Browse Topic: Fans
Cooling system for an IC engine, consisting of the Water pump (WP), Radiator and Fan, plays an important role in maintaining thermal efficiency of the engine and protects the engine from overheating. Based on the vehicle application requirement, Fan will be mounted directly either on Crankshaft or WP pulley. But wherever increase in Fan speed ratio are in demand, it is preferred to mount the Fan on WP pulley. So it important to understand the WP housing structural strength with respect to vibration loads contributed from Radiator Fan assembly. This paper presents investigation of Failure of WP Housing during engine validation at engine test bed with Electronic Viscous Fan, based on the different operating conditions of the engine and fan as per the validation cycle. While the accessories are loading and the corresponding stresses are high when the fan is engaged. But in the current case, the failure of WP housing happened only during Fan clutch disengaged condition. Experimental
Automotive cooling module system consists of condenser, radiator and intercooler which is used for thermal management of vehicle. Condenser helps to reject cabin heat, radiator to reject engine heat and intercooler rejects charged air heat to ambient. CRFM (Condenser, Radiator and Fan module) is conventionally packaged under the bonnet of passenger vehicle. Fan circulate airflow through heat exchangers and has primary role of airflow delivery. While performing vehicle level thermal management duty, fan noise is generated from CRFM and fan noise is considered as an important design attribute of CRFM. Many researchers have done fan noise simulation at component level and very limited literatures at vehicle (system) level simulation are available. Customer perceives noise from outside of the vehicle and it is important to predict fan noise at vehicle level at various operating speeds. Such simulations are transient in nature and modeling complexity demands high computational cost. Current
This SAE Recommended Practice is intended for use in testing and evaluating the approximate performance of engine-driven cooling fans. This performance would include flow, pressure, and power. This flow and pressure information is used to estimate the engine cooling performance. This power consumption is used to estimate net engine power per SAE J1349. The procedure also provides a general description of equipment necessary to measure the approximate fan performance. The test conditions in the procedure generally will not match those of the installation for which cooling and fuel consumption information is desired. The performance of a given fan depends on the geometric details of the installation, including the shroud and its clearance. These details should be duplicated in the test setup if accurate performance measurement is expected. The performance at a given air density and speed also depends on the volumetric flow rate, or the pressure rise across the fan, since these two
This practice applies to guarding of engine cooling fans used on Off-Road Self-Propelled Work Machines defined in SAE J1116. It does not include guarding for belts, pulleys, or other rotating equipment used on these machines.
The mystery of how futuristic aircraft embedded engines, featuring an energy-conserving arrangement, make noise has been solved by researchers at the University of Bristol. University of Bristol, Bristol, UK A study published in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane's main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don't have to work as hard to move the plane, so it burns less fuel. The research, led by Dr. Feroz Ahmed from Bristol's School of Civil, Aerospace and Design Engineering under the supervision of Professor Mahdi Azarpeyvand, utilized the University National Aeroacoustic Wind Tunnel Facility. They were able to identify distinct noise sources originating
A study published in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane’s main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don’t have to work as hard to move the plane, so it burns less fuel.
Hey superhero fans, meet the researchers making real life Iron Man technology possible. In a new study, engineers from Korea and the United States have developed a wearable, stretchy patch that could help to bridge the divide between people and machines — and with benefits for the health of humans around the world.
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets. A parametric
The Electroimpact Automatic Fan Cowl Riveter exhibits new and unique design features and automated process capabilities that address and overcome three primary technical challenges. The first challenge is satisfying the customer-driven requirement to access the entire fastening area of the fan cowl doors. This necessitates a unique machine design which is capable of fitting ‘inside’ a fan cowl door radius. The second challenge is determining drill geometry and drill process parameters which can produce consistent and high-quality countersunk holes in varying mixed-metal stack-up combinations consisting of aluminum, titanium, and stainless steel. The third challenge is providing the capability of fully automatic wet installation of hollow-ended titanium rivets. This requires an IML-side countersinking operation, depositing sealant throughout the OML and IML countersinks and the hole, automatically feeding and inserting a rivet which is only 5mm long and 6mm in head diameter and flaring
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line. With the
Roots blower is a rotary positive displacement pump which operates by pumping a fluid with a pair of meshing lobes. Recent trends in automotive industry demands high power density solutions for various applications. In comparison with legacy applications, compressors for high power density applications demand continuous operation with harsher duty cycle as well as demand higher pressure ratios. Because of longer duty cycles, it will be subjected to high heat loads which will cause a rise in temperatures of timing gears, bearings, and other components within the assembly. Accurate prediction of thermal performance is critical to design a durable and efficient roots blower for high power density applications. Thermal analysis of an assembly of roots blower involves modelling of multi-physics phenomena. This paper details a coupled CFD analysis approach to predict temperatures of roots blower components and timing gear case oil. Timing gears are lubricated using wet sump lubrication. The
With increasing interest in the urban air traffic market for electric Vertical Take-Off and Landing (eVTOL) vehicles, there are opportunities to enhance flight performance through new technologies and control methods. One such concept is the propulsion wing, which incorporates a cross-flow fan (CFF) at the wing's trailing edge to drive the vehicle's flight. This article presents a wind tunnel experiment aimed at analyzing the aerodynamic characteristics of the propulsive wing for the novel eVTOL vehicle. The experiment encompasses variations in angels of attack, free stream velocities and fan rotational speeds. The result verifies that cross-flow fans offer unique flow control capabilities, achieving a tested maximum lift coefficient exceeding 7.6. Since flow from the suction surface is ingested into the CFF, the flow separation at large angle of attack (up to 40°) is effectively eliminated. The aerodynamic performance of the propulsive wing depends on the advance ratio and angle of
The intention of this standard is to establish a framework to measure the efficiency of PWM HVAC Blower Controllers and Brushless DC Motor Controllers and define a usage based overall efficiency. This result can then be used by vehicle OEMs to demonstrate compliance towards requirements or benchmarks established by regulatory agencies.
HVAC systems are of critical importance in ensuring passengers’ thermal comfort inside the car cabin as well as safety requirements for defogging functions. These systems involve various components and subcomponents such as blowers, thermal exchangers or actuators, with a wide range of well-known technologies and also new ones on recently introduced innovative products. Currently, within established electrification trends worldwide, the HVAC system is becoming the most important embedded system that can induce major contribution of noise and vibration. These NVH issues can emerge through different transfer paths inside the car cabin possibly causing significant discomfort to passengers. During developments, the NVH issues are mastered and contained by both suppliers according to internal requirements and OEMs according to specifications. However, OEM specifications are mainly defined by overall noise levels and improvements over the years are generally consisting of reducing these
HVAC system design has an accountability towards acoustic comfort of passengers of a vehicle. Owing to larger cabin volume of a bus, multiple air blowers have to be installed to ensure comfort of passengers. Such multiple blowers produce significant flow induced noise inside the cabin. For commercial success, it becomes essential to predict intensity of such a flow induced noise at very early stages in product development. Conventionally sliding mesh based CFD approach is deployed to predict flow and turbulence noise around each blower. However due to complexity, this method becomes computationally intensive resulting in cost and time inefficiency. Hence it is desirable to innovate around an alternative rapid, reliable prediction method, which ensures quick turnaround of prediction. This paper describes a unique innovative approach developed around a multiscale method where flow induced noise generated by a single blower in motion is predicted using commercial Lattice Boltzmann CFD
Today our aviation capability is built upon a carefully iterative evolution in technology over more than a century, in this time craft have become highly optimized machines with every incremental technological advance pushing the envelope of capability and economy. However it is widely accepted that our current progression towards electric aircraft requires significant innovation across most, if not all, aircraft subsystems. This is a gap that no single iterative evolution can bridge. A revolution is required. Rim-driven fan (RDF) technology is not innately new as this technology has become successful in the marine industry in the last decade, however it has never been able to pass feasibility in aerospace applications. The approach did not merit serious investigation until aircraft electrification became a solid target for the industry, and with heritage architecture minimizing the certification risk for first movers it has been an under-developed area of research since.
The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of heavy-duty vehicle cooling systems to meet Original Equipment Manufacturer or end user thermal specifications to ensure long term reliable vehicle operations. The recommendations from the present document are intended for heavy-duty vehicles including, but not limited to, on- and off-highway trucks, buses, cranes, drill rigs, construction, forestry, and agricultural machines.
Items per page:
50
1 – 50 of 1088