Browse Topic: Bolts

Items (2,367)
This specification defines the requirements for A286 CRES T-bolts and eye bolts, with room temperature tensile strength of a minimum of 160000 psi, for use with clamps and V-band couplings at 1000 °F maximum ambient temperature.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
FEV has a solution to downsize and reduce the complexity of off-highway machines via its electrified planetary gearset architecture. IVT Expo 2025 in Chicago featured a summit where industry professionals presented and discussed the nuts and bolts of the technology that powers the off-highway vehicle industry. Electrification continues to be a centerpiece of these discussions, but OEMs and suppliers are beginning to supply answers to many of the questions that this challenge presents. During the expo, several presentations covered the integration of electric powertrains at the component and architecture level. One presented by Thomas Wellman, chief engineer, drivetrain systems, FEV North America, detailed an EPGS (electrified planetary gear-set) off-highway drivetrain architecture that is modular and scalable for a variety of powertrain configurations.
Wolfe, Matt
Engine is the prime mover of an automobile. Tractor is also equipped with engine of higher capacity to meet the power requirement. Apart from powering the wheels, engine also runs different accessories such as water pump, alternator, AC pump, Oil pump and so on. The power from the engine is transferred to accessories via chain drive or belt drive through the crankshaft pulley. During field testing, in one of the tractors, engine pulley mounting bolt failure was reported. The failure resulted in immediate seizure of the engine making the tractor standstill in the field. The root cause of the failure was unknown. Hence, there was a need to develop a component or subsystem level test methodology to address the issue quickly. In the current scope, an attempt was made to develop a subsystem level laboratory test methodology to simulate the failure mode and to validate the design modifications in an accelerated manner. The failure mode was simulated in lab and different design iterations
Chakraborty, Abhirup
The smart industrial revolution in any organization brings faster product delivery to the market, which can meet customer expectations and full life requirements without failure. Failure per machine (FPM) is a very critical metric for any organization considering warranty cost and customer perception. One such area which needs a detailed evaluation is bolted joints. Bolts play a pivotal role when integrating a subassembly with the main structure. Often, it is challenging to address bolt failure issues due to vibration induced in structures. Current bolt virtual evaluation methods help to evaluate bolts in simple loading conditions such as axial and bending loads. But it is quite complicated to evaluate the bolts which are prone to vibration loading. Traditional methods of using gravity loads miss out on dynamic characteristics, hence it must be simulated using modal dynamic analysis. With the current vADV (virtual accelerated design verification) method it is not possible to capture
Desale, Amit NanajiSingh, GurwinderVhatkar, RushikeshPatil, Akhil
Electric vehicles (EVs) require improved drag performance from wheel bearings to achieve a longer range. EVs are heavier and have higher torque output compared to internal combustion-powered vehicles. Due to the increased weight and torque of EVs, there will be higher loads at the bearing-to-knuckle joint. These increased loads may necessitate higher clamp loads to maintain joint integrity. However, higher clamp loads can lead to distortion or reduced roundness of the wheel bearing outer ring. Such distortion permanently increases drag and reduces bearing life. Therefore, after vehicle corner assembly with higher clamp loads, it is critical to minimize outer ring distortion during the initial assembly and throughout the bearing's lifespan. This paper will cover the design considerations for the wheel bearing outer ring to minimize distortion, utilizing Computer-Aided Engineering (CAE) analysis for various designs. A Design of Experiments (DOE) will be conducted to understand the
Mandhadi, Chaitanya ReddyCallaghan, KevinSutherlin, RobertLee, SeungpyoLee, YeonsikBovee, Benjamin
Basic structures of vehicle frames、aircraft fuselages and ship hulls are made of beams、columns and trusses. If Acoustic Black Holes(ABH) are carefully arranged alongside with the wave propagation paths in those structures, the wave propagation paths could be changed at NVH engineers’ will and the structure vibrations can be reduced. Two kinds of ABHs are used in this paper: one is ABH made of Polyurethane(PU), other one is ABH composed of several steel plate 1D ABH stacked up in parallel. Three structures are used to test the effectiveness of ABHs for vibration reductions: a squared hollow sectional steel commonly used in motorcoach/bus chassis and frame structures, a simple frame for motorcoach airbag suspension and a 12m chassis structure. The attached ABHs show a great vibration attenuation in terms of transfer functions on the basic structure element for a motorcoach. The lateral, vertical and longitudinal transfer functions for steel ABHs were greatly reduced from 13.2~14.7 dB
Xu, ChuanyanWang, JianjunXing, QisenChen, HengbinHuang, Xianli
This paper reports on a new design of semi-automatic riveting machine designed to be affordable. This work started in 2024. There are no customers yet. The machine is all electric. The machine installs interference bolts as well as squeeze rivets. Cost is a key criterion. The machine must feed a wide variety of fasteners. This machine is called Flexriveter.
Zieve, PeterReznicek, Jeffrey
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
A-5A Wheels, Brakes and Skid Controls Committee
E-25 General Standards for Aerospace and Propulsion Systems
E-25 General Standards for Aerospace and Propulsion Systems
E-25 General Standards for Aerospace and Propulsion Systems
In commercial vehicle, Hydraulic Power Assisted Steering (HPAS) gear plays a vital role to utilize the hydraulic force to assist the steering application. HPAS gear consists of housing, sector shaft, side cover, worm shaft, valve housing and rack piston. Side cover assembly is connected with the housing assembly through bolts which is in exposure to high pressure working hydraulic fluid. Since, some of the bolts are exposed to the fluid environment in the inner surface of the housing, during high pressure running condition, torque relaxation in the bolt is observed which leads to the loosening of bolts and tends to hydraulic fluid leakage through bolts. The current phosphate coated bolts are getting relaxed and loosened due to the bolts that exposed to the oil environment which have insufficient coefficient of friction in the bolt head and thread. To overcome the bolt failure during high pressure hydraulic application, various bolt coating analysis is experimented to withstand the
Ayyappan, RakshnaGovindarasu, AnbarasuP, RajasekarD, Senthil Kumar
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Standard (AS) establishes the geometric control requirements for bolts, screws, and studs where worded notes and symbolized notes are used for straightness, concentricity, squareness, and runout.
E-25 General Standards for Aerospace and Propulsion Systems
E-25 General Standards for Aerospace and Propulsion Systems
E-25 General Standards for Aerospace and Propulsion Systems
The new idea discussed in this paper pertains to the carrier mechanism for spare wheels in heavy commercial vehicles. Typically, these vehicles are equipped with a spare wheel carrier featuring a rope mechanism for loading and unloading the spare wheel. The conventional placement of this system is on the side of the frame/chassis or within the limits of the side member. However, the tire-changing process in this system is often arduous, time-consuming, and requires significant effort. The proposed invention addresses these challenges by repositioning the spare wheel to a vertical orientation, facilitating easier access to its bolts and simplifying the removal process from the mountings. Furthermore, the innovation incorporates a three-way actuation system (Air Actuated, Electric motor-driven, or Hydraulic cylinder actuated mechanisms), thereby reducing the need for manual effort and enhancing driver comfort. The advantages of this invention over traditional carrier mechanisms include
Bonde, DevendraUpkare, Piyush PradipVerma, Rubal
Mo-free 1.6-GPa bolt was developed for a Variable Compression Turbo (VC-Turbo) engine, which is environment friendly and improves fuel efficiency and output. Mo contributes to the improvement of delayed fracture resistance; therefore, the main objective is to achieve both high strength and delayed fracture resistance. Therefore, Si is added to the developed steel to achieve high strength and delayed fracture resistance. The delayed fracture tests were performed employing the Hc/He method. Hc is the limit of the diffusible hydrogen content without causing a delayed fracture under tightening, and He is the diffusible hydrogen content entering under a hydrogen-charging condition equivalent to the actual environment. The delayed fracture resistance is compared between the developed steel and the SCM440 utilized for 1.2-GPa class bolt as a representative of the current high-strength bolts. Owing to delayed fracture test, Hc/He of developed steel is 49.1 (Hc:3.39 ppm, He:0.069 ppm), and that
Sekine, DaikiOyanagi, MitsushiHamada, TakahiroFurukawa, TakayoshiMatsumoto, YosukeKanoe, Shinji
Side doors are pivotal components of any vehicle, not only for their aesthetic and safety aspects but also due to their direct interaction with customers. Therefore, ensuring good structural performance of side doors is crucial, especially under various loading conditions during vehicle use. Among the vital performance criteria for door design, torsional stiffness plays an important role in ensuring an adequate life cycle of door. This paper focuses on investigating the impact of several door structural parameters on the torsional stiffness of side doors. These parameters include the positioning of the latch, the number of door side hinge mounting points on doors (single or double bolt), and the design of door inner panel with or without Tailor Welded Blank (TWB) construction. The findings of this study reveal that the change in latch position has the most significant influence on torsional stiffness, followed by the removal of TWB from the inner panel, upon implementation of suitable
Goyal, Vinay KumarSelvan, VeeraPandurangan, VenugopalUnadkat, SiddharthAlmeida, Neil Ricardo
Threaded joints are considered the most basic of components. Although in use for over a century, significant problems still exist with their usage. Wheel bolt loosening in overloaded segments such as HD tippers and high-speed intercity buses poses a safety challenge for drivers, passengers, and pedestrians. Wheel nut loosening is a notable cause of service, fretting, and cracks in the mating components; contributing a significant chunk of warranty cost to the company. The need of the hour is to reinforce these joints while keeping resources at bay. This paper establishes a methodology for the evaluation and design of a safe wheel bolt joint interface including key parameters such as embedding, axial forces, and shear forces. It is necessary to obtain the minimum preload requirement for a wheel bolt joint to hold the clamped surfaces intact, which if not maintained otherwise would cause relative movement, play, shear load onto the bolt, and eventually failure. For physically auditing
Raghatate, ShreyasSharma, SuchitSindal, Vinayak
Heavy vehicles such as construction machinery generally require a large traction force. For this reason, axle components are equipped with a final reduction gear to provide a structure that can generate a large traction force. Basic analysis of vertical load, horizontal load (traction force), centrifugal force, and torsional torque applied to the wheels of heavy vehicles such as construction machinery and industrial vehicles, as well as actual working load analysis during actual operations, were conducted and compiled into a load analysis diagram. The loosening tendency of wheel bolts and nuts that fasten the wheel under actual working load was measured, and the loosening analysis method was presented. The causes of wheel fall-off accidents in heavy trucks, which have recently become a problem, were examined. Wheel bolts are generally tightened by the calibrated wrench method using a torque wrench. The method is susceptible to variations in friction coefficient and tightening torque
Hareyama, SoichiManabe, Ken-ichiKobayashi, Satoshi
This procurement specification covers bolts and screws made from a corrosion and heat resistant, age hardenable, nickel base alloy of the type identified under the Unified Numbering System as UNS N07041 and of 155 ksi tensile strength at room temperature, with maximum test temperature of parts at 1400 °F.
E-25 General Standards for Aerospace and Propulsion Systems
E-25 General Standards for Aerospace and Propulsion Systems
E-25 General Standards for Aerospace and Propulsion Systems
Items per page:
1 – 50 of 2367