Browse Topic: Interior noise
Over the past twenty years, the automotive sector has increasingly prioritized lightweight and eco-friendly products. Specifically, in the realm of tyres, achieving reduced weight and lower rolling resistance is crucial for improving fuel efficiency. However, these goals introduce significant challenges in managing Noise, Vibration, and Harshness (NVH), particularly regarding mid-frequency noise inside the vehicle. This study focuses on analyzing the interior noise of a passenger car within the 250 to 500 Hz frequency range. It examines how tyre tread stiffness and carcass stiffness affect this noise through structural borne noise test on a rough road drum and modal analysis, employing both experimental and computational approaches. Findings reveal that mid-frequency interior noise is significantly affected by factors such as the tension in the cap ply, the stiffness of the belt, and the properties of the tyre sidewall
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in 2.3 and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs
The influence of moisture adsorption, prior braking, and deceleration rate on the low-speed braking noise has been investigated, using copper-free disc pads on a passenger car. With increasing moisture adsorption time, decreasing severity of prior braking or increasing deceleration rate, the noise sound level increases for the air-borne exterior noise as well as for the structure-borne interior noise. The near-end stop noise and the zero-speed start-to-move noise show a good correlation. Also, a good correlation is found between the noise measured on a noise dynamometer and on a vehicle for the air-borne noise. All the variables need to be precisely controlled to achieve repeatable and reliable results for dynamometer and vehicle braking groan noise tests. It appears that the zero-speed start-to-move vehicle interior noise is caused by the pre-slip vibration of the brake: further research is needed
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The method is based on non-linear theories in the frequency domain. It uses the Harmonic Balance Method (HBM) in combination with the Alternating Frequency/Time Domain Method (AFT) to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked. In the second step, the
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, gas temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin. The approach is cheap in terms of computational effort (likewise ICE order
To meet vehicle interior noise targets and expectations, components including those related to electric vehicles (EVs) can effectively be treated at the source with an encapsulation approach, preventing acoustic and vibration sources from propagating through multiple paths into the vehicle interior. Encapsulation can be especially useful when dealing with tonal noise sources in EVs which are common for electrical components. These treatments involve materials that block noise and vibration at its source but add weight and cost to vehicles – optimization and ensuring the material used is minimized but efficient in reducing noise everywhere where it is applied is critically important. Testing is important to confirm source levels and verify performance of some proposed configurations, but ideal encapsulation treatments are complex and cannot be efficiently achieved by trial-and-error testing. Simulation is a key supporting tool to guide location, thickness, and properties of
In the acoustic study of the interior noise of a vehicle, whether for structure-borne or air-borne excitations, knowing which areas contribute the most to interior noise and therefore should be treated as a priority, is the main goal of the engineer in charge of the NVH. Very often these areas are numerous, located in different regions of the vehicle and contribute at different frequencies to the overall sound pressure level. This has led to the development of several “Panel Contribution Analysis” (PCA) experimental techniques. For example, a well-known technique is the masking technique, which consists of applying a “maximum package” (i.e., a package with very high sound insulation) to the panels outside of the area whose contribution must be measured. This technique is pragmatic but rather cumbersome to implement. In addition, it significantly modifies the dynamics and internal acoustics of the vehicle. In another well-known technique, the contribution of a certain area is defined
Tire/Road noise is a dominant contribution to a vehicle interior noise and requires significant engineering resources during vehicle development. A process has been developed to support automotive OEMs with road noise engineering during vehicle design and development which has test as its basis but takes advantage of simulation to virtually accelerate road noise improvement. The process uses noise sources measured on a single tire installed on a test stand in a chassis dynamometer. The measured sources are then combined with vehicle level transfer functions calculated using a Finite-Element model for structure-borne noise and a Statistical Energy Analysis (SEA) model for airborne noise to predict the total sound at the driver’s ears. The process can be applied from the initial stages of a vehicle development program and allows the evaluation of vehicle road noise performance as perceived by the driver long before the first prototype is available. This process is also extensible to
Summary: With the electrification of powertrains, noise inside vehicles has reached very satisfactory levels of silence. Powertrain noise, which used to dominate on combustion-powered vehicles, is now giving way to other sources of noise: rolling noise and wind noise. These noises are encountered when driving on roads and freeways and generate considerable fatigue on long journeys. Wind noise is the result of turbulent and acoustic pressure fluctuations created within the flow. They are transmitted to the passenger compartment via the vibro-acoustic excitation of vehicle surfaces such as windows, floorboards, and headlining. Because of their mechanical properties, windows are the surfaces that transmit the most noise into the passenger compartment. Even though acoustic pressure is much weaker in amplitude than turbulent pressure fluctuations, it still accounts for most of the noise perceived by occupants. This is because its wavelength is closer to the characteristic wavelengths of
While conventional methods like classical Transfer Path Analysis (TPA), Multiple Coherence Analysis (MCA), Operational Deflection Shape (ODS), and Modal Analysis have been widely used for road noise reduction, component-TPA from Model Based System Engineering (MBSE) is gaining attention for its ability to efficiently develop complex mobility systems. In this research, we propose a method to achieve road noise targets in the early stage of vehicle development using component-level TPA based on the blocked force method. An important point is to ensure convergence of measured test results (e.g. sound pressure at driver ear) and simulation results from component TPA. To conduct component-TPA, it is essential to have an independent tire model consisting of wheel-tire blocked force and tire Frequency Response Function (FRF), as well as full vehicle FRF and vehicle hub FRF. In this study, the FRF of the full vehicle and wheel-tire blocked force are obtained using an in-situ method with a
During the pure electric vehicle high speed cruise driving condition, the unsteady air flow in the chassis cavity is susceptible to self-sustaining oscillations phenomenon. And the aerodynamic oscillation excitation could be coupled with the cabin interior acoustic mode through the body pressure relief vent, the low frequency booming noise may occur and seriously reduces the driving comfort. This paper systematically introduces the characteristics identification and the troubleshooting process of the low frequency aerodynamic noise case. Firstly, combined with the characteristics of the subjective jury evaluation and objective measurement, the acoustic wind tunnel test restores the cabin booming phenomenon. The specific test procedure is proposed to separate the noise excitation source. Secondly, according to the road test results, it is inferenced that the formation mechanism of low frequency noise is the self- sustaining oscillation with the underbody shedding vortex feedback
Electric vehicles (EV) are much quieter than IC engine powered vehicles due to less mechanical components and absence of combustion. The lower cabin noise in electric vehicles make customers sensitive to even small noise disturbances in vehicle. Road boom noise is one of such major concerns to which the customers are sensitive in electric vehicles. The test vehicle is a front wheel driven compact SUV powered by electric motor. On normal plain road, noise levels are acceptable but when the vehicle has been driven on coarse road, the boom noise is perceived, and the levels are objectionable. Multi reference Transfer Path Analysis (MTPA) is conducted to identify the path through which maximum forces are entering the body. Based on MTPA, modifications are proposed on the suspension bushes and the noise levels were assessed. Operational Deflection Shape (ODS) analysis is conducted on entire vehicle components like suspension links, sub frame, floor, roof, and doors to identify the
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line. With the
This paper focuses on reducing abnormal noise originating from suspension when driving on rough road at the speed of 20 kmph. The test vehicle is a front wheel driven monocoque SUV powered by four cylinder engine. Cabin noise levels are higher between 100 to 800 Hz when driven on rough road at 20 kmph. Vibration levels are measured on front and rear suspension components, front and rear subframe, subframe connections on body to identify the noise source locations. Since the noise levels are dominant only in certain rough patches at very narrow band of time, wavelet analysis is used for identification of frequency at which the problem exist. Based on wavelet analysis, it is identified that the vibration levels are dominant on front lower control arm (LCA). The dynamic stiffness of LCA bushes is reduced by ~ 40% to improve the isolator performance which reduced the noise levels by ~ 9 dB (A) at the problematic frequency band. Modal analysis is conducted on front suspension components to
In this study, a novel assessment approach of in-vehicle speech intelligibility is presented using psychometric curves. Speech recognition performance scores were modeled at an individual listener level for a set of speech recognition data previously collected under a variety of in-vehicle listening scenarios. The model coupled an objective metric of binaural speech intelligibility (i.e., the acoustic factors) with a psychometric curve indicating the listener’s speech recognition efficiency (i.e., the listener factors). In separate analyses, two objective metrics were used with one designed to capture spatial release from masking and the other designed to capture binaural loudness. The proposed approach is in contrast to the traditional approach of relying on the speech recognition threshold, the speech level at 50% recognition performance averaged across listeners, as the metric for in-vehicle speech intelligibility. Results from the presented analyses suggest the importance of
Startups are famous for moving quickly. Vinfast may want to slow things down. It was only 2019 when the Vietnamese company built its first cars, rebodied versions of gasoline BMWs that became hits in its home market. Vinfast speedily developed four electric SUVs, including the inaugural VF8 that SAE Media drove in southern California. At the same time, a cargo ship docked near San Francisco, carrying nearly 2,000 VF8s for customers in California and Canada. The next day, Vinfast announced plans to go public via a SPAC merger. And Vinfast recently broke ground on a $4 billion factory in North Carolina, targeting 150,000 units of annual capacity and more than 7,000 jobs
Numerical methodologies for aeroacoustic analyses are increasingly crucial for car manufacturers to optimize the effectiveness of vehicle development. In the present work, a hybrid numerical tool based on the combination of a delayed detached-eddy simulation and a finite element model, which relies on the Lighthill’s acoustic analogy and the acoustic perturbation equations, is presented. The computational aeroacoustics is performed by the software OpenFOAM and Actran, concerning respectively the CFD and the FEM. The aeroacoustic behavior of the SUV Lamborghini Urus at a cruising speed of 140 km/h has been investigated. The main aerodynamic noise phenomena occurring in the side mirror region in a frequency range up to 5 kHz are discussed. The numerical simulations have been verified against the measurements performed in the aeroacoustic wind tunnel of the University of Stuttgart, operated by FKFS. The predicted exterior noise propagation into the far field has been validated by
Nowadays, a higher amount of time is being spent inside the vehicles on account of varied reasons like traffic, longer distances being travelled and leisure rides. As a result, better comfort and convenience features are added to make the driver and passenger feel at ease. Thermal comfort and acoustic isolation are the primary parameters looked at by both the customers and the original equipment manufacturers. Seats are one of the primary touch points inside the vehicle. Perspiration caused at the contact patch areas between the seats and passengers leads to high thermal discomfort. A ventilated seat, with or without an air-conditioning system, is one such attribute offered to improve passenger thermal comfort. Ventilation becomes even more essential for front-row seats, as these are more likely to be exposed to external solar loading through the front windshield. This luxury feature of seat ventilation is now being adopted as a standard to improve the passenger's thermal comfort
In the context of automotive air boosting systems, such as turbochargers and full-cell compressors, earlier and more realistic noise evaluations are crucial in evaluating the impact a design has on the final acoustic performance perceived by the end user in the vehicle cabin environment. This requires a combined assessment of the acoustic sources from boosting systems, other vehicle interior noise sources, and the acoustic transfer path from the boosting system to the vehicle cabin. Performing such an assessment experimentally cannot be done early in development with representative hardware and can be expensive. Also, managing such an assessment entirely through simulations is very complex and error prone. The present study proposes a hybrid approach to tackle this noise challenge. This methodology combines the noises of high-speed rotating machine simulated rotor-dynamic and electromagnetic simulation processes, their transformation from frequency to time domain, and coupling with
HVAC system design has an accountability towards acoustic comfort of passengers of a vehicle. Owing to larger cabin volume of a bus, multiple air blowers have to be installed to ensure comfort of passengers. Such multiple blowers produce significant flow induced noise inside the cabin. For commercial success, it becomes essential to predict intensity of such a flow induced noise at very early stages in product development. Conventionally sliding mesh based CFD approach is deployed to predict flow and turbulence noise around each blower. However due to complexity, this method becomes computationally intensive resulting in cost and time inefficiency. Hence it is desirable to innovate around an alternative rapid, reliable prediction method, which ensures quick turnaround of prediction. This paper describes a unique innovative approach developed around a multiscale method where flow induced noise generated by a single blower in motion is predicted using commercial Lattice Boltzmann CFD
The innovation and application of new technologies in battery electric vehicle (BEV) development continues to be a key objective of the automotive industry. One such area of development is glazing designs that reduce transmission of noise into vehicle interiors. Highly asymmetric laminated front side lites that consist of thick soda lime glass exterior plies laminated with thinner ion exchanged interior plies with acoustic polyvinyl butyral interlayers offer substantially reduced noise transmission compared to industry standard monolithic front side lites. These asymmetric laminate designs also provide additional benefits of improved toughness and penetration resistance. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of asymmetric laminated glass front side lites. The test-based assessment included within this study was conducted to isolate
In electrified automobiles, wind noise significantly contributes to the overall noise inside the cabin. In particular, underbody airflow is a dominant noise source at low frequencies (less than 500 Hz). However, the wind noise transmission mechanism through a battery electric vehicle (BEV) underbody is complex because the BEV has a battery under the floor panel. Although various types of underbody structures exist for BEVs, in this study, the focus was on an underbody structure with two surfaces as inputs of wind noise sources: the outer surface exposed to the external underbody flow, such as undercover and suspension, and the floor panel, located above the undercover and battery. In this study, aero-vibro-acoustic simulations were performed to clarify the transmission mechanism of the BEV underbody wind noise. The external flow and acoustic fields were simulated using computational fluid dynamics. The vehicle structural vibration and sound fields of the interior and exterior cabin
Automotive Heating Ventilation and Air Conditioning (HVAC) system is essential in providing the thermal comfort to the cabin occupants. The HVAC noise which is typically not the main noise source in IC engine vehicles, is considered to be one of the dominant sources inside the electric vehicle cabin. As air is delivered through ducts and registers into the cabin, it will create an air-rush/broadband noise and in addition to that, any sharp edges or gaps in flow path can generate monotone/tonal noise. Noise emanating from the HVAC system can be reduced by optimizing the airflow path using virtual tools during the development stage. This paper mainly focuses on predicting the noise from the HVAC ducts and registers. In this study, noise simulations were carried-out with ducts and registers. A Finite Volume Method (FVM) based 3-dimensional (3D) Computational Fluid Dynamics (CFD) solver was used for flow as well as acoustic simulations. Large Eddy Simulation (LES) was used for flow field
Vehicle weight reduction is important to improve the fuel mileage of Internal Combustion Engine (ICE) vehicles and to extend the range of Electric Vehicles (EVs). Glass Fiber Reinforced (GFR) Composite (Polyamide) brackets provide significant weight reductions at a competitive part price. Traditionally, metal brackets are designed to surpass a target natural frequency and static stiffness. Composite brackets are inherently less stiff and have lower natural frequencies. However, composite brackets also have higher material damping than metal brackets, and good isolation performance can be achieved. The key to integrating composite brackets into the vehicle design is to perform adequate analysis to ensure that the noise and vibration performance at the vehicle level meets expectations. In this paper, case studies are presented for two different vehicles – a Clevis bracket for an IC Engine vehicle, and an electric motor mount bracket. For each case, measurement data is used to develop
Traditionally vehicles are designed for wind noise under ideal steady wind conditions. But, passenger comfort is affected by high modulation of cabin noise while cruising in traffic due to variations of instantaneous wind speed and direction from driving through large-scale turbulence. In consequence, designing a vehicle for the best performance in a low-turbulence wind tunnel may lead to issues during on-road conditions. To predict the interior noise corresponding to on-road turbulence, a simulation approach is proposed combining an upstream turbulence flow simulation with an SEA vehicle model. This work is an extension of existing well validated procedures for steady wind conditions. Time-segmented transient loads on panels and steady-state structural acoustics transfer functions are combined, producing interior noise results for a series of overlapping time segments. This interior noise prediction, as a function of time, captures the modulation of wind noise results, which are then
The shift towards electric vehicles is gaining pace to address carbon neutrality and environmental concerns. New technologies are being developed to cater to the unique features of EVs, such as the low indoor noise at low speeds, which require a low-noise ventilation system. A new dual-blower type system was developed to solve the problem of seat-bottom package caused by battery placement in the vehicle. This system uses two blowers, one for the cushion and one for the back, and reduces RPM to lower high-frequency noise. A new solution was introduced for temperature drop performance in the ventilation system. An integrated controller was also developed to control the seat warmer and ventilation system, with a smart control function added to respond to vehicle speed and ventilation time based on customer usage. As a result, this new ventilation system improves air volume, reduces noise, improves foot space, and reduces the number of parts compared to the previous system
With the transition from Internal Combustion Engines Vehicles (ICEVs) to Electric or Hybrid Electric Vehicles (EVs/HEVs), most of the system aggregates and system parameters need to be redefined and recalibrated. This is mainly due to the change in power and transmission system. One of the critical system aggregates is heating ventilating and air-conditioning (HVAC) system as it directly impacts the car interior noise (other than passenger comfort) across all speed ranges. At low speed, interior noise becomes more annoying due to HVAC and electromagnetic noise from traction motor. However, at high speed other auxiliary noise sources are added up to the overall noise sources. Hence it becomes necessary to design and develop the HVAC system which should produce no abnormal noise and overall noise becomes low. The advancement of numerical simulation plays an important role in finalizing the HVAC design and also provides better insight of the products. The present paper describes the
As the current market trend is emerging towards the compactness, better comfort and less emission, it is quite important that factors contributing to these aspects should be kept under control and maintained within the desired range. Heating ventilation and air conditioning (HVAC) noise is one such factor which significantly contributes in occupants’ acoustic comfort. It creates discomfort to the occupants while HVAC is in operation and eventually lead to fatigue. In a HVAC, there are several different types and sources of noise which cumulatively impacts the overall noise level. However, few of them are quite prominent and has maximum impacts on overall noise. It is very important to identify and measure these sources in order to take appropriate countermeasure to mask or eliminate them. In order to identify and measure the noise sources, various methods are used. One such method is acoustical duct method in which an acoustic duct is used to isolate the source for measuring the noise
Items per page:
50
1 – 50 of 643