Browse Topic: Screws
This paper presents an analytical approach for identifying suspension kingpin alignment parameters based on screw axis theorem and differential calculation model. The suspension kingpin caster and inclination alignment parameters can produce additional tire force, which affects vehicle handling dynamics. In wheel steering process, the multi-link suspension control arms lead to movement of the imaginary kingpin, which can cause change in suspension kingpin alignment parameters. According to the structure mechanism of commercial vehicle multi-link independent suspension, the kinematics characteristics of imaginary kingpin were analyzed based on the screw axis theorem. The angular velocity and translation velocity vectors were calculated. In order to avoid the influence of bushing deformation, the unique differential identification model was established to evaluate the suspension kingpin alignment parameters, and the identification results were compared with the ADAMS/Car data. The
Biomedical metal implant materials are widely used in clinical applications, including dental implants, hip replacement, bone plates, and screws. However, traditional manufacturing processes face limitations in meeting customized medical needs, internal structural control, and efficient material utilization. For example, when producing complex-shaped titanium alloy parts using conventional methods, the material consumption ratio is as high as 10:1–20:1, leading to significant material waste.
At present, electric head restraints have been developed locally, so overseas mechanisms are used. In this study, two concept mechanisms were developed, and in addition, one patent for a wing-out head restraint mechanism was additionally applied. The new mechanism has had an excellent effect on cost reduction and improvement of operating noise compared to the current one.
This specification covers closely-wound helical coil, screw thread inserts made from an age hardenable nickel base alloy formed wire of the type identified under the Unified Numbering System as UNS N07750. The inner surface of the insert coil, after assembly into a screw thread tapped hole, provides internal threads of standard 60° Unified Form.
In the intricate world of orthopedic device manufacturing, precision quality isn’t just a requirement, it’s the cornerstone of life-changing patient outcomes. SpiTrex Orthopedics, a global leader in medical device contract manufacturing, specializes in implants for the spine, trauma, and extremity markets (Spi.Tr.Ex.), including spinal rods, cross connectors, hooks, and a variety of stateof-the-art screws, nails, and plates. The company has a multi-site smart factory manufacturing footprint across North America and Europe.
This SAE Aerospace Standard (AS) establishes the geometric control requirements for bolts, screws, and studs where worded notes and symbolized notes are used for straightness, concentricity, squareness, and runout.
This SAE Aerospace Standard (AS) specifies the characteristics of screw threads - UNJ profile inch series, including a mandatory controlled radius as specified in Table 1 at the root of the external thread. The minor diameter of both external and internal threads provides a basic thread height of .5625H to accommodate the external thread maximum root radius. The following detailed design requirements are included: a Screw threads - UNJ basic profile and design profiles. b Standard series of diameter-pitch combinations for nominal thread diameters from 0.060 to 6.000 inches. c Standard thread classes and form tolerances. d Formulae for thread dimensions and tolerances. e Method of designating UNJ threads. f Tables for selected diameter-pitch combinations for close tolerance mechanical thread applications. g Tables for screw thread - UNJ profile thread limit dimensions.
This procurement specification covers bolts and screws made from a corrosion and heat resistant, age hardenable, nickel base alloy of the type identified under the Unified Numbering System as UNS N07041 and of 155 ksi tensile strength at room temperature, with maximum test temperature of parts at 1400 °F.
This standard specifies the characteristics of the MJ profile metric series of screw threads, altered from ISO 68 M Profile, to include a mandatory controlled radius of 0.18042P to 0.15011P at the root of the external thread and with the minor diameter of both external and internal threads increased to provide a basic thread height of 0.5625H in order to accommodate the external thread maximum root radius. The following detailed requirements are included: a MJ basic profile and design profiles b Standard series of diameter-pitch combinations for nominal thread diameters from 1.6 to 200 mm c Standard thread classes and form tolerances d Formulae for thread dimensions and tolerances e Method of designating MJ threads f Inspection requirement g Tables for selected diameter-pitch combinations for aerospace screws, bolts, nuts, shaft and bearing retaining screw threads, and fluid fittings thread sizes h Tables for MJ screw threads limiting dimensions and tolerances i Symbols for MJ thread
This SAE Aerospace Standard (MA) provides recommended dimensional data for screw thread undercuts for straight “MJ” metric screw threads in accordance with MA1370.
Previously given Paper 09ATC-0232 delivered at the SAE Aerotech conference in Seattle in 2009 reports on the E6000 machine installing slug rivets with the EMR. Paper 2015-01-2491given at the SAE conference in Seattle in 2015 reports on index head rivets being installed with screw driven squeeze process. This paper reports on the screw driven squeeze process installing unheaded slug rivet which is a more complex process. We also report on improvements to the fixture automation.
This procurement specification covers inserts made from A286 alloy of the type identified under the Unified Numbering System as UNS S66286, solid film lubricated with a piastic self locking device, integrated locking keys to positively secure the insert against rotation when properly installed in threaded holes.
This Aerospace Standard establishes the preferred diameter-pitch combinations of ISO metric 60° screw threads recommended for use in the aerospace industry for metric module bolts and nuts.
This SAE Aerospace Recommended Practice (ARP) defines a method for determining a torque value (range) for threaded fluid connections.
To establish design recommendations that will provide a basis for safe and reliable connections to threaded screw-type or stud-type electrical equipment terminations. These recommendations are directed primarily, but not solely, to the aerospace and ground support equipment industries. Since individual design criteria may alter the details as outlined, it is therefore important that this SAE Aerospace Information Report (AIR) not be considered mandatory but be used only as a design guidance.
This design standard provides information on the use of self-locking shank nuts, thread sizes .1640-36 through .3750-24, together with details of flange hole and abutment shoulder for their installation.
This SAE Standard covers general and dimensional specifications for the Code 61 metric (Type 1) and inch (Type 2) flanged heads, flange clamps (FC and FCM), and split flange clamps (FCS and FCSM) applicable to four-screw flange type tube, pipe, and hose connections. Also included are the recommended port dimensions and port design considerations. Type 2 (inch) flange clamps and split flanges are not for new design. The flanged heads specified are incorporated into fittings having suitable means for attachment of tubes, pipes, or hoses to provide connection ends. These connections are intended for application in hydraulic systems, on industrial and commercial products, where it is desired to avoid the use of threaded connections. The rated working pressure of an assembly shall not exceed the least of all the component working pressure rated values. The following general specifications supplement the dimensional data contained in the tables with respect to all unspecified detail. Parts
This SAE Standard covers 32 types of clamps most commonly and suitably being used on OEM coolant, fuel, oil, vacuum, and emission systems.
This SAE Standard covers general requirements and dimensions of various sizes of eyelet and spade type terminals.
This SAE standard applies to self-propelled driver operated sweepers and scrubbers as defined in SAE J2130-1.
This procurement specification covers aircraft-quality bolts and screws made from 6Al - 4V titanium alloy of the type identified under the Unified Numbering System as UNS R56400. The following specification designation and its properties are covered:
Items per page:
50
1 – 50 of 997