Browse Topic: Noise measurement

Items (714)
We present a novel processing approach to extract a ship traffic flow framework in order to cope with problems such as large volume, high noise levels and complexity spatio-temporal nature of AIS data. We preprocess AIS data using covariance matrix-based abnormal data filtering, develop improved Douglas-Peucker (DP) algorithm for multi-granularity trajectory compression, identify navigation hotspots and intersections using density-based spatial clustering and visualize chart overlays using Mercator projection. In experiments with AIS data from the Laotieshan waters in the Bohai Bay, we achieve compression rate up to 97% while maintaining a key trajectory feature retention error less than 0.15 nautical miles. We identify critical areas such as waterway intersections and generate traffic flow heatmap for maritime management, route planning, etc.
Kong, XiangyuShao, Guoyu
The operator station or “cab” in off Highway equipment plays a critical role to provide a comfortable workspace for the operator. The cab interfaces with several elements of the off-highway equipment which can create gaps and openings. These openings have the potential for acoustic energy leakage, ultimately increasing sound within the cab. During machine operation, noise generated around the cab conducts inside through these leakages resulting in increased sound levels. Acoustic leakages are among the key noise transfer paths responsible for noise inside the cab. Therefore, before considering noise control treatments it is best to first identify and minimize any leakages from joints, corners, and pass-throughs to achieve the required cab noise reduction. In this effort the sound intensity technique is used to detect the acoustic leakages in cab. The commercial test system is used for measuring the sound intensity field over objects. For the cab, an acoustic source is used inside the
Pawar, Sachin M.Mandke, DevendraFapal, AnandCone, Kerry
Traditionally, off-highway vehicles like tractors and construction machinery have relied on hydraulic, viscous, or fixed fans to meet the cooling demands of diesel engines. These fans draw power from the engine, impacting fuel consumption and contributing to noise levels that affect operator comfort. Recently, the adoption of electric fans in off-highway applications has increased due to their energy efficiency, lower noise, and flexible design. Electric fans can cool various components, such as radiators and condensers, and can be positioned for optimal performance. They are easily selected from established supplier catalogs based on application requirements like machine voltage, fan size, and type. This study explores various fan arrangements, including pusher and puller types, and multiple electrical fan banking based on cooler zones to improve cooling system performance without changing cooler size or specifications. A mathematical flow model was developed for both setups: the
Durairaj, RenganathanDewangan, NitinAnand, KetanBhujbale, Sagar
This study demonstrates the application of the T-Matrix, a Total Quality Management (TQM) tool to improve thermal comfort in automotive climate control systems. Focusing on the commonly reported customer issue of insufficient cabin cooling, particularly relevant in hot and congested Indian driving conditions, the research systematically investigates 36 failure modes identified across the product lifecycle, from early design through production and post-sale customer usage. Root causes are first categorized using an Ishikawa diagram and then mapped using the T-Matrix across three critical stages: problem creation, expected detection, and actual detection. This integrated approach reveals process blind spots where existing validation and inspection systems fail to catch known risks, particularly in rear-seat airflow performance and component variability from suppliers. By applying this TQM methodology, the study identifies targeted improvement actions such as improved thermal targets
Jaiswara, PrashantKulkarni, ShridharDeshmukh, GaneshNayakawadi, UttamJoshi, GauravShah, GeetJaybhay, Sambhaji
Noise pollution from automotive vehicles is a significant concern in urban areas, emphasizing the need for improved vehicle engineering of automotive vehicles to reduce noise levels. The necessity for automotive vehicles to have a low acoustic signature may further be emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). In addition to this the external noise may propagate inside the cabin affecting the overall wellbeing of the driver. To address the issue vehicles are observed to measure noise levels at various locations, including inside and outside the cabin. These testing facilitate noise source identification and categorization of noise into structure-borne noise and air-borne noise. The air-borne noise, which can be either broadband or tonal in nature, is particularly discomforting and may require mitigation. To analyse these complex aero-acoustic behaviour of the vehicle, CFD can be
Sharma, ShantanuPawar, Sourabhsingh, RamanandKalamdani, Sreenath
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
Trivedi, ArpitaKumar, RaviMadaan, AshishShrivastava, Pawan
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
Pawar, SourabhSharma, ShantanuSingh, Ramanand
With the escalating rate of urbanization in China, the urban construction sector is encountering numerous challenges, including issues such as traffic congestion and environmental pollution. To enhance traffic efficiency and offer planning guidance for urban development, this study focuses on the fully or partial opening of community entrances. VISSIM is utilized to examine the community opening and simulate the internal road network, while also employing the SPSS data analysis tool for supplementary analysis. The objective of this method is to compare and analyze the traffic conditions and environmental impact of the community before and after its opening with different automobiles. Through the establishment of a comprehensive evaluation system, the study calculates and analyzes the average vehicle speed, noise levels, energy consumption, and carbon dioxide emissions before and after the opening of the community. Finally, several recommendations are proposed to enhance community
Li, MengyuanZhuo, ChenxuXiong, SiminXu, Lihao
In recent years, traffic issues in China have been emerging continuously, and the traffic congestion problem in Beijing is particularly prominent. We have explored the relationships between factors such as driving duration, road length, weather conditions in Beijing and traffic congestion. By using the Logistic Regression Model to analyze the relationships among driving duration, road length and traffic congestion, we found that both driving duration and road length are negatively correlated with traffic congestion. The model shows high accuracy and recall rate, demonstrating excellent performance. We also employed the Weighted Average Correlation Model to study the relationship between weather conditions and traffic congestion. The results indicate that traffic congestion is more severe in rain, snow, and foggy weather, while it is less serious in sunny and cloudy weather. Subsequently, through the noise level verification, the stability of the model was confirmed. At the same time
Feng, JiaruiHan, Xiran
Brake caliper rattle noise is difficult to simulate due to its non-stationary, random, and broadband frequency characteristics. Many CAE engineers have adopted rattle vibration as an alternative metric to quantitative noise levels. Previous rattle noise simulations primarily presented relative displacement results derived from normal mode analysis or vibration dB levels rather than actual noise dB levels. However, rattle noise consists of continuous impact noise, which must account for reflections, diffractions, and refractions caused by transient nonlinear contacts and localized vibrations—especially during extremely short contact events. To accurately simulate impact noise, vibration and acoustic characteristics should be analyzed using a simplified structure, given the numerous mechanisms influencing impact noise generation. The rattle noise can be effectively modeled using LS-Dyna, which incorporates both explicit and BEM solvers. The correlation between test results and CAE
Park, Joosang
This SAE Recommended Practice establishes the procedure for determining if recreational motorboats have effective exhaust muffling means when operating in the stationary mode. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
This SAE Recommended Practice establishes the procedure for measuring the sound level of recreational motorboats in the vicinity of a shore bordering any recreational boating area during which time a boat is operating under conditions other than stationary mode operation. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
In this article the transition of a laminar boundary layer (BL) over a flat plate is characterized using an acoustic technique with a pitot probe linked to a microphone unit. The probe was traversed along a BL plate at a fixed wind tunnel flow velocity of 5.5 m/s. A spectral analysis of the acoustic fluctuations showed that this setup can estimate the streamwise location and length of the BL transition region, as well as the BL thickness, by using the intermittency similitude approach. Further work is required to quantify the uncertainty caused by signal attenuation within the data acquisition system.
Lawson, Nicholas JohnZachos, Pavlos K.
This SAE Standard is equivalent to ISO 362-1:2015 and specifies an engineering method for measuring the noise emitted by road vehicles of categories M and N under typical urban traffic conditions. It excludes vehicles of category L1, L2, L3, L4, and L5. The specifications are intended to reproduce the level of noise generated by the principal noise sources during normal driving in urban traffic. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustical environment that is obtained only in an extensive open space. Such conditions are usually provided for during: Measurements of vehicles for regulatory certification and/or type approval Measurements at the manufacturing stage Measurements at official testing stations Annex A provides background information on the use of this standard consistent with the intent.
Light Vehicle Exterior Sound Level Standards Committee
This SAE Recommended Practice establishes the procedure for measuring the maximum exterior sound level of recreational motorboats while being operated under a variety of operating conditions. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
This ARP provides two methods for measuring the aircraft noise level reduction of building façades. Airports and their consultants can use either of the methods presented in this ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
A-21 Aircraft Noise Measurement Aviation Emission Modeling
As the automotive industry moves towards greater intelligence, electric tailgate systems have seen widespread adoption, featuring remote control, obstacle detection, and intelligent opening functions that significantly enhance the user experience. The electric telescopic rod, as a key actuator, has drawn attention for its structural and transmission design. However, studies have shown that during actual operation, various noise issues arise with electric telescopic rods, affecting the sound quality and smoothness of the tailgate's opening and closing. This paper presents a noise detection and analysis study based on a dedicated testbench platform specifically developed for electric telescopic rods. The platform was designed to simulate the real-world opening and closing process of automotive tailgates, enabling a controlled environment for capturing and analyzing noise characteristics effectively. Using a microphone to capture noise signals, three main types of noise were identified
Fan, SibeiWang, SilingZhu, ZhehuiLi, LeiQin, JiadeZhang, LijunMeng, DejianPei, Kaikun
Analyzing acoustic performance in large and complex assemblies, such as vehicle cabins, can be a time-intensive process, especially when considering the impact of seat location variations on noise levels. This paper explores the use of Ansys simulation and AI tools to streamline this process by predicting the effects of different speaker locations and seat configurations on cabin noise, particularly at the driver’s ear level. The study begins by establishing a baseline simulation of cabin noise and generating training data for various seat location scenarios. This data is then used to train an AI model capable of predicting the noise impact of different design adjustments. These predictions are validated through detailed simulations. The paper discusses the accuracy of these predictions, the challenges encountered and provides insights into the effective use of AI models in acoustic analysis for cabin noise, with a specific emphasis on seat location as a key variable.
Kottalgi, SantoshHe, JunyanBanerjee, Bhaskar
The trend towards electrification propulsion in the automotive industry is highly in demand due to zero-emission and becoming more significant across the world. Battery electric vehicles have lower overall noise as compared to conventional I.C Engine counterparts due to the absence of engine combustion and mechanical noise. However, other narrowband and tonal noises are becoming dominant and are strongly perceived inside the cabin. With the ongoing push towards electrification, there is likely to be increased focus on the noise impact of gearing required for the transmission of power from the electric motor to the road. Direct coupling of E-motors with Axle has resulted in severe tonal noises from the driveline due to instant e-motor torque ramp up from 0 rpm and reverse torque on driving axle during regenerative braking. The tonal noises from the rear axle during vehicle running become very critical for customer perception. For automotive NVH engineers, it has become a challenge to
Doshi, SohinKalsule, DhanajiSawangikar, PradeepSuresh, VineethSharma, Manish
Electric drive units (EDU) of battery electric vehicles and electric drivetrain components of hybrid vehicles require significant development effort and planning to ensure that a refined NVH sound quality is achieved. New tools and methods are required to understand the NVH performance throughout the development process and to ensure that NVH risks can be quickly identified and mitigated within the correct EDU subsystems. This paper discusses the development of a methodology (EDSL – Electric Drive Sound Level) aimed at addressing this need. It also outlines how the EDSL process can be used to address radiated noise issues and understand the NVH performance of the various subsystems within an electrified drivetrain component. The first use of the EDSL methodology is to characterize component-level radiated noise test results and compare the different mechanical and electrical noise sources to targets. The results from this are used to guide EDU development in the appropriate areas
Pruetz, Jeffrey E.Steffens, ChristophFu, TongfangFord, Alex
In active noise control, the control region size (same meaning as zone of control) decreases as the frequency increases, so that even a small moving of the passenger's head causes the ear position to go out of the control region. To increase the size of the control region, many speakers and microphones are generally required, but it is difficult to apply it in a vehicle cabin due to space and cost constraints. In this study, we propose moving zone of quiet active noise control technique. A 2D image-based head tracking system captured by a camera to generate the passenger's 0head coordinates in real time with deep learning algorithm. In the controller, the control position is moved to the ear position using a multi-point virtual microphone algorithm according to the generated ear position. After that, the multi-point adaptive filter training system applies the optimal control filter to the current position and maintains the control performance. Through this study, it is possible to
Oh, ChiSungKang, JonggyuKim, Joong-Kwan
The author’s life work in acoustics and sound quality, continuous over more than 40 years, has followed a number of branches all involving measurement technologies and their evolution. The illustrated discussion begins 60 years ago in 1965 at Arizona State University in its Frank Lloyd Wright-designed Gammage Auditorium, and moves to the Research and Development Division of Kimball International, Inc. (Jasper, Indiana) in 1976 with piano research using a Federal Scientific Ubiquitous analog real-time FFT analyzer and Chladni-plate-mode studies with fine sand and high-speed photography of sound board modes. It continues at Jaffe Acoustics, Inc., a concert-hall-specializing consultancy in Norwalk, CT, with early-reflection plotting using a parabolic microphone on an altazimuth angular-readout mounting and either photographing oscillograms, or running a high-speed paper chart printer, assembling “wheel plots” incremented every 10 degrees in azimuth and altitude to map reflection patterns
Bray, Wade
This study introduces a computational approach to evaluate potential noise issues arising from liftgate gaps and their contribution to cabin noise early in the design process. This computational approach uses an extensively-validated Lattice Boltzmann method (LBM) based computational fluid dynamics (CFD) solver to predict the transient flow field and exterior noise sources. Transmission of these noise sources through glass panels and seals were done by a well-validated statistical energy analysis (SEA) solver. Various sealing strategies were investigated to reduce interior noise levels attributed to these gaps, aiming to enhance wind noise performance. The findings emphasize the importance of integrating computational tools in the early design stages to mitigate wind noise issues and optimize sealing strategies effectively.
Moron, PhilippeJantzen, AndreasKim, MinsukSenthooran, Sivapalan
To predict the sound field produced by a vehicle horn requires a good source representation of it in the full vehicle model. This paper investigates the characterization of a physical vehicle horn by an inverse method called pellicular analysis. To implement this method, firstly an acoustic testing is performed to measure the sound pressure radiated from the horn at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual horn, the locations of each microphone and measured sound pressure data, pellicular analysis is adopted to recover a set of vibration pattern of the virtual horn. The virtual horn and the recovered vibration information are then incorporated in a full vehicle numerical model to simulate its exterior sound field. The validity of this approach is confirmed by comparing the prediction for a horn in a production vehicle to the corresponding physical test which is required to meet the Brazilian regulation CONTRAN 764/2018.
Yang, WenlongMelo, Andre
The noise generated by high-performance vehicles like Formula SAE (FSAE) race cars, presents a significant challenge in adhering to strict competition noise regulations. In this study two muffler designs were created: muffler design 1 and 2. Each design utilized two chambers to generate destructive interference, targeting two dominant exhaust frequencies of the Honda CBR600RR engine to maximize transmission loss and reduce sound pressure levels (SPL) below the FSAE-mandated range of 103 dBC at idle and 110 dBC at all other operating conditions. For each design, the exhaust noise and muffler performance were simulated using GT-Suite, allowing for an evaluation of noise attenuation across engine speeds. Experimental testing was conducted to validate the GT-Suite model and assess the effectiveness of muffler design 1. This testing involved measuring the SPL with a calibrated microphone, both with and without the designed muffler. Muffler design 1 was based on the dominant exhaust
Labao, KaiMiddleton, NicholasNuszkowski, John
Large eddy simulations (LES) of two HVAC duct configurations at different vent blade angles are performed with the GPU-accelerated low-Mach (Helmholtz) solver for comparison with aeroacoustics measurements conducted at Toyota Motor Europe facilities. The sound pressure level (SPL) at four near-field experimental microphones are predicted both directly in the simulation by recording the LES pressure time history at the microphone locations, and through the use of a frequency-domain Ffowcs Williams-Hawking (FW-H) formulation. The A-weighted 1/3 octave band delta SPL between the two vent blades angle configurations is also computed and compared to experimental data. Overall, the simulations capture the experimental trend of increased radiated noise with the rotated vent blades, and both LES and FW-H spectra show good agreement with the measurements over most of the frequency range of interest, up to 5,000Hz. For the present O(30) million cell mesh and relatively long noise data collection
Besem-Cordova, Fanny M.Dieu, DonavanWang, KanBrès, Guillaume A.Delacroix, Antoine
During cylinder deactivation events, high amplitude torque pulsations are generated at the crankshaft of the engine over a wide frequency range creating a potential risk for noise, vibration and harshness (NVH) performance of the vehicle. As passive tuned mass dampers are effective only in a narrow frequency range, active tuned mass dampers (ATMD) have become a popular choice to mitigate the risk. Often, engineers rely on finite element (FE) models of vehicle structures to make design decisions during the early stages of vehicle development. However, there is limited literature on the simulation of ATMD using FE techniques. Consequently, several details related to the ATMD design are decided through physical testing at the latter stages of vehicle development which is not ideal. To address these issues, a novel methodology to simulate an ATMD during cylinder deactivation events using FE technique is presented here. In this study, an ATMD based on force feedback control method was
Maddali, RamakanthMogal, Akbar BaigHaider, SyedJahangir, Yawar
Within the automotive industry’s shift to Battery Electric Vehicles, in order to meet the global zero emission target, thermal management systems are key aspects to address. For instance, vehicle cooling requirements are reinforced to take into account the cabin comfort as well as battery management performances. Consequently to the increased cooling requirements, the critical component that is the Electric Drive Compressor, must operate at higher speeds and refrigerant pressures to achieve these targets. This trend results in increased noise levels which might occur inside the car cabin and outside. In this paper, noise investigations were performed on different Battery Electric Vehicles to assess the behavior of the electric compressor within a temperature controlled environment. Then, the electric compressors alone were investigated on specific test benches with compressor load units. The vehicle level assessment highlighted significant noise differences between vehicles. Further
Bennouna, SaadYamayoshi, ItsukyoDel Valle, Edward
Every vehicle has to be certified by the concerned governing authority that it matches certain specified criteria laid out by the government for all vehicles made or imported into that country. Horn is one of the components that is tested for its function and sound level before a vehicle is approved for production and sale. Horn, which is an audible warning device, is used to warn others about the vehicle’s approach or presence or to call attention to some hazard. The vehicle horn must comply with the ECE-R28 regulation [1] in the European market. Digital simulation of the horn is performed to validate the ECE-R28 regulation. In order to perform this, a finite element model of a cut model of a vehicle, which includes the horns and other components, is created. Fluid-structure coupled numerical estimation of the sound pressure level of the horn, with the appropriate boundary conditions, is performed at the desired location as per the ECE-R28 regulation. The simulation results thus
Ramachandran, BalachandarRaveendran, RoshinMondal, Arghya
Within automobiles, the HVAC is a critical system to regulate the occupants’ thermal comfort. However, at its high operating speeds, it can contribute significantly to the overall sound levels perceived by the cabin occupants, impacting their experience. This is especially true in the case of electric vehicles due to their overall quieter operation. This work has the intention to validate HVAC noise predictions using computational fluid dynamics (CFD) simulations. In addition, CFD simulations provide detailed flow field insights which are essential to identify and rank the main noise sources, and it ultimately allows a better understanding of the physical mechanisms of noise generation on similar systems. These insights are very difficult, if not impossible, to obtain with physical testing and are key to designing a quiet and efficient HVAC system. Sound levels were measured experimentally at eight different locations inside of a Class-8 Nikola TRE hydrogen fuel cell electric semi
Ihi, RafaelFougere, NicolasPassador, StephenWoo, SangbeomKim, JamesDesouky, Mohamed
As the automotive industry moves toward electrification, new challenges emerge in keeping pleasant acoustics inside vehicles and their surroundings. This paper proposes a method for anticipating the main sound sources at driver’s ear for custom driving scenarios. Different categories of Road and Wind noise were created from a dataset of multiple vehicles. Using innovative sound synthesis techniques, it enables Valeo to make early predictions of the emergence of an electric axle powertrain (ePWT) once it is combined with this masking noise. Realistic signals could be generated and compared with actual acoustic measurements to validate the method.
Redon, MilanDendievel, ClementPluton, Matthias
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Rittenschober, Thomas
The rapid adoption of electric vehicles (EVs) necessitates updates to the automotive testing standards, particularly for noise emission. This paper examines the vehicle-level noise emission testing of a Nikola Class 8 hydrogen fuel cell electric semi-truck and the component-level noise emission testing needed to create a predictive simulation model using Wave6 software. The physical, component-level noise emission testing focused on individual cooling fans in a semi-anechoic chamber to assess their isolated noise contributions. With this data, an initial model was developed using spatial gradient statistical energy analysis, which successfully predicted pass-by noise levels based on varying fan locations and speeds. Real-world pass-by testing confirmed the model's accuracy across different cooling fan speeds. By leveraging advanced simulation techniques, engineers aim to enhance the accuracy and reliability of pass-by noise predictions through cost-effective studies of architectural
Passador, StephenWoo, SangbeomLiu, Ting-WeiDe La Vega Alonso, GerardoKim, James
Based on the objective and subjective experiment and finite element analysis, the influencing factors on the door closing sound quality of a heavy truck is analyzed and optimized. Results show that the loudness and sharpness can be reduced by increasing stiffness and damping of the door. The sound quality can be enhanced by increasing the pressure release area, which can decrease the air pressure resistance of dooring closing. By adding holes on the inner liner and changing the pressure release location, the dooring closing air pressure resistance is reduced from 289 Pa to 181 Pa. In terms of the rebound sound, the sound level is positively related to the door closing force. Increasing the protrusion height and decreasing the stiffness of the vibration absorber of the handle can improve the rebound sound quality. Optimizing the absorbers on both ends of the handle and adding damping material can decrease the loudness by 47.8%, reduce the cavity sound, reduce the rattle and improve the
Wang, JianZhang, YongshenFeng, LeiXie, ChenhaoLin, JieweiSun, Changchun
The arrangement of error microphones for a vehicle active noise control (ANC) system is no trivial work, especially for heavy-duty trucks, due to the dilemma resulted from the large volume of the cab and the limited number of microphones accepted by most manufacturers in the auto industry. Although some pioneering work has laid the foundation for the application of numerical methods exemplified by the genetic-algorithm (GA) to optimize the error sensor arrangement in an ANC system, most ANC developers still resort to trial and error in practice, which is not only a heavy workload given the amount of interested working conditions to be tested, but also does not guarantee to yield the optimum noise cancellation performance. In this paper, the authors designed and implemented an error microphone selection process using a genetic-algorithm (GA) -based mechanism. The target vehicle was a heavy-duty truck with a six-piston diesel engine, and two application scenarios were particularly
Wang, JianLing, ZihongZhang, ZheCai, DeHualv, XiaoZhang, MingGao, GuoRan
The advancement of civil supersonic aircraft is significantly constrained due to the intense noise generated by the shock waves that form during cruise, commonly referred to as the sonic boom. Due to these excessive noise levels, regulatory authorities currently ban supersonic flights over land. This study presents a comprehensive methodology to evaluate sonic booms in mid- and far-field regions, starting with a precise estimation of the near-field pressure signature produced by the shock wave system. While high-fidelity computational fluid dynamics (CFD) techniques typically provide near-field sonic boom predictions, specific propagation models must be used at greater distances, as CFD becomes prohibitively expensive beyond approximately 10 km. The focus of this research is a comparative analysis of a low-fidelity propagation approach, such as Whitham’s equation, and a high-fidelity CFD-based approach for assessing sonic boom propagation over medium range distances. The low-fidelity
Glorioso, AntimoFasulo, GiovanniPetrosino, FrancescoBarbarino, Mattia
Items per page:
1 – 50 of 714