Browse Topic: Noise measurement

Items (724)
Internal combustion engines generate intense acoustic pulses during combustion, necessitating the use of exhaust mufflers to suppress noise emissions. With evolving regulations on permissible noise levels and the automotive industry's drive toward lightweight, high-performance vehicles, muffler designs must balance effective sound attenuation, minimal back pressure, and reduced mass. This study presents a comparative analysis of three muffler configurations serpentine, rectangular, and zigzag designed using Solid Works for a light commercial vehicle (LCV) diesel engine. The models were evaluated using computational fluid dynamics (CFD) simulations to assess their acoustic and flow performance. Each design incorporated internal baffle arrangements to enhance sound absorption while aiming to minimize back pressure. The serpentine model featured a perforated baffle layout that promoted multiple reflections and dissipated acoustic energy more efficiently. Simulation results indicated that
Deepan Kumar, SadhasivamPalaniselvam, Senthil KumarD, AshokkumarR, KrishnamoorthyMahendran, MPasupuleti, ThejasreeG, DhayanithiL, Boopalan
In the automotive industry, increasing noise regulations are influencing product sales and passenger comfort, creating a need for more effective noise testing methods. Hardware-in-Loop (HiL) based virtual acoustic testing serves as a critical step before Driver-in-Loop testing, allowing for the assessment of vehicle performance and noise levels inside and outside the vehicle under various conditions before physical prototype testing is performed. The Hardware-in-the-Loop (HiL) simulator setup is equipped with joystick control that requires a physical representation of the vehicle dynamics model provided as a Functional Mock-up Unit (FMU) in real-time format. In contrast, the vehicle control logic is implemented in C++ code. The simulator incorporates both lateral and longitudinal dynamics. Additional interfaces are integrated to support joystick input and virtual road visualization enabling realistic vehicle maneuvering and dynamic performance evaluation. However, performing all test
Visuvamithiran, RishikesanChougule, SourabhSrinivasan, RangarajanLaurent, Nicolas
One can witness the constant development and redevelopment of cities throughout the world. Construction equipment vehicles (CEVs) are commonly used on the construction site. However, the noise pollution from construction sites due to the use of CEV has become a major problem for many cities. The construction equipment employed is one of the main causes of these elevated noise levels. The construction workers face a potential risk to their auditory health and well-being due to the noise levels they are exposed to. Different countries have imposed exterior and operator’s ear noise limits for construction equipment vehicles, enabling them to control noise pollution. In this study, three vehicles were selected and checked for NVH performance and found that the operator ear noise level of the identified vehicle is 6 dB(A) higher than the benchmark vehicle level in dynamic conditions, when tested as per ISO 6396. Similarly, there was another vehicle having exterior noise 2 dB(A) higher than
Shinde, GauravJawale, PradeepJain, SachinkumarHarishchandra Walke, Nagesh
This paper focuses on the cabin sound quality refinement and the tactile vibration reduction during horn application in the electric vehicle. A loud cracking sound inside the cabin and higher accelerator pedal vibration are perceived while operating the horn. Sound diagnosis is carried out to find out the frequencies causing the cracking noise. Transfer path analysis is conducted to identify the nature of noise and the predominant path through which forces transfer. Based on finding from TPA, various recommendations are evaluated which reduced the noise to a certain extent. Operational Deflection Shape (ODS) is conducted on the horn mounting bracket and on the body to identify the component having higher deflection at the identified frequencies. Recommendations like DPDS improvement on the horn bracket and the body is assessed and the effect of each outcome is discussed. With all the recommendations proposed, the cabin noise levels are reduced by ~ 8 dB (A) and the accelerator pedal
S, Nataraja MoorthyRao, ManchiR, Ashwin sathyaS, THARAKESWARULURaghavendran, Prasath
The scale of worldwide population presents its own set of difficulties, especially in densely populated cities. Almost every individual has some form of personal transport, which leads to congestion and limited parking space. Automotive manufacturers are scaling down the size of vehicles to resolve these issues to some extent. This paper is based on the NVH development of a single cylinder diesel engine vehicle. It provides an insight into the comprehensive vehicle level NVH refinement approaches adopted. The NVH characteristics of benchmark two-cylinder diesel and baseline vehicle were measured and analyzed for target setting. The performance of each subsystem such as engine mounting, vehicle structure, intake and exhaust was evaluated, and gap analysis was performed against set targets. It was found that the engine mounting system and vehicle structure were inefficient in isolating the excitation forces. The design and location of the mounting system was evaluated using CAE and
Ghale, Guruprasad ChandrashekharBaviskar, ShreyasBendre, ParagKamble, PranitBhangare, AmitTHAKUR, SUNILKunde, SagarWagh, Sachin
The noise generated by pure electric vehicles (EVs) has become a significant area of research, particularly due to the increasing adoption of electrified propulsion systems aimed at meeting OEM fleet CO₂ reduction targets. Unlike internal combustion engines, which mask many drivetrain noises, EVs expose new challenges due to the quieter operation of electric motors. In this context, the transmission system and gear structures have emerged as primary contributors to noise, vibration, and harshness (NVH) in EVs. The present study provides an NVH study that focuses on the gear whine noise issue that is seen at the vehicle level and cascades to the powertrain level. Comprehensive root cause identification, focusing on the transmission system's structural and dynamic behavior. The research emphasizes modifications to both the gearbox housing and gear structures to reduce noise level, and model validation was all part of the study, which was accompanied by physical test results. Using MBS
Baviskar, ShreyasKamble, PranitGhale, GuruprasadBendre, ParagPrabhakar, ShantanuKunde, SagarThakur, SunilWagh, Sachin
The Indian farmers choice of agriculture tractor brand is driven by the ease of operation and fuel efficiency. However, the customer preference for operator comfort is driving many tractor OEMs for improvement in noise and vibration at the operator location. Also, the compliance to CMVR regulation for noise at operator ear location and vibration at operator touch point location are mandatory for all the tractors in India. NVH refinement development of the tractor plays a critical role in achieving the regulated noise level and improved tactile vibration In presented work, the airborne sources such as exhaust tail pipe, intake snorkel and cooling fan are quantified by at tractor level through elimination method. The detailed engine level testing in engine noise test cell (hemi anechoic chamber) is carried out to estimate the contribution of engine components to overall noise. The outcome of Noise source identification (NSI) has revealed silencer, timing gear cover and oil sump to be
Gaikwad, Atul AnnasahebHarishchandra Walke, NageshYadav, Prasad SBankar, Harshal
Engine noise mitigation is paramount in powertrain development for enhanced performance and occupant comfort. Identifying NVH problems at the prototype stage leads to costly and time-consuming redesigns and modifications, potentially delaying the product launch. NVH simulations facilitate identification of noise and vibration sources, informing design modifications prior to physical prototyping. Early detection and resolution of NVH problems through simulation can significantly shorten the overall development cycle and multiple physical prototypes and costly redesigns. During NVH simulations, predicting and optimizing valvetrain and timing drive noise necessitates transfer of bearing, valve spring, and contact forces to NVH simulation models. Traditional simulations, involved continuous force data export and NVH model evaluation for each design variant, pose efficiency challenges. In this paper, an approach for preliminary assessment of dB level reductions across design iterations is
Rai, AnkurDeshpande, Ajay MahadeoYadav, Rakesh
As the electric mobility landscape evolves, there is a growing emphasis on addressing the Noise, Vibration, and Harshness (NVH) challenges associated with electric drivetrains. The absence of an IC engine in EVs shifts the focus to other noise contributors such as gear meshing, electric machine operation, and structural vibrations. Despite the known influence of micro-geometry on gear dynamics, current optimization practices often rely on empirical adjustments or standard guidelines without fully utilizing advanced computational methods to predict and optimize NVH performance. There exists a pressing need for a systematic approach to analyze and optimize gear micro-geometry to reduce noise and vibration in high-speed e-axle applications. This research aims to bridge that gap by investigating the relationship between micro-geometry optimization and NVH characteristics of an e-axle. Through detailed modelling and optimization techniques, this research aims to identify optimal gear micro
Ankit, PriyadarshiKulkarni, KrishnaMomin, Vaseem
The present study enumerates the effectiveness of using Foam-inside Tyres (FIT) for attenuating the in-cabin noise due to tire-road interaction in Internal Combustion Engines (ICE) converted Electric SUVs (E-SUV). Due to the elimination of the ICE Prime movers in (E-SUV), the Tyre booming, Tyre cavity, and rumbling noise in the structure-borne region are significantly audible in the driver’s & passenger's ears globally for E-SUVs. Foam tyres reduce tyre cavity resonance. However, the effectiveness of the acoustic foam is predominant between 180 to 240 Hz only. In the present study, In Cabin Noise (ICN) measurement was completed on the comfort testing track, and the results of structure-borne in-cabin noise up to 500 Hz were analysed. These measurements identified the vehicle in-cabin sensitive frequencies, which are affected by the tyre and wheel assembly. To analyse the contribution of the Tyre design parameters and to predict the ICN performance in the whole vehicle simulation, CD
Singh, Ram KrishnanDeivasigamani Purushothaman, BalakrishnanPaua, KetanAhire, ManojAdiga, Ganesh N
Vehicle interior noise is a crucial assessment criterion for automotive NVH. It has a significant effect on customer opinions about the quality of a vehicle. Articulation Index (AI) is one of the key sound metrics used to describe speech intelligibility and quantifies the middle and high frequency spectra associated to the internal noise of vehicle. In reality, Vehicle operating under dynamic condition experiences various air-borne noise sources such as tire rolling noise, powertrain noise, intake-exhaust noise & wind noise along with structure borne excitations such as powertrain vibrations, suspension vibrations. It is very challenging to predict cumulative effect of all these excitations to interior noise level and Articulation Index (AI) of vehicle over complete frequency range. The statistical energy analysis (SEA) is a well-known methodology being used to simulate & predict mid & high frequency noise. Objective of this paper is to present the process of development of a SEA
Doijad, Vishwajit PadmakarBillade, DayanandApte, Sr., Amol ArunShewale, AmolKothapalli, Brahmananda Reddy
Tire noise reduction is important for improving ride comfort, especially in electric vehicle due to lack of engine noise and majority of the noise generated in-cabin is from tire-road interaction. Therefore, the tire tread pattern contribution is one of the important criteria for NVH performance apart from other structurally generated noise and vibration. In this work a GUI-based pitch sequence optimization tool is developed to support tire design engineers in generating acoustically optimized tread sequences. The tool operates in two modes: without constraints, where the pitch sequence is optimized freely to reduce tonal noise levels; and with constraints, where specific design rules are applied to preserve pattern consistency and manufacturability. The key point to be considered in this pitch sequence is that it should be reducing the tonal sound and equally spread i.e., the same pitch cannot be concentrated on one side which may lead to non-uniformity. So, the restriction is that
Sampathraghavan, LakshmiRamarathnam, Krishna KumarMantripragada PhD, Krishna TejaRamachandran, Neeraj
In the absence of engine noise, road-induced noise has become a major concern specifically for Battery Electric Vehicles (BEVs), impacting Sound Pressure Level (SPL) for both drivers and passengers. Under the influence of random road load inputs, structural vibrations which transfer from road and tire to suspension to vehicle body, the cabin interior noise, particularly at lower frequencies, is significantly affected. To improve the road-induced low-frequency structure-borne noise behaviour, which frequently perceptible as ‘booming noises’, a study was carried out to assess predominant noise sources present in vehicle and to suggest refinements in reducing the noise levels. By considering random excitations of road profile through tire patch using CD-Tire model, vehicle interior noise was computed. Subsequently, to get insight of dynamic behaviour of vehicle, various diagnostic assessments to understand the influence from structure and paths were deployed. Major contributors from body
Paik, SumanRaghuvanshi, JayeshkumarChaudhari, Vishal VasantraoV, Radhika
Internal Combustion engines exhibit multi-order vibrations caused by the inertial forces of reciprocating masses. These vibrations induce drivetrain resonance, negatively impacting occupant comfort and the durability of drivetrain components. Torsional vibrations, a critical subset of these oscillations, demand efficient damping mechanisms. Torsional Vibration Dampers are instrumental in minimizing such vibrations by tuning mass and frequency characteristics to prevent resonance. By splitting resonant frequencies into avoidable zones within the engine's operational range, TVD enhance vehicle performance and refinement by dampening the vibrations. Structurally, TVD comprise an inertia ring integrated with a damping medium, such as vulcanized rubber, which attenuates torsional oscillations by permitting controlled oscillation of the inertia ring. This study focuses on the failure investigation and the geometric optimization of oscillating masses of TVD for performance and durability
Wani, Sujit AshokS, ManickarajaKanagaraj, PothirajSenthil Raja, TVellandi, VikramanPatil, Dilip
Selecting the right EMI/EMC filter is a major challenge when system noise levels exceed compliance or pre-compliance limits. Inline PCB filters are designed to mitigate noise in standalone conditions, but their behavior changes when integrated into a larger system due to unknown parasitic’s. These parasitic’s can disrupt electromagnetic compatibility (EMC), leading to non-compliance [1, 2]. To address this, engineers often use off-the-shelf EMI filters, but determining their real-world effectiveness remains complex. Even with simulation-based methods, accurately predicting insertion loss and attenuation is difficult due to limitations in conventional modeling approaches [4, 5]. Traditional SPICE-based simulations rely on static models defined at specific frequency points, with interpolated values for intermediate frequencies. This interpolation introduces inaccuracies, affecting the precision of simulated results [6, 8]. To overcome these limitations, we propose a methodology that
Pandey, DevbratUnterreiner, MichaelMishra, Arvindsingh, Ankur
Noise quality at idle condition is an important factor which influences customer comfort. Modern diesel engines with stringent emission norms together with fuel economy requirements pose challenges to noise control. Common rail engine technology has advantage of precise fuel delivery and combustion control which needs optimization to achieve the conflicting requirements of noise, emission and fuel efficiency. Engine noise at low idle condition is dominated by combustion noise which depends on rate of pressure rise inside the cylinder during combustion. The important parameters which influence cylinder pressure rise are fuel injection timing, pilot injection quantity and its separation, rail pressure and EGR valve position. The study on effect of these parameters at varying levels demand large no of experiments. Taguchi design of experiments is a statistical technique which can be used to optimize these parameters by significantly reducing no of experiments needed to achieve the desired
P, PriyadarshanChavan, AmitA, KannanswamyPatil, SandeepChaudhari, Vishal V
In recent days, cabin variants in the tractor are preferred by the farmers for the Coziness and longer field hour operation with less fatigue. Noise perceived by customer is the most important factor taken into account during the design stage, as it’s directly linked with operator’s comfort. Observed noise levels has to be within the defined limits as per national/international standards Overall cabin noise levels is contributed by the structure borne noise below 630 Hz. Structure borne noise is the noise typically radiated by the door, roof, windshield, floor, fender and structure assembly due to the engine excitation through the transmission housings and backstories. This paper depicts the process of tractor cabin structure borne noise prediction in the virtual environment. Firstly, Engine bearing loads and axle bearings has been extracted in the virtual stage from the vehicle level driveline model using commercially available MBD software. The finite element (FE) model of the cabin
Qunasekaran, PandiyanayagamK, SomasundaramChavan, Amit
The activation of the fuel injector affects both engine performance and pollutant emissions. However, the automotive industry restricts access to information regarding the circuits and control strategies used in its vehicles. One way to optimize fuel injections is using piezoelectric injectors. These injectors utilize crystals that expand or contract when subjected to an electric current, moving the injector needle. They offer a response time up to four times faster than solenoid-type injectors and allow for multiple injections per combustion cycle. These characteristics result in higher combustion efficiency, reduced emissions, and lower noise levels, making piezoelectric injectors widely used in next-generation engines, where stricter emission and efficiency standards are required. This study aims to design a drive circuit for piezoelectric injectors in a common rail system, intended for use in a diesel injector test bench. Experimental measurement of voltage was obtained from an
Moreira, Vinicius GuerraSilveira, Hairton Júnior José daMorais Hanriot, Sérgio deEuzébio, Wagner Roberto
Rotor balancing is essential for minimizing vibration and noise in industrial and automotive applications. With increasing consumer demand for quieter vehicle interiors, automotive components are now subject to stricter noise and vibration standards. This study investigates the noise generated by fuel supply modules, which play a critical role in delivering pressurized fuel to engines while maintaining low noise levels. An overview of rotor balancing standards is presented, followed by an analysis of how varying degrees of unbalance influence the vibration and noise characteristics of fuel supply modules. To achieve this, rotors were assembled on electric pump samples with defined upper and lower limits of unbalance and conducted tests at the Robert Bosch Ltda laboratory. Utilizing frequency domain analysis, we examined the vibration and noise signals to identify fundamental and harmonic frequencies, thereby assessing the impact of unbalance on overall performance. Measurements were
Aguiar, Rayssa Moreno SilvaAzevedo Fernandes, Luiz EduardoOliveira Melo, Lazaro BeneditoLaura, AnaSouza, LimaBoa, Nathan Barroso Fonte
The SAE J3211 procedure applies to squeal evaluation for foundation brakes using single-ended inertia dynamometers for friction couples used on vehicles with regenerative braking systems. This document applies to squeal noise occurrences for on-road passenger cars and light trucks with a gross vehicle weight rating of 4536 kg or below and with at least one rechargeable energy storage system as a source for propulsion. The procedure incorporates aspects related to (a) minimum inertia dynamometer capabilities, (b) fixture requirements and setup, and (c) test sequences with emphasis on brake temperatures, brake pressure profiles, and strategies to represent brake blending. For this document, squeal occurs when the peak noise level is at least 70 dB(A) between 1.25 and 16 kHz for tests using full suspension corners or complete axle assemblies, or between 2 and 16 kHz for brakes not using an entire suspension corner. Test facilities intending to use this document, building on their
Brake NVH Standards Committee
We present a novel processing approach to extract a ship traffic flow framework in order to cope with problems such as large volume, high noise levels and complexity spatio-temporal nature of AIS data. We preprocess AIS data using covariance matrix-based abnormal data filtering, develop improved Douglas-Peucker (DP) algorithm for multi-granularity trajectory compression, identify navigation hotspots and intersections using density-based spatial clustering and visualize chart overlays using Mercator projection. In experiments with AIS data from the Laotieshan waters in the Bohai Bay, we achieve compression rate up to 97% while maintaining a key trajectory feature retention error less than 0.15 nautical miles. We identify critical areas such as waterway intersections and generate traffic flow heatmap for maritime management, route planning, etc.
Kong, XiangyuShao, Guoyu
Traditionally, off-highway vehicles like tractors and construction machinery have relied on hydraulic, viscous, or fixed fans to meet the cooling demands of diesel engines. These fans draw power from the engine, impacting fuel consumption and contributing to noise levels that affect operator comfort. Recently, the adoption of electric fans in off-highway applications has increased due to their energy efficiency, lower noise, and flexible design. Electric fans can cool various components, such as radiators and condensers, and can be positioned for optimal performance. They are easily selected from established supplier catalogs based on application requirements like machine voltage, fan size, and type. This study explores various fan arrangements, including pusher and puller types, and multiple electrical fan banking based on cooler zones to improve cooling system performance without changing cooler size or specifications. A mathematical flow model was developed for both setups: the
Durairaj, RenganathanDewangan, NitinAnand, KetanBhujbale, Sagar
The operator station or “cab” in off Highway equipment plays a critical role to provide a comfortable workspace for the operator. The cab interfaces with several elements of the off-highway equipment which can create gaps and openings. These openings have the potential for acoustic energy leakage, ultimately increasing sound within the cab. During machine operation, noise generated around the cab conducts inside through these leakages resulting in increased sound levels. Acoustic leakages are among the key noise transfer paths responsible for noise inside the cab. Therefore, before considering noise control treatments it is best to first identify and minimize any leakages from joints, corners, and pass-throughs to achieve the required cab noise reduction. In this effort the sound intensity technique is used to detect the acoustic leakages in cab. The commercial test system is used for measuring the sound intensity field over objects. For the cab, an acoustic source is used inside the
Pawar, Sachin M.Mandke, DevendraFapal, AnandCone, Kerry
This study demonstrates the application of the T-Matrix, a Total Quality Management (TQM) tool to improve thermal comfort in automotive climate control systems. Focusing on the commonly reported customer issue of insufficient cabin cooling, particularly relevant in hot and congested Indian driving conditions, the research systematically investigates 36 failure modes identified across the product lifecycle, from early design through production and post-sale customer usage. Root causes are first categorized using an Ishikawa diagram and then mapped using the T-Matrix across three critical stages: problem creation, expected detection, and actual detection. This integrated approach reveals process blind spots where existing validation and inspection systems fail to catch known risks, particularly in rear-seat airflow performance and component variability from suppliers. By applying this TQM methodology, the study identifies targeted improvement actions such as improved thermal targets
Jaiswara, PrashantKulkarni, ShridharDeshmukh, GaneshNayakawadi, UttamJoshi, GauravShah, GeetJaybhay, Sambhaji
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
Trivedi, ArpitaKumar, RaviMadaan, AshishShrivastava, Pawan
Noise pollution from automotive vehicles is a significant concern in urban areas, emphasizing the need for improved vehicle engineering of automotive vehicles to reduce noise levels. The necessity for automotive vehicles to have a low acoustic signature may further be emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). In addition to this the external noise may propagate inside the cabin affecting the overall wellbeing of the driver. To address the issue vehicles are observed to measure noise levels at various locations, including inside and outside the cabin. These testing facilitate noise source identification and categorization of noise into structure-borne noise and air-borne noise. The air-borne noise, which can be either broadband or tonal in nature, is particularly discomforting and may require mitigation. To analyse these complex aero-acoustic behaviour of the vehicle, CFD can be
Sharma, ShantanuPawar, Sourabhsingh, RamanandKalamdani, Sreenath
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
Pawar, SourabhSharma, ShantanuSingh, Ramanand
In recent years, traffic issues in China have been emerging continuously, and the traffic congestion problem in Beijing is particularly prominent. We have explored the relationships between factors such as driving duration, road length, weather conditions in Beijing and traffic congestion. By using the Logistic Regression Model to analyze the relationships among driving duration, road length and traffic congestion, we found that both driving duration and road length are negatively correlated with traffic congestion. The model shows high accuracy and recall rate, demonstrating excellent performance. We also employed the Weighted Average Correlation Model to study the relationship between weather conditions and traffic congestion. The results indicate that traffic congestion is more severe in rain, snow, and foggy weather, while it is less serious in sunny and cloudy weather. Subsequently, through the noise level verification, the stability of the model was confirmed. At the same time
Feng, JiaruiHan, Xiran
With the escalating rate of urbanization in China, the urban construction sector is encountering numerous challenges, including issues such as traffic congestion and environmental pollution. To enhance traffic efficiency and offer planning guidance for urban development, this study focuses on the fully or partial opening of community entrances. VISSIM is utilized to examine the community opening and simulate the internal road network, while also employing the SPSS data analysis tool for supplementary analysis. The objective of this method is to compare and analyze the traffic conditions and environmental impact of the community before and after its opening with different automobiles. Through the establishment of a comprehensive evaluation system, the study calculates and analyzes the average vehicle speed, noise levels, energy consumption, and carbon dioxide emissions before and after the opening of the community. Finally, several recommendations are proposed to enhance community
Li, MengyuanZhuo, ChenxuXiong, SiminXu, Lihao
Brake caliper rattle noise is difficult to simulate due to its non-stationary, random, and broadband frequency characteristics. Many CAE engineers have adopted rattle vibration as an alternative metric to quantitative noise levels. Previous rattle noise simulations primarily presented relative displacement results derived from normal mode analysis or vibration dB levels rather than actual noise dB levels. However, rattle noise consists of continuous impact noise, which must account for reflections, diffractions, and refractions caused by transient nonlinear contacts and localized vibrations—especially during extremely short contact events. To accurately simulate impact noise, vibration and acoustic characteristics should be analyzed using a simplified structure, given the numerous mechanisms influencing impact noise generation. The rattle noise can be effectively modeled using LS-Dyna, which incorporates both explicit and BEM solvers. The correlation between test results and CAE
Park, Joosang
This SAE Recommended Practice establishes the procedure for determining if recreational motorboats have effective exhaust muffling means when operating in the stationary mode. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
This SAE Recommended Practice establishes the procedure for measuring the sound level of recreational motorboats in the vicinity of a shore bordering any recreational boating area during which time a boat is operating under conditions other than stationary mode operation. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
In this article the transition of a laminar boundary layer (BL) over a flat plate is characterized using an acoustic technique with a pitot probe linked to a microphone unit. The probe was traversed along a BL plate at a fixed wind tunnel flow velocity of 5.5 m/s. A spectral analysis of the acoustic fluctuations showed that this setup can estimate the streamwise location and length of the BL transition region, as well as the BL thickness, by using the intermittency similitude approach. Further work is required to quantify the uncertainty caused by signal attenuation within the data acquisition system.
Lawson, Nicholas JohnZachos, Pavlos K.
This SAE Standard is equivalent to ISO 362-1:2015 and specifies an engineering method for measuring the noise emitted by road vehicles of categories M and N under typical urban traffic conditions. It excludes vehicles of category L1, L2, L3, L4, and L5. The specifications are intended to reproduce the level of noise generated by the principal noise sources during normal driving in urban traffic. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustical environment that is obtained only in an extensive open space. Such conditions are usually provided for during: Measurements of vehicles for regulatory certification and/or type approval Measurements at the manufacturing stage Measurements at official testing stations Annex A provides background information on the use of this standard consistent with the intent.
Light Vehicle Exterior Sound Level Standards Committee
This SAE Recommended Practice establishes the procedure for measuring the maximum exterior sound level of recreational motorboats while being operated under a variety of operating conditions. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
This ARP provides two methods for measuring the aircraft noise level reduction of building façades. Airports and their consultants can use either of the methods presented in this ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
A-21 Aircraft Noise Measurement Aviation Emission Modeling
In active noise control, the control region size (same meaning as zone of control) decreases as the frequency increases, so that even a small moving of the passenger's head causes the ear position to go out of the control region. To increase the size of the control region, many speakers and microphones are generally required, but it is difficult to apply it in a vehicle cabin due to space and cost constraints. In this study, we propose moving zone of quiet active noise control technique. A 2D image-based head tracking system captured by a camera to generate the passenger's 0head coordinates in real time with deep learning algorithm. In the controller, the control position is moved to the ear position using a multi-point virtual microphone algorithm according to the generated ear position. After that, the multi-point adaptive filter training system applies the optimal control filter to the current position and maintains the control performance. Through this study, it is possible to
Oh, ChiSungKang, JonggyuKim, Joong-Kwan
The author’s life work in acoustics and sound quality, continuous over more than 40 years, has followed a number of branches all involving measurement technologies and their evolution. The illustrated discussion begins 60 years ago in 1965 at Arizona State University in its Frank Lloyd Wright-designed Gammage Auditorium, and moves to the Research and Development Division of Kimball International, Inc. (Jasper, Indiana) in 1976 with piano research using a Federal Scientific Ubiquitous analog real-time FFT analyzer and Chladni-plate-mode studies with fine sand and high-speed photography of sound board modes. It continues at Jaffe Acoustics, Inc., a concert-hall-specializing consultancy in Norwalk, CT, with early-reflection plotting using a parabolic microphone on an altazimuth angular-readout mounting and either photographing oscillograms, or running a high-speed paper chart printer, assembling “wheel plots” incremented every 10 degrees in azimuth and altitude to map reflection patterns
Bray, Wade
Electric drive units (EDU) of battery electric vehicles and electric drivetrain components of hybrid vehicles require significant development effort and planning to ensure that a refined NVH sound quality is achieved. New tools and methods are required to understand the NVH performance throughout the development process and to ensure that NVH risks can be quickly identified and mitigated within the correct EDU subsystems. This paper discusses the development of a methodology (EDSL – Electric Drive Sound Level) aimed at addressing this need. It also outlines how the EDSL process can be used to address radiated noise issues and understand the NVH performance of the various subsystems within an electrified drivetrain component. The first use of the EDSL methodology is to characterize component-level radiated noise test results and compare the different mechanical and electrical noise sources to targets. The results from this are used to guide EDU development in the appropriate areas
Pruetz, Jeffrey E.Steffens, ChristophFu, TongfangFord, Alex
The advancement of civil supersonic aircraft is significantly constrained due to the intense noise generated by the shock waves that form during cruise, commonly referred to as the sonic boom. Due to these excessive noise levels, regulatory authorities currently ban supersonic flights over land. This study presents a comprehensive methodology to evaluate sonic booms in mid- and far-field regions, starting with a precise estimation of the near-field pressure signature produced by the shock wave system. While high-fidelity computational fluid dynamics (CFD) techniques typically provide near-field sonic boom predictions, specific propagation models must be used at greater distances, as CFD becomes prohibitively expensive beyond approximately 10 km. The focus of this research is a comparative analysis of a low-fidelity propagation approach, such as Whitham’s equation, and a high-fidelity CFD-based approach for assessing sonic boom propagation over medium range distances. The low-fidelity
Glorioso, AntimoFasulo, GiovanniPetrosino, FrancescoBarbarino, Mattia
To predict the sound field produced by a vehicle horn requires a good source representation of it in the full vehicle model. This paper investigates the characterization of a physical vehicle horn by an inverse method called pellicular analysis. To implement this method, firstly an acoustic testing is performed to measure the sound pressure radiated from the horn at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual horn, the locations of each microphone and measured sound pressure data, pellicular analysis is adopted to recover a set of vibration pattern of the virtual horn. The virtual horn and the recovered vibration information are then incorporated in a full vehicle numerical model to simulate its exterior sound field. The validity of this approach is confirmed by comparing the prediction for a horn in a production vehicle to the corresponding physical test which is required to meet the Brazilian regulation CONTRAN 764/2018.
Yang, WenlongMelo, Andre
As the automotive industry moves towards greater intelligence, electric tailgate systems have seen widespread adoption, featuring remote control, obstacle detection, and intelligent opening functions that significantly enhance the user experience. The electric telescopic rod, as a key actuator, has drawn attention for its structural and transmission design. However, studies have shown that during actual operation, various noise issues arise with electric telescopic rods, affecting the sound quality and smoothness of the tailgate's opening and closing. This paper presents a noise detection and analysis study based on a dedicated testbench platform specifically developed for electric telescopic rods. The platform was designed to simulate the real-world opening and closing process of automotive tailgates, enabling a controlled environment for capturing and analyzing noise characteristics effectively. Using a microphone to capture noise signals, three main types of noise were identified
Fan, SibeiWang, SilingZhu, ZhehuiLi, LeiQin, JiadeZhang, LijunMeng, DejianPei, Kaikun
Analyzing acoustic performance in large and complex assemblies, such as vehicle cabins, can be a time-intensive process, especially when considering the impact of seat location variations on noise levels. This paper explores the use of Ansys simulation and AI tools to streamline this process by predicting the effects of different speaker locations and seat configurations on cabin noise, particularly at the driver’s ear level. The study begins by establishing a baseline simulation of cabin noise and generating training data for various seat location scenarios. This data is then used to train an AI model capable of predicting the noise impact of different design adjustments. These predictions are validated through detailed simulations. The paper discusses the accuracy of these predictions, the challenges encountered and provides insights into the effective use of AI models in acoustic analysis for cabin noise, with a specific emphasis on seat location as a key variable.
Kottalgi, SantoshHe, JunyanBanerjee, Bhaskar
The trend towards electrification propulsion in the automotive industry is highly in demand due to zero-emission and becoming more significant across the world. Battery electric vehicles have lower overall noise as compared to conventional I.C Engine counterparts due to the absence of engine combustion and mechanical noise. However, other narrowband and tonal noises are becoming dominant and are strongly perceived inside the cabin. With the ongoing push towards electrification, there is likely to be increased focus on the noise impact of gearing required for the transmission of power from the electric motor to the road. Direct coupling of E-motors with Axle has resulted in severe tonal noises from the driveline due to instant e-motor torque ramp up from 0 rpm and reverse torque on driving axle during regenerative braking. The tonal noises from the rear axle during vehicle running become very critical for customer perception. For automotive NVH engineers, it has become a challenge to
Doshi, SohinKalsule, DhanajiSawangikar, PradeepSuresh, VineethSharma, Manish
This study introduces a computational approach to evaluate potential noise issues arising from liftgate gaps and their contribution to cabin noise early in the design process. This computational approach uses an extensively-validated Lattice Boltzmann method (LBM) based computational fluid dynamics (CFD) solver to predict the transient flow field and exterior noise sources. Transmission of these noise sources through glass panels and seals were done by a well-validated statistical energy analysis (SEA) solver. Various sealing strategies were investigated to reduce interior noise levels attributed to these gaps, aiming to enhance wind noise performance. The findings emphasize the importance of integrating computational tools in the early design stages to mitigate wind noise issues and optimize sealing strategies effectively.
Moron, PhilippeJantzen, AndreasKim, MinsukSenthooran, Sivapalan
The noise generated by high-performance vehicles like Formula SAE (FSAE) race cars, presents a significant challenge in adhering to strict competition noise regulations. In this study two muffler designs were created: muffler design 1 and 2. Each design utilized two chambers to generate destructive interference, targeting two dominant exhaust frequencies of the Honda CBR600RR engine to maximize transmission loss and reduce sound pressure levels (SPL) below the FSAE-mandated range of 103 dBC at idle and 110 dBC at all other operating conditions. For each design, the exhaust noise and muffler performance were simulated using GT-Suite, allowing for an evaluation of noise attenuation across engine speeds. Experimental testing was conducted to validate the GT-Suite model and assess the effectiveness of muffler design 1. This testing involved measuring the SPL with a calibrated microphone, both with and without the designed muffler. Muffler design 1 was based on the dominant exhaust
Labao, KaiMiddleton, NicholasNuszkowski, John
Items per page:
1 – 50 of 724