Browse Topic: Fans

Items (1,093)
Vibration testing is an essential component of automotive product development, ensuring that components such as engines, transmissions, and electronic systems perform reliably under various operating conditions. The adoption of electronics in the automotive industry, particularly during the 1950s and 1960s, marked a shift in vibration testing approaches, moving from primarily low-frequency tests to methods that could address high-frequency vibrations as well. This evolution highlights the need for effective vibration fixture designs that can simulate real-world conditions, enabling manufacturers to detect potential weaknesses before products are integrated into vehicles. A key aspect of vibration testing is the identification of resonant frequencies within components. The coupled mass-spring-damper system, for example, can exhibit multiple resonances characterized by a Bode Diagram, where the Q factor technique is utilized to assess damping levels. Accurate vibration analysis can be
Shinde, PramodkumarShah, Viren
Traditionally, off-highway vehicles like tractors and construction machinery have relied on hydraulic, viscous, or fixed fans to meet the cooling demands of diesel engines. These fans draw power from the engine, impacting fuel consumption and contributing to noise levels that affect operator comfort. Recently, the adoption of electric fans in off-highway applications has increased due to their energy efficiency, lower noise, and flexible design. Electric fans can cool various components, such as radiators and condensers, and can be positioned for optimal performance. They are easily selected from established supplier catalogs based on application requirements like machine voltage, fan size, and type. This study explores various fan arrangements, including pusher and puller types, and multiple electrical fan banking based on cooler zones to improve cooling system performance without changing cooler size or specifications. A mathematical flow model was developed for both setups: the
Durairaj, RenganathanDewangan, NitinAnand, KetanBhujbale, Sagar
In the evolving landscape of energy efficiency and sustainability, understanding machine behavior in real-world operating conditions is essential. This solution introduces a data-driven Energy Management Dashboard designed to analyze and report critical machine parameters by leveraging LFI (Leverage Fleet Intelligence) and LFI Data (Local Field Intelligence Data). The tool serves as a robust solution for engineering and operations teams to gain actionable insights into machine performance and exposure. By tracking key parameters—such as engine fan speed, coolant temperature, and machine speed—across a fleet of machines (with support for over 1100 unique signals), the solution enables real-time monitoring and historical analysis. It helps identify when parameters go outside their specified limits and assesses the resulting impact on overall machine performance. The core functionality includes: Monitoring machine operating conditions under real field environments. Correlating parameter
Nandre, RatnapratikJoshi, Aaditya
Agricultural tractors require self-cleaning and cooling technology, especially in hot and dusty environments. This study introduces a novel reversible fan system designed which is incorporating a manually operated lever-type connection mechanism as an alternative to conventional pneumatic systems. Traditional reversible fans often rely on pneumatic actuators for blade rotation control, which can introduce complexity, maintenance challenges, and energy inefficiency. The proposed design replaces pneumatic components with a mechanically optimized lever linkage system, enabling users to manually reverse the fan’s airflow direction with minimal effort. This innovation enhances operational simplicity, reduces dependency on compressed air systems, and low costs as compared to conventional type reversible fan. The lever mechanism, engineered for ergonomic usability, ensures rapid switching between sucker and pusher modes, optimizing the fan’s utility in applications such as dust removal
Debbarma, RespectParwal, MahendraBaghel, Anand
India, being one of the largest automotive markets has considered various policies affecting fuel efficiency to curb vehicle carbon emissions. In a typical light-duty vehicle (LDV), around 20% of the fuel's energy is used to power the wheels and overcome aerodynamic drag resistance. Aerodynamic drag resistance, influenced by the projected surface area, cooling drag and velocity refers to the resistive force encountered by the vehicle. Furthermore, cooling drag resistance is determined by the effective cooling system architecture and aerodynamic design of the front-end module (FEM), which has major impact on the vehicle's performance and ram curve. In the pursuit of enhancing cooling system architecture, this paper investigates thermal performance and structural integrity of using common fins for both the condenser and radiator to improve the inlet aerodynamic performance which lowers cooling fan power consumption. Preliminary results show a 12% notable reduction in motor power
K, MuthukrishnanVijayaraj, Jayanth MuraliN, AswinNarashimagounder, ThailappanMahobia, Tanmay
In automotive systems, efficient thermal management is essential for refining vehicle performance, enhancing passenger comfort, and reducing MAC Power Consumption. The performance of an air conditioning system is linked to the performance of its condenser, which in turn depends on critical parameters such as the opening area, radiator fan ability and shroud design sealing. The opening area decides the airflow rate through the condenser, directly affecting the heat exchange efficiency. A larger opening area typically allows for greater airflow, enhancing the condenser's ability to dissipate heat. The shroud, which guides the airflow through the condenser, plays a vital role in minimizing warm air recirculation. An optimally designed shroud can significantly improve the condenser's thermal performance by directing the airflow more effectively. Higher fan capacity can increase the airflow through the condenser, improving heat transfer rates. However, it is essential to balance fan
Nayak, Akashlingampelly, RajaprasadNeupane, ManojMittal, SachinKumar, MukeshUmbarkar, Shriganesh
Thermal management is critical for modern vehicles, particularly for Zero Emission Vehicles (ZEVs), where maintaining optimal temperature ranges directly influences thermal system efficiency and vehicle range. Accurate prediction of underhood airflow behavior is essential for effective thermal management and also to estimate overall energy consumption by cooling system, with air-side dynamics playing a pivotal role in heat transfer over the heat exchangers of cooling package. Simulation tools like GT-Suite are indispensable for this purpose, enabling engineers to evaluate complex thermal interactions without the cost and time constraints of extensive physical testing. While 3D Computational Fluid Dynamics (CFD) models offer detailed insights into flow characteristics, they are computationally expensive and time consuming. In contrast, 1D models provide faster simulation times, making them ideal for system-level analysis and iterative design processes. However, 1D models inherently lack
Mutyala k, AkhilPudota, PraveenFaseel, IhsanGole, PranaliBashir, Murad
Air filters are critical to vehicle Heating, Ventilation, and Air Conditioning (HVAC) systems, ensuring cabin air quality by trapping dust particles that accumulate over time. However, conventional clogging diagnostics—such as physics-based simulations, empirical models or manual inspection—are often too complex or impractical for in-vehicle deployment. To address this, we present a simple and practical diagnostic approach for real-time detection of cabin filter clogging by continuously monitoring the pressure drop across the filter–evaporator assembly at five blower speed settings. Baseline pressure drop values were established for a clean filter in a production-spec Passenger car and the clogged filter threshold was defined by a 10% reduction in airflow. This corresponded to calibrated pressure drop values of 83, 108, 169, 212 and 256 Pa for blower speeds 1 to 5, respectively. These thresholds were programmed into the vehicle’s climate control ECU. During operation, when the measured
Raj, RohitMohite, YashwantNaik, NiranjanGhate, Pravin
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
Trivedi, ArpitaKumar, RaviMadaan, AshishShrivastava, Pawan
Modern mobility solutions increasingly rely on HVAC systems due to growing transport demands, traffic congestion, and harsh environmental conditions. These systems, comprising a compressor, evaporator, condenser, and thermal expansion valve, require adequate airflow for optimal performance. Insufficient airflow, caused by factors like undersized ducts, improper fan settings, clogged filters, or high static pressures from duct restrictions, significantly hinders cooling capacity. The objective of this study is to develop a predictive model for passenger vehicle AC system performance under controlled environmental conditions. Discrepancies between predicted and desired performance will trigger a structured problem-solving process involving iterative testing, root cause analysis, and the development of corrective measures. The improvements will be focused on the vehicle-level HVAC design, adhering to customer specifications. This research will also establish an experimental validation
Meena, Avadhesh KumarAgarwal, RoopakSharma, KamalKishore, Kamal
Internal combustion (IC) engines experience several parasitic losses at the vehicle level, including those from cooling fans, hydraulic pumps, air compressors, and alternators. These losses limit the available output power for various applications. By replacing a conventional mechanical or hydraulic fan—typically driven by the engine crankshaft or hydraulic motor—with an electrically operated fan, engine frictional losses (fan drag) can be reduced, resulting in a gain in power. The fuel conserved due to the absence of fan drag contributes to usable power for applications. Mechanical fans operate at a fixed drive ratio that is directly proportional to engine speed, while hydraulic fans rely on a hydraulic motor, drawing power from the engine's alternator. In contrast, electric fans can run at constant speeds, independent of engine RPM, providing higher airflow at maximum torque speeds, which mechanical fans cannot achieve. The cooling performance of the engine remains uncompromised, as
Dewangan, NitinKattula, NitinKamal, Ankit
The latest electric vehicles (EVs) have advanced thermal management systems to regulate heat distribution across the vehicle, thereby improving the driving range. the author thinks that a key factor, which is influencing thermal performance during driving, is the effect of the driving-wind. However, EVs performance is evaluated by using a chassis dynamometer (CHDY), where it remains unclear whether the driving-wind specifications, which defined in the Worldwide Harmonized Light Vehicles Test Procedure (WLTP), adequately replicate real-world conditions. This study investigates both internal combustion engine vehicles and several electrical vehicles to estimate the potential discrepancies in WLTP’s driving wind requirements. Specifically, the author modified the CHDY vehicle-cooling fan to more accurately simulate wind speed at the front and underside of the vehicle under real-world driving conditions, which drove at outside road. The author analyzed the impact of these modifications
Okui, Nobunori
Manufacturers of fans/propellers using hydraulically-actuated pitch control claim energy efficiency gains up to 75% over fixed-pitch solutions. Unfortunately, the added cost, weight, reliability and maintenance considerations of hydraulic solutions has limited the introduction of pitch control for small-to-medium fans and propellers leaving a large market unserved by the efficiency gains associated with changing the pitch of a blade when the blade shaft’s speed changes. Pilot Systems International and Cool Mechatronics are developing an electromagnetically controlled pitch (EMCP) fan/propeller that will produce a new pareto optimal in size, weight, power, cost and cooling (SWaP-C2). The technology will substantially improve the efficiency of military ground vehicle cooling fans which is typically the third greatest power draw (~20kW)1 in the entire vehicle and provide critical performance improvements during silent watch. It will be a key enabler for the electrification of aircraft.
McBain, Jordan
In the present article it is investigated why active grille shutters (AGS) can have very different aerodynamic characteristics, ranging from progressive to strongly degressive, and which factors influence them. For this purpose, the authority concept known from the field of heating, ventilation, and air-conditioning (HVAC) is referred to. According to this theory, the control characteristics of dampers depend primarily on the ratio of the pressure losses at the fully open damper to the pressure losses of the rest of the system. The adaptation of the concept to the automotive field shows that, in addition to the pressure losses, the geometry of the cooling air ducting plays a decisive role in motor vehicles. The effect of driving speed and fan operation on the characteristic curves is also being investigated. In addition, authority theory can also be used to derive the conditions under which the opening characteristic curve of an AGS provides a good prediction of the real characteristic
Wolf, Thomas
In Diesel engines, charge motion usually consists of swirl and squish flow patterns. Traditionally, swirl generation is controlled through the design of the intake ports, presenting a trade-off between swirl and mass flow rate. An alternative approach to generate swirl is to use vortex-generating jets in the intake port. As a comparative basis for this approach a Pareto front was established between swirl and mass flow rate based solely on geometric variations. A new fully parametric geometry was deployed, with two intake ports per cylinder adhering to some constraints. Stationary flow-bench test setup was modeled, where a blower draws air through the intake ports at a constant pressure difference. The Pareto front was generated using semi-randomly selected geometries in combination with automated unsteady RANS (URANS) simulations, while scale adaptive simulations (SAS) were also employed on select geometries. These turbulence modeling approaches were explored using the OpenFOAM
Kahraman, Ali BerkRitter, JohannEilts, PeterScholz, Peter
The rapid adoption of electric vehicles (EVs) necessitates updates to the automotive testing standards, particularly for noise emission. This paper examines the vehicle-level noise emission testing of a Nikola Class 8 hydrogen fuel cell electric semi-truck and the component-level noise emission testing needed to create a predictive simulation model using Wave6 software. The physical, component-level noise emission testing focused on individual cooling fans in a semi-anechoic chamber to assess their isolated noise contributions. With this data, an initial model was developed using spatial gradient statistical energy analysis, which successfully predicted pass-by noise levels based on varying fan locations and speeds. Real-world pass-by testing confirmed the model's accuracy across different cooling fan speeds. By leveraging advanced simulation techniques, engineers aim to enhance the accuracy and reliability of pass-by noise predictions through cost-effective studies of architectural
Passador, StephenWoo, SangbeomLiu, Ting-WeiDe La Vega Alonso, GerardoKim, James
The Electroimpact Automatic Fan Cowl Riveter uses two novel drill processes to control exit burr height and achieve the required hole quality in CRES (Corrosion-Resistant Steel, also called stainless steel) material stacks. Both processes use piloted cutters on the OML (Outer Mold Line, referring to the exterior surface of an airframe) side, and two different tools are used in a backside spindle on the IML (Inner Mold Line, referring to the inside surface of an airframe) side of the component. The first process uses a shallow-angle shave tool in the IML spindle to directly control the exit burr height after it is produced by the OML spindle and is called the “burr shave” technique. The second process uses a countersink tool in the IML spindle and produces an “intermediate countersink” after the pilot hole is drilled by the OML spindle, but before the final hole diameter is drilled. These drill processes were able to achieve the required hole quality in a challenging CRES material stack
Schultz, RichPeterman, RandyLuker, ZacharyMurakonda, Sai KrishnaMerluzzi, James
For Formula SAE cars, a significant increase in downforce can enable the car to score more points in the race and enhance the competitiveness of the vehicle. This paper focuses on the development of an active ground effect system driven by fans for the FSAE racing car. The system is designed to considerably increase the downforce of the racing car through the forced airflow generated by the fan, enable the dynamic adjustment of the aerodynamic balance of the racing car during the driving process, and achieve the vertical force control on the racing wheels, thereby improving the performance of the racing car. The Star-CCM+ software was employed to conduct CFD simulation to investigate the influence of different flow fans on downforce and optimize the layout and position of the fan. Due to the limited power that the car can carry, the paper will also simulate and calculate the range of pneumatic balance adjustment and vertical force control capability provided by the different openings
Yang, Chengyue
When the cooling fan of the commercial vehicle engine is working, there is a strong fluid-structure interaction (FSI) between the airflow and the blades. If the effect of this interaction is not considered, significant errors may be caused in the prediction of fan performance. To analyze the effect of FSI on the aerodynamic and structural performance of the cooling fan, calculation models with and without considering FSI were established. The pressure and efficiency of the cooling fan were calculated using three methods: the Multiple Reference Frame (MRF) method, the Sliding Mesh (SM) method, and the bidirectional FSI method. These results were then compared with test data. Based on the FSI method, the aerodynamic and structural performance of the fan at different flow rates, rotational speeds and temperatures were calculated, and compared with results if FSI is ignored. The effect of flow rate, rotational speed and temperature on the fan performance was analyzed. The comparison and
Yu, HuiYin, ZhihongYing, RunhaiWang, XinlingDuan, YaolongShangguan, Wenbin
The maximum temperature and the maximum temperature difference of lithium battery energy storage systems are of great importance to their lifespan and safety. The energy storage module targeted in this research utilizes a forced air-cooling thermal management system. In this article, the maximum battery temperature, temperature difference, and cooling fan power are used as evaluation indicators. The thermal–fluid coupling simulation technology is utilized to restore the real structure of the module, ensuring the reliability of the simulation results. The P-Q curve is introduced for the boundary conditions of the heat dissipation fan to investigate the influence of the flow channel structure on the airflow volume and distribution. First, the thermal–fluid coupling simulation results of the original structure were compared with the measured parameters. Subsequently, the study on the airflow and temperature distribution of the original flow channel structure reveals that a significant
Guo, YuChengBao, YiDongJiang, BingYunLu, FeiFei
A mathematical model of the thermal management system (TMS) for an extended-range hybrid electric vehicle is developed. The variation in engine coolant temperature is examined under different water pump and fan control strategies, and its subsequent impact on engine TMS energy consumption is analyzed. Based on the simulation results of energy consumption under various control parameters, machine learning regression models are constructed, and four different regression algorithms are applied. By incorporating temperature-based optimization into the water pump and fan control strategy, system energy consumption can be effectively reduced. The machine learning regression results indicate that the mathematical model of TMS cannot be simply regarded as a linear model. ANN and SVM regression show high degree of agreement with the mathematical model. This study provides a theoretical foundation for the development of data-driven tool for optimizing real-time TMS control strategies.
Pan, ShiyiZhang, NanZheng, JunliSun, TianfuZidi, Li
The objective of the present study is to identify suitable tip clearances and volumetric flow rates for low-speed axial flow fans. The numerical analysis for this study is carried out using the Reynolds-averaged Navier–Stokes equation with the k-omega SST turbulence model to perform steady-state simulations. The results demonstrate that optimum performance is achieved with a tip clearance of 1 mm and a maximum volumetric flow rate of 10.74 m3/s. The novelty of this proposed work lies in enhancing the efficiency of axial flow fans with a circular arc cambered airfoil by using optimal tip clearance and volumetric flow rates through steady-state simulations. This method can be applied in the turbo machinery field and all types of jet engines to improve the performance of domestic and international flights, meeting future demands and expectations.
Vala, Jignesh R.Patel, D. K.Darji, Anand P.Balaji, K.
Properly sized under hood components in an electric vehicle is important for effective thermal cooling at different load conditions. Powertrain aggregate loop plays significant role in generating heat with heat sources like eMotor, inverter, variable frequency drivers, on board charger and so on. Radiator being the most critical part in electric vehicle which acts as a heat sink for these powertrain components. Radiator with the help of coolant removes heat generated by different components in powertrain loop. It becomes important to understand the heat generated by the powertrain components at different drive/load scenarios and decide on the correctly sized radiator and fan. Rightly sized radiator and fan combination helps to balance the tradeoff of precise thermal needs in eTruck to an oversized/undersized component. Main objective of this study is to estimate heat loads from system model representing powertrain aggregate components to study the existing radiator capacity and propose
Koti, ShivakumarPatel, VedantChalla, KrishnaGurdak, Michael
Cooling system for an IC engine, consisting of the Water pump (WP), Radiator and Fan, plays an important role in maintaining thermal efficiency of the engine and protects the engine from overheating. Based on the vehicle application requirement, Fan will be mounted directly either on Crankshaft or WP pulley. But wherever increase in Fan speed ratio are in demand, it is preferred to mount the Fan on WP pulley. So it important to understand the WP housing structural strength with respect to vibration loads contributed from Radiator Fan assembly. This paper presents investigation of Failure of WP Housing during engine validation at engine test bed with Electronic Viscous Fan, based on the different operating conditions of the engine and fan as per the validation cycle. While the accessories are loading and the corresponding stresses are high when the fan is engaged. But in the current case, the failure of WP housing happened only during Fan clutch disengaged condition. Experimental
R, Mahesh Bharathi
Automotive cooling module system consists of condenser, radiator and intercooler which is used for thermal management of vehicle. Condenser helps to reject cabin heat, radiator to reject engine heat and intercooler rejects charged air heat to ambient. CRFM (Condenser, Radiator and Fan module) is conventionally packaged under the bonnet of passenger vehicle. Fan circulate airflow through heat exchangers and has primary role of airflow delivery. While performing vehicle level thermal management duty, fan noise is generated from CRFM and fan noise is considered as an important design attribute of CRFM. Many researchers have done fan noise simulation at component level and very limited literatures at vehicle (system) level simulation are available. Customer perceives noise from outside of the vehicle and it is important to predict fan noise at vehicle level at various operating speeds. Such simulations are transient in nature and modeling complexity demands high computational cost. Current
Kandekar, Ambadas BhagujiDuppati, DarshanBorse, HarshalJain, AyushPatel, KaushikBaghel, Devesh
Climate across India varies from extreme Cold to extreme hot. As an objective to improve comfort to drivers during summer, it is mandate by Indian Government to introduce Air Conditioning in Trucks from June 2025. Air Conditioning system includes Evaporator, compressor, Condenser and expansion units. Condenser needs continuous air flow to reject the absorbed heat from driver cabin to surrounding air. This is possible by directing air through condenser by an external fan. For this condenser is remotely mounted with an electric driven fan or directly to the radiator-fan system. In this paper a case study is presented where Cooling system of a Non AC Intermediate Commercial Truck is modified for Air Conditioning application. Condenser is mounted on the radiator and the additional heat load is managed by a minor change in the system. Fan is operated based on coolant temperature and with additional controls for Air Conditioning. Simulations are done in a Thermal management software “KULI
Kiran, NalavadathM S, Vignesh
This SAE Recommended Practice is intended for use in testing and evaluating the approximate performance of engine-driven cooling fans. This performance would include flow, pressure, and power. This flow and pressure information is used to estimate the engine cooling performance. This power consumption is used to estimate net engine power per SAE J1349. The procedure also provides a general description of equipment necessary to measure the approximate fan performance. The test conditions in the procedure generally will not match those of the installation for which cooling and fuel consumption information is desired. The performance of a given fan depends on the geometric details of the installation, including the shroud and its clearance. These details should be duplicated in the test setup if accurate performance measurement is expected. The performance at a given air density and speed also depends on the volumetric flow rate, or the pressure rise across the fan, since these two
Cooling Systems Standards Committee
This practice applies to guarding of engine cooling fans used on Off-Road Self-Propelled Work Machines defined in SAE J1116. It does not include guarding for belts, pulleys, or other rotating equipment used on these machines.
OPTC1, Personnel Protection (General)
Centrifugal fans are applied in many industrial and civil applications, such as manufacturing processes and building HVAC systems. They can also be found in automotive applications. Noise-reduction measures for centrifugal fans are often challenging to establish, as acoustic performance may be considered a tertiary purchase criterion after energetic efficiency and price. Nonetheless, their versatile application raises the demand for noise control. In a low-Mach-number centrifugal fan, acoustic waves are predominantly excited by aerodynamic fluctuations in the flow field and transmit to the exterior via the housing and duct walls. The scientific literature documents numerous mechanisms that cause flow-induced sound generation, even though not all of them are considered well-understood. Numerical simulation methods are widely used to gather spatially high-resolved insights into physical fields. However, for a centrifugal fan, the numerical simulation of the coupled aero- and
Heidegger, PatrickCzwielong, FelixSchoder, StefanBecker, StefanKaltenbacher, Manfred
The mystery of how futuristic aircraft embedded engines, featuring an energy-conserving arrangement, make noise has been solved by researchers at the University of Bristol. University of Bristol, Bristol, UK A study published in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane's main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don't have to work as hard to move the plane, so it burns less fuel. The research, led by Dr. Feroz Ahmed from Bristol's School of Civil, Aerospace and Design Engineering under the supervision of Professor Mahdi Azarpeyvand, utilized the University National Aeroacoustic Wind Tunnel Facility. They were able to identify distinct noise sources originating
A study published in Journal of Fluid Mechanics, reveals for the first time how noise is generated and propagated from these engines, technically known as boundary layer ingesting (BLI) ducted fans. BLI ducted fans are similar to the large engines found in modern airplanes but are partially embedded into the plane’s main body instead of under the wings. As they ingest air from both the front and from the surface of the airframe, they don’t have to work as hard to move the plane, so it burns less fuel.
Hey superhero fans, meet the researchers making real life Iron Man technology possible. In a new study, engineers from Korea and the United States have developed a wearable, stretchy patch that could help to bridge the divide between people and machines — and with benefits for the health of humans around the world.
To study the heat dissipation performance of the multi-fan cooling module composed of multiple fans and a radiator, numerical models of the radiator and the multi-fan cooling module were established, and heat dissipation performance prediction analysis and application analysis were conducted. In modeling, the Effectiveness-Number of Transfer Units (ε − NTU) method is used to predict the heat dissipation performance of the radiator. The aerodynamic performance of the fan at any speed is obtained by the similarity theorem using the data obtained from the tests at a certain speed. The influence between the fan and the radiator was established by using the flow addition scheme. To validate the established model, heat dissipation performance using 36 radiators and 11 multi-fan cooling modules is measured, and the measured data are compared with the calculations. The results show that: (1) For the radiator model, relative errors of heat dissipation are below 15.03%, and the absolute error of
Guo, Yi MingXiao, BinHuang, YuLi, GuoqiangShangguan, Wen-Bin
Rotor-only ducted low-pressure axial fans play a crucial role in automotive thermal management of the tightly packed under-hood region. Most current scientific work concerning low-pressure axial fans investigate the aerodynamic performance of these fans while operating with uniform inlet flow conditions. This is rarely the case in real-world applications. This work aims to investigate the aerodynamic performance of low-pressure axial fans operating with upstream blockages. First, a validation study is performed in the absence of any upstream blockage. Numerical results are compared against publicly available experimental data. Steady-state, Reynolds-Averaged Navier Stokes (RANS) analysis is performed on a single-blade passage. The validation study also evaluates the choice of turbulence model and suggests the use of the k- ε turbulence model with wall functions for the best comparison against experimental data. To study the effect of upstream blockage, a generic blockage disc is
Ghosh, DebarsheeAndersson, NiklasEtemad, Sassan
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets. A parametric
Upadhyaya, AvaneeshSebben, SimoneWilleson, EmilMinelli, Guglielmo
When the automotive engine cooling fan is actually working, there is a process of interaction and coupling between the fluid and solid domains on the blades. In order to study the influence of the "fluid structure coupling" effect on the aerodynamic and structural performance of fans during operation, a fan performance calculation model was established with and without considering the fluid structure coupling effect of fans. We conducted aerodynamic performance tests on fans, tested the relationship between fan flow rate, static pressure, transmission efficiency and fan speed, and compared and analyzed the calculated fan performance. The aerodynamic performance and structural deformation of the fan were calculated under different flow rates, rotational speeds and environmental temperatures, with and without considering the coupling of fan blades and airflow. The calculation results were compared and analyzed. The calculation results indicate that: (1)The flow rate has a significant
Guo, Yi MingJiang, XuefengWang, XinlingDuan, YaolongShangguan, Wen-Bin
This paper presents the application of statistical process control (SPC) methods to Windshear, a 180-mph motorsports and automotive wind tunnel equipped with a wide-belt rolling road system. The SPC approach captures the complete variability of the facility and offers useful process performance metrics that are based on a sound statistical framework. Traditional control charts are explored, emphasizing the uniqueness of variability experienced in wind tunnels which includes significant, unexplained short-term and long-term variation compared to typical manufacturing processes. This unique variation is elegantly captured by the three-way control chart, which is applied to estimate the complete process reproducibility with different levels of repeatability of vehicle drag coefficient. The sensitivity of three-way control charts is explored including the evaluation of an alternate group assignment within the same dataset. A practical example is provided evaluating secondary boundary layer
Bringhurst, KatlynnWalter, JoelBest, Scott
In order to study the influence of engine silicone oil fan clutch on the performances of engine cooling system under different control strategies, a model of engine cooling system for light truck is established. The working characteristics of the silicone oil clutch and the measured performance parameters of the cooling system components are taken into account in our proposed model. Modeling methods for different silicone oil fan control strategies are also given. Using the established model, the performance parameters under different vehicle speeds, such as coolant temperature of engine outlet and power consumption of cooling fan, are calculated and analyzed. The in-suite measurement of the engine cooling system is carried out to get the temperatures of engine coolant inlet and outlet from engine ECU. The model is validated by the comparison between the calculation and the measured results. Based on the established model, the working characteristics of different control forms of
Jiang, Chun-HongWang, XihuiWang, XinlingDuan, YaolongShangguan, Wen-Bin
With the trend of electrification and connectivity, more electrified parts and more integrated chips are being applied. Consequently, potential problems based on electro-magnetic could occur more easily, and interest on EMC performance has been rising according to the degree of electrification. In this paper, one of the most severe systems, cooling fan motor in terms of EMI, is analyzed and improvement methods are suggested for each type of cooling fan. Additionally, an optimized configuration of improvement method for EMC has been derived through analysis and study. Finally, verification and validation are implemented at the system and vehicle levels. In this paper, the following effects were obtained by analyzing the cooling fan motor system and reviewing and optimizing the design factors from the EMC perspective. (1) Analyzing the impact of each EMC reduction device currently applied to the cooling fan motor according to specifications and optimizing the specification combination
Son, JiwanLim, TaewoongKim, Chang Hwan
The China Automotive Technology and Research Center (CATARC) has completed two new wind tunnels at its test centre in Tianjin, China: an aerodynamic/aeroacoustic wind tunnel (AAWT), and a climatic wind tunnel (CWT). The AAWT incorporates design features to provide both a very low fan power requirement and a very low background noise putting it amongst the quietest in the automotive world. These features are also combined with high flow quality, a full boundary layer control system with a 5-belt rolling road, an automated traversing system, and a complete acoustic measurement system including a 3-sided microphone array. The CWT, located in the same building as the AAWT, has a flexible nozzle to deliver 250 km/h with an 8.25 m2 nozzle, and 130 km/h with a 13.2 m2 nozzle. The temperature range of the CWT is -40 °C to +60 °C with a controlled humidity range of 5% to 95%. Additional integrated systems include a variable angle solar simulator array, and a rain and snow spray system. This
Waudby-Smith, PeterBender, TrevorSooriyakumaran, ChristopherZhang, YilunWang, HaiyangZhao, FengFan, GuangjunSun, JinhongLiu, Xuelong
Items per page:
1 – 50 of 1093