee
The fuel economy of the internal combustion engine becomes progressively critical, especially with the stringent standards set by the government. To meet the government norms such as CAFE (Corporate Fuel Average Economy), different technologies are being explored and implemented in internal combustion engines. Several technologies such as variable oil pump, map controlled PCJ (Piston Cooling Jet), variable or switchable water pump & ball bearing turbocharger etc. This study investigates the effectiveness of implementing map-controlled PCJ implemented for a 1.5-litre 3-cylinder diesel engine. PCJ’s are major consumers of oil flow and map-controlled PCJ is used by many OEM’s e.g., Ford EcoSport to reduce the oil pump flow. In map-controlled PCJ, the oil to the PCJ is controlled using a solenoid valve. The solenoid valve can be completely variable or ON/OFF type. In our application, the ON/OFF type solenoid value is used to regulate the oil flow to PCJ. Conventionally, the oil to the PCJ
vinaya murthy, VijayendraSithick basha, AbubakkerDharan R, BharaniRengaraj, ChandrasekaranVIGNESH, A. C.
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of selectively cooled exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of nitrogen oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
Cooling Systems Standards Committee
Within automotive sector, there are several high-performance applications, like, for instance, those referred to racing and motorsport, where cooling needs are usually fulfilled by simple circuits with conventional low-efficiency pumps. The cooling needs in these applications are represented by low flow rates delivered (in the range of 10 - 50 L/min). The operating conditions of these small pumps are usually characterized by very high revolution speeds, which intrinsically cause low efficiency and critical intake phenomena (cavitation) if the design is not specifically optimized to address these concerns. Hence, in this paper a small-size pump operating in the racing sector has been designed using a model-based approach, built and tested having reached both high efficiency (aimed to 50%) and absence of intake operational problems (cavitation). Starting from the specific cooling request (design flow rate equal to 14.0 L/min and pressure rise equal to 2.5 bar), the very limited space
Mariani, LuigiDi Giovine, GiammarcoFremondi, FabrizioDi Battista, DavideCarminati, AlessandroCipollone, RobertoFatigati, FabioDi Bartolomeo, MarcoCamagni, Umberto
Three levels of fan structural analysis are included in this practice: a Initial structural integrity. b In-vehicle testing. c Durability (laboratory) test methods. The initial structural integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The in-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The durability test methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a
Cooling Systems Standards Committee
Mobile hand-held or back-carried small engines must be weight-optimized due to their operability. At the same time there is enormous cost pressure within this market segment. Therefore, not all comfort and additional functions to increase user-friendliness can be adopted from the stationary applications. These include, for example, electric starting devices or additional sensors and actuators that take over advanced control processes to prevent or detect and report user or system errors. In the mobile small engine segment, this situation leads to the problem that the systems have many requirements for the user. These include, for example: physical ability to operate a pull starter know-how about the functioning of a combustion engine (2-stroke and 4-stroke) know-how for detecting failures and remedial actions If the knowledge about the behavior of engines is not given, or failures are overlooked, this automatically leads to a form of physical strain on the user due to the many
Öztürk, BahattinStoffregen, Thorsten
Proton exchange membrane fuel cell has received extensive attention from different industries due to its advantages such as high efficiency, high energy density, and clean emissions. However, performance at low temperature is still one of the key factors that restricted its wide commercialization. To study the internal water state of the fuel cell at low temperature and verify different cold-start strategies, a fuel cell test platform that can simulate a low-temperature environment is needed. As the power of the stack grows, the impact of the size of a membrane and the impact of the number of single cells can’t be negligible. Meanwhile, the mutual influence between adjacent single cells at low temperatures is also worth studying. However, a test platform for high-power fuel cell stack with the ability to simulate a sub-freezing temperature is currently lacking. Thus, in this work, a 10kW-class fuel cell test platform is designed. This test platform includes a gas supply and exhaust
Ma, TiancaiDu, BoyuWang, KaiLin, WeikangYang, Yanbo
Power density (power/engine cubic capacity) of the latest passenger car Diesel and Gasoline engine keeps increasing with a focus to deliver best in class performance along with meeting CAFE and emission norms. This increase in power density increases the thermal load onto the coolant system. Coolant temperature sensor monitoring the coolant temperature, proper radiator sizing, optimum water pump flow capacity and thermostat tuned to the required coolant temperature range are the typical measures taken to ensure safe operation of the engine and avoid any over-heating. Typical cooling system failures are mostly due to low coolant level, a defective thermostat, non-operative water pump & fan and blockage in the coolant circuit, etc. Most of these failures can be detected with the help of a coolant temperature sensor and pre-emptive measures can be taken to avoid engine loss. However, in the event of complete loss of coolant in the engine, the coolant temperature sensor will become
Sithick basha, AbubakkerNAMANI, PrasadSebastian, Ranjit GeorgeMalekar, AmitVellandi, Vikraman
BYD recently developed a brand new 1.5 Naturally Aspirated(NA) engine dedicated to its Dual Mode-intelligent(DM-i) plug-in hybrid architecture. This engine can reach a peak of 43% brake thermal efficiency. Combined with Electric Hybrid System(EHS), the full architecture can achieve low fuel consumption at various vehicle speeds, while maintaining fast accelerations. To reach such high thermal efficiency, the technological choice consisted in the association of: high compression ratio of 15.5, long stroke, Atkinson cycle, high tumble port, cooled EGR and high energy ignition. High compression ratio led to the increase of knock and pre-ignition tendency, which was suppressed by EGR and piston cooling jets. A lot of work was also done on the software side to optimize knock and pre-ignition control. The thermal management was completely redesigned. The use of electronic water pump, associated with two thermostats (one electronic and one traditional wax type) made it possible to implement
Yang, Dongshenglu, GuoxiangGong, ZewenQiu, AnBouaita, Abdelhamid
Extensive experimental investigations done over a decade in different engine types demonstrated the capability of achieving high efficiency along with low levels of oxides of nitrogen (NOx) and soot emissions with low temperature combustion (LTC) modes. However, the commercial application of LTC strategies requires several challenges to be addressed, including precise ignition timing control, reducing higher unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions. The lower exhaust gas temperatures with LTC operation pose severe challenges for after-treatment control systems. Among the available LTC strategies, Reactivity Controlled Compression Ignition (RCCI) has emerged as the most promising strategy due to better ignition timing control with higher thermal efficiency. Nevertheless, the complexity of engine system hardware due to the dual fuel injection system and associated controls, high HC and CO emissions are the major limiting factors in RCCI. Homogeneous Charge with
chaurasiya, rishabhKrishnasamy, Anand
BYD recently introduced its new DM-i (Dual Mode-Intelligent) plug-in hybrid architecture with a new dedicated 1.5NA (Naturally Aspirated) high-efficiency engine, which can reach a peak of 43% brake thermal efficiency. With this architecture, the vehicle is mainly driven by motors and engine only starts when required. This requires that once started, the engine can reach its best working temperature as quick as possible. To achieve this target, a new intelligent thermal management system was designed. This system adopted an advanced split cooling strategy to control the flow ratio between cylinder block and head, which was realized by the combination of one electronic thermostat and one wax thermostat. An electronic water pump was used to actively control the coolant flow rate. Together with the intelligent control of thermal needs under all working conditions, the new thermal management system realized the following benefits: faster engine warm-up, better fuel economy and lower
lu, GuoxiangYang, DongshengRong, YulongGong, ZewenWang, Bo
During hot ambient, the cabin temperature of vehicle undergoing soaking may rise up to 70oC. Warm temperature and seats often turn uncomfortable to the passenger. The high temperature may result in thermal degradation of various plastic components, which in turn may release hazardous gases [2]. Usual practice to improve air quality inside the cabin includes switching on the air conditioning while keeping the window panes open. Such a practice minimizes the stabilization time to achieve comfortable cabin temperature. However, significant power requirement by the air-conditioning system during cool down cycle results in excess fuel consumption [7]. To eliminate these problems, the SOLAR POWERED INCABIN EVAPORATIVE COOLING SYSTEM can be installed in the car. This system uses a solar panel which converts the Solar energy into the Electrical energy. This energy can be used to recharge small battery or can be directly used to give necessary power for the cooling system. System includes
SINGHAL, SUNNY
The dynamic effects of a coolant flow rate variation on knock tendency are experimentally investigated on a small S.I. engine. The analysis concerns the transient response of the unburned gas temperature and the knock onset to a step variation in load and coolant flow rate. This phenomenological investigation aims at preventing knock through a proper thermal management as an efficient alternative to the currently adopted strategies. Moreover, the proposed approach may result particularly useful for hybrid-electric powertrain, where the engine is expected to operate in the highest efficiency region by adopting high compression ratios and full stoichiometric map. The analysis is carried out through an experimental campaign, where the control of cylinder wall temperature is achieved by means of an electrically driven water pump. The spark advance and the air/fuel ratio have been properly varied in order to operate with advanced spark timing and stoichiometric mixture at full load. A
Falbo, LuigiPerrone, DiegoCastiglione, TeresaAlgieri, AngeloBova, Sergio
This ARP delineates requirements for system cleanliness, test gas supply system, test stand design, environmental chamber definition, instrumentation, dynamic test equipment and testing procedures.
A-10 Aircraft Oxygen Equipment Committee
This standard covers oronasal type masks which use a continuous flow oxygen supply. Each such mask comprises a facepiece with valves as required, a mask suspension device, a reservoir, or rebreather bag (when used), a length of tubing for connection to the oxygen supply source, and a means for allowing the crew to determine if oxygen is being delivered to the mask. The assembly shall be capable of being stowed suitably to meet the requirements of its intended use.
A-10 Aircraft Oxygen Equipment Committee
This Aerospace Information Report (AIR) is intended to be concerned with fleet programs rather than programs for individual units. Technical and administrative considerations in developing an approach to a program will be suggested. Organization of material possibly wanted in the form of a detailed specification for airline rebuilder communication is reviewed.
AGE-3 Aircraft Ground Support Equipment Committee
Automotive thermal systems are becoming complicated each year. The powertrain efficiency improvement initiatives are driving transmission and engine oil heaters into coolant network design alternatives. The initiatives of electrified and autonomous vehicles are making coolant networks even more complex. The coolant networks these days have many heat exchangers, electric water pumps and valves, apart from typical radiators, thermostat and heater core. Some of these heat exchangers, including cabin heaters deal with very small amount of coolant flow rates at different ambient conditions. This paper describes how viscosity can be a major reason for simulation inaccuracy, and how to deal with it for each component in the coolant network. Both experimental and computational aspects have been considered in this paper with wide range of ambient temperatures. Methods have been proposed to handle these issues in the simulation phase at the early phase of automotive thermal system development
Khandaker, MasumaUddin, AhmedSanikal, VijayFuad, KajiLindquist, CraigBaker, GaryRahman, Sadek
Fuel consumption reduction and CO2 emissions saving are the present drivers of the technological innovation in Internal Combustion Engines for the transportation sector. Among the numerous technologies which ensure such benefits, the role of the cooling pump has been recognized, mainly referred to the possibility to improve engine performances during warm up. During engine homologation, an additional benefit on the fuel consumption can be also reached reducing the energy demand of the pump. In fact, during the cycle, propulsion power requested by the vehicle is low and the importance of the energy absorbed by the pump became significant, since the pump operates far from its maximum efficiency. Indeed, the pump is usually designed at high load working point (Best Efficiency Point, BEP), where the cooling request is maximum: starting from these design conditions, when the pump operates at lower engine coolant requests (as it happens very frequently and more specifically during the
Di Bartolomeo, MarcoFatigati, FabioDi Battista, DavideCipollone, Roberto
By the year 2020, EU legislation limits CO2 emissions for new passenger cars to a maximum of 95 g/km, and further reductions to 68 g/km are expected. An electric motor (e-motor) with high power density often requires shaft cooling in combination with increased rotational speeds to boost efficiency. Especially, low friction and durability of sealing faces are essential to overcome severe friction under high-speed rotation. This challenge can be resolved by using the revolutionary GlideXTM sealing technologies, featuring advanced surface-texturing that enables microscopic flow control in dynamic sealing faces. The surface-textured mechanical seal can reduce leakage to the level of insignificance and up to 90% less friction, compared to a non-textured seal. The advanced texturing produces a thin liquid-sealing film between sealing faces, and liquid-lubrication becomes dominant at low speeds; at high speeds, gas-lubrication becomes dominant by manipulating liquid ingress into sliding
Tokunaga, YuichiroNakahara, NobuoItadani, Masatoshi
This paper explains the methodology to design a high power-density diesel engine capable of 180 bar peak firing pressure yet achieving the lowest level of mechanical friction. The base engine architecture consists of an 8 mm crank-offset which is an optimized value to have the lowest piston side forces. The honing specification is changed from a standard plateau honing to an improved torque plate slide honing with optimized surface finish values. The cumulative tangential force of the piston rings is reduced to an extreme value of 28.5 N. A rectangular special coated top ring and a low-friction architecture oil ring are used to reduce the friction without increasing the blow-by and oil consumption. A special low-friction coating is applied on the piston skirt in addition to the optimized skirt profile to have reduced contact pressure. The piston pin is coated with diamond-like carbon (DLC) coating to have the lowest friction. The main bearing and crankpin diameter and width are
Vellandi, VikramanNamani, PrasadBagavathy, SureshChalumuru, Madhu Kishore
Diesel engine is the main source of power for many agricultural applications such as water pump sets, compressors and tractors. At the same time it is also the main source of vibrations. Mechanical vibrations have instantaneous and long term effects on human body. Kinds of effects depend upon duration of exposure and frequency of vibrations. The increasing demands of improved comfort levels of operators are putting pressures on tractor manufacturers on reducing the vibration levels which thereby resulting in improving diesel engine vibrations. Vibration is the movement or mechanical oscillations about an equilibrium position of a machine or component. A Vibration analysis is about the art of looking for changes in the vibration pattern and then relating those changes. Vibration always occurs when there is unbalanced body in reciprocating or rotary motion. In an internal combustion engine there are many parts in reciprocating and rotary motion such as pistons, connecting rod, crankshaft
Julaha, PuneetArde, VasundharaChirakkal, Remesan
This document lists common terminology for vacuum excavation and sewer cleaning equipment, including component names and specific work completed by these machines. This document also illustrates some common types of equipment.
MTC9, Trenching and Horizontal Earthboring Machines
This SAE Recommend Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less, as defined by EPA, and M1 category vehicles as defined by the European Commission:
Interior Climate Control Vehicle OEM Committee
SAE JA6097 (“Using a System Reliability Model to Optimize Maintenance”) shows how to determine which maintenance to perform on a system when that system requires corrective maintenance to achieve the lowest long-term operating cost. While this document may focus on applications to Jet Engines and Aircraft, this methodology could be applied to nearly any type of system. However, it would be most effective for systems that are tightly integrated, where a failure in any part of the system causes the entire system to go off-line, and the process of accessing a failed component can require additional maintenance on other unrelated components.
HM-1 Integrated Vehicle Health Management Committee
The objective of this glossary is to establish uniform definitions of parts and terminology for engine cooling systems. Components included are all those through which engine coolant is circulated: water pump, engine oil cooler, transmission and other coolant-oil coolers, charge air coolers, core engine, thermostat, radiator, external coolant tanks, and lines connecting them.
Cooling Systems Standards Committee
Reactivity-controlled compression ignition (RCCI) is a dual fuel low temperature combustion (LTC) strategy which results in a wider operating load range, near-zero oxides of nitrogen (NOx) and particulate matter (PM) emissions, and higher thermal efficiency. One of the major shortcomings in RCCI is a higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. Unlike conventional combustion, aftertreatment control of HC and CO emissions is difficult to achieve in RCCI owing to lower exhaust gas temperatures. In conventional RCCI, an early direct injection (DI) of low volatile diesel fuel into the premixed gasoline-air mixture in the combustion chamber results in charge stratification and fuel spray wall wetting leading to higher HC and CO emissions. To address this limitation, a homogeneous charge reactivity-controlled compression ignition (HCRCCI) strategy is proposed in the present work, wherein the DI of diesel fuel is eliminated. HCRCCI strategy is achieved by inducting
Pandian, Murugesa M.Krishnasamy, Anand
The horizontal water cooled diesel engine has a structure including all component parts such as a fuel tank that are necessary to drive engine, and is often a single cylinder engine. It is mounted on many applications such as power tiller and water pump because of high general versatility of installing owing to belt drive. It has a simple structure because of single cylinder, and is active mainly in Southeast Asia. At the same time, the market requires this type of engine higher power while a compact structure is also required from the viewpoint of easy to supply and use. In other words, “High power density” that is improving the output per body size has been required. We have responded to the demand of “High power density” by increasing output without changing the engine size. In order to keep the engine size, we have been enlarging displacement by using our peculiar stroke-up expertise and original bore-up contrivance. In addition to those techniques, we introduced analytic
Komai, YoshinobuTakashima, YusukeFujiwara, TsukasaOkamoto, HisaoKawahara, Minoru
Fuel economy is a crucial parameter in long-haulage heavy-duty vehicles. Researchers tended to focus initially on engine combustion efficiency, while modern researchers turn their attention to the energy consumption of engine accessories in an attempt to enhance fuel economy. The accessories investigated in this study include the cooling fan, water pump, air compressor, power steering pump, air-conditioning (AC) compressor, and generator. Normally, accessory energy consumption analysis is based on rig data and simulation results. Here, we focus on the disparate test environments between the rig and vehicle to establish a novel constant power test method; the proposed method provides accurate accessory power data under different working conditions. A typical highway driving cycle is selected to collect accessory duty-cycle. The heavy-duty vehicle accessories’ energy consumption distribution under highway road conditions is obtained through the repeated road tests. Accessories comprise
Zhong, Liang
This SAE Recommended Practice is applicable to all engine cooling systems used in (1) Heavy-duty vehicles, industrial applications, and (2) Automotive applications. There are two categories of coolant reservoir tanks covered in the document: a Pressurized tanks b Un-pressurized tanks
Cooling Systems Standards Committee
The dynamic performances of the cooling circuit have a great impact on ICE efficiency and CO2 emissions. Engine thermal management is among the most promising technologies able to offer a sensible reduction in terms of engine fuel consumption and CO2 emission. These aspects are widely treated in literature and many technologies are already on the market or ready to be used. A reduced attention in literature, has been done on the pump performances during the real operating conditions. Homologation cycles try to reproduce these conditions. In light duty vehicles these cycles consist in accelerating and decelerating the engine following a specified velocity-time sequence. According to this procedure, the propulsion power requested by the vehicle is low, and the power absorbed by the auxiliaries became significant. The pump of the cooling fluid is the most important component among the auxiliaries. In this paper, the performance of a cooling pump has been studied according to its operating
Cipollone PhD, RobertoBorasso, MassimilianoDi Battista, DavideBenincasa, Marco
This document covers the mechanisms from the power cylinder which contribute to the mechanical friction of an internal combustion engine. It will not discuss in detail the influence of other engine components or engine driven accessories on friction.
Piston and Ring Standards Committee
The thermal management system of the water medium retarder using engine coolant (water and ethylene glycol) as transmission medium, omits oil-water heat exchanger in the structure. When the hydraulic retarder is operated, the valve is connected with the retarder and water pump, and then the engine coolant enters the working chamber. The kinetic energy of the vehicle is converted into internal energy of the coolant, and the heat is discharged to the external environment through the engine thermal management system. The braking torque of the water medium hydraulic retarder is determined by the water medium flow rate in the working chamber. The smaller the valve opening degree, the greater the braking torque and the faster the heating transmission fluid. Small valve opening is not conducive to the loss of heat. It will affect the normal working of the engine and hydraulic retarder. In this paper, the thermal management system of the water medium hydraulic retarder is independent of the
Gao, XinLei, YulongChen, WeiCui, GuokaiZhong, Lei
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D3306 and ASTM D4985.
Cooling Systems Standards Committee
Items per page:
1 – 50 of 285