Browse Topic: Plastics

Items (2,101)
Yamaha Motor Engineering Co., Ltd. provides plastic processing technology based on fuel tank press forming technology, and is developing various plastic processing methods, including forging, and developing mold equipment to realize them. This time, the core parts of the YECVT unit mounted on Yamaha Motor Co., Ltd.'s small premium scooter "NMAX" were not made by welding individual parts to each other, but by integrally forming them from a single thick plate using the cold forming method, resulting in lightweight, compact, high-strength, high-precision parts. By incorporating a composite plastic processing method that takes advantage of the characteristics of the material while making full use of analysis technology and mold technology, we were able to develop a composite plastic processing method (plate forging method) that creates new added value and mass produce it. In addition,this development has made it possible to achieve a thickness increase of 1.7 times the standard material
Hongo, HironariTamaru, ShogoUda, Shinnosuke
Plastic materials are used for a wide variety of spacecraft applications including seals, bearings, fasteners, electrical insulators, thermal isolators, and radomes. Selecting plastics for use in space is complex due to wide operating temperature ranges, vacuum conditions, and exposure to radiation and atomic oxygen. Additionally, some spacecraft applications require sealing flammable propellants such as hydrogen and oxygen. This article will present some design considerations when selecting plastics for use in spacecraft. It will provide rich data on the performance characteristics of plastics as well as examples of successful spacecraft applications.
The possibility of reducing CO2 emissions through sustainable paraffinic fuels opens opportunities for the continued use of existing infrastructure and combustion systems. At the same time, fuel switching also presents challenges in terms of the materials used. The changing composition of paraffinic fuels and their impact on plastic materials is a frequent topic of discussion. Compared to distillate diesel, neat paraffinic fuels contain almost no aromatics, which are known to cause swelling in plastics, especially elastomers. This literature review aims to examine and summarize studies on the influence of paraffinic fuels compared to distillate diesel on elastomers. On the fuel side, attention will be given to fuels with different total aromatics content and neat paraffinic fuels. In the field of elastomers, materials used for sealing applications and hoses are analyzed in detail. Special attention will be paid to NBR, FKM, and EPDM. The review aims to answer three questions. The first
Conen, TobiasHäfele, BenjaminDahlmann, Rainer
FibreCoat, the German materials startup, has developed a groundbreaking fiber reinforced composite that is capable of making aircraft, tanks and spacecraft invisible to radar surveillance. The company was officially founded in Aachen, Germany, in 2020, however its core founding team first began developing new approaches to the use of materials that make commercial and military vehicles invisible to radar as back as 2014. FibreCoat is known for inventing a novel technology to coat metals and plastics onto fibers, thus combining the properties of the fibers and the coating material, during the fiber-spinning process.
The aim of this work is to present the overviewing results of the low friction coating technology for modern automotive application with the themes, e.g. electric vehicle (EV), R&D trends and bioethanol fuel application. According to Forbes, China, armed with EV, could have several companies among the top 10 global brands by sales in 2030. EV’s friction is more severe than traditional powertrain friction. For the protection of EV’s wear and friction, the coatings, diamond like carbon (DLC) and CrCuN, are compared in the literature. Global coating companies developed with the keywords: hybrid process, low-temperature coating process for polymer material. Last coating conferences showed R&D trends: coating for polymer materials, tetrahedral amorphous carbon (taC) coating, low-temperature coating process and multi-elements containing coatings. In Korea, research institutions, universities and Hyundai Motor Group have a long-term project for the development of ultralow friction coatings of
Cha, Sung ChulMoon, Kyoung IlKim, JongkukPark, Chang HoKim, Dong Sik
Researchers developed wearable skin sensors that can detect what’s in a person’s sweat. Using the sensors, monitoring perspiration could bypass the need for more invasive procedures like blood draws and provide real-time updates on health problems such as dehydration or fatigue. The sensor design can be rapidly manufactured using a roll-to-roll processing technique that essentially prints the sensors onto a sheet of plastic.
The world of plastic products has been growing due to its versatile properties and has become an intrinsic and fundamental part of engineering for new products. The most important aspects contributing to this spectacular growth are the design and assembly, making sure that plastic parts are designed optimally. The safety requirements have been increased due to the safety ratings and thus interior parts must provide more absorption and protection to occupants. The main connection types used in the plastic parts are heat stakes and snap fits. The purpose of a good snap fit is not only to have a high retention effort but also to present ergonomic characteristics with optimal insertion and extraction effort because each part requires a different function. With the time-dependent loading, the material will redistribute its internal energy thereby performing a time-related flow leading to reduced pretension thus decreasing stiffness. This paper presents an analytical and numerical method for
Michael Stephan, Navin Estac RajaC M, MithunMohammed, RiyazuddinR, Prasath
Traditional silicon-based solar cells are completely opaque, which works for solar farms and roofs but would defeat the purpose of windows. However, organic solar cells, in which the light absorber is a kind of plastic, can be transparent.
Polymer composites, such as fiber-reinforced plastics (FRPs), are widely used in shipbuilding, aerospace, and automobile industries due to their lightweight and high strengths. In real-world conditions, ship hulls are exposed to harsh environmental factors, including variations in moisture and salinity. FRPs tend to absorb water and moisture, leading to an increase in weight and a reduction in strengths over time, which is undesirable for ship and aircraft structures. This study investigates the reduction in energy absorption and specific energy absorption of glass FRPs (GFRP) and aluminum honeycomb sandwich composites (AHSC) due to exposure to moisture and salinity. Experimental analysis was conducted by immersing the materials in saline and non-saline water. A comparative assessment of the percentage reduction in specific energy absorption (SEA) of GFRP and AHSC is presented. Additionally, the influence of honeycomb parameters such as cell size (CS), foil thickness (FT), and core
Rajput, ArunKumar, AshwinSunny, Mohhamed RabiusChavhan, Harikrishna
The use of plastic gears has expanded due to their lightweight properties, low noise emission, and cost-effective manufacturing. For instance, in the transportation equipment industry, some metal gears are being replaced with plastic gears. To achieve further size and weight reduction, gears must be able to withstand higher loads without damage. Gears have various modes of damage. Since there are different types of wear, each with different factors, it is important to identify the factors and take appropriate countermeasures. In gear meshing, there are many factors that affect wear, so restricted-factor tests are required to confirm the effectiveness of countermeasures. The purpose of this study is to elucidate the wear regime in high-load gear meshing and then to establish a simplified evaluation method replicating the meshing of gears for wear resistance focusing on the relative sliding between the two surfaces of metal and plastic. In the evaluation, changes in wear morphology over
Yamamoto, JimpeiSuzuki, TakaharuAko, NatsukiIwasaki, ShinyaKurita, Hirotaka
Los Angeles-based plastics contract manufacturer Kal Plastics deployed UR10e trimming cobot for a fraction of the cost and lead time of a CNC machine, cut trimming time nearly in half, and reduced late shipments to under one percent — all while improving employee safety and growth opportunities.
Purdue University material engineers have created a patent-pending process to develop ultrahigh-strength aluminum alloys that are suitable for additive manufacturing because of their plastic deformability.
Plasma is a state of matter, like a solid, liquid, or gas. When sufficient energy is applied to a gas, it becomes ionized, transitioning into the plasma state. With precise application and control, plasma can alter surface properties of a metal or plastic part without compromising the underlying material.
Fused Deposition Modeling (FDM), a form of Additive Manufacturing (AM), has emerged as a groundbreaking technology for the production of complex shapes from a variety of materials. Acrylonitrile Butadiene Styrene (ABS) is an opaque thermoplastic that is frequently employed in additive manufacturing (AM) due to its affordability and user-friendliness. The purpose of this investigation is to enhance the FDM parameters for ABS material and develop predictive models that anticipate printing performance by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS). Through experimental trials, an investigation was conducted to evaluate the influence of critical FDM parameters, including layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including mechanical properties, surface polish, and dimensional accuracy. The utilization of design of experiments (DOE) methodology facilitated a systematic examination of parameters. A predictive model was
Natarajan, ManikandanPasupuleti, ThejasreeKumar, VKiruthika, JothiKatta, Lakshmi NarasimhamuSilambarasan, R
Before starting your paper, please read, “How to Write an SAE this study investigates the performance and highlights the mechanical, thermal, and vibrational characteristics of hybrid fibre composite plate composed of Kenaf Fibre (KF), Ridge Gourd Fibre (RGF), Waste Plastic Materials (WPM), and matrix materials. The raw materials under goanalkaline treatment involving 2hoursofagitation with 5% NaOH. Following treatment, KF, RGF, and WPM are combined with epoxyres in using compression moulding to form four different hybrid composite plates in the %wt of 10:20:5, 20:10:5, 10:10:5, and 20:20:5. Various tests are conducted to evaluate their properties, including the Tensile Test, Shear Test, and Flexural Test, adhering to ASTM standards D638, D7078, and D790, respectively. The results indicate that 20:20:5 plate showed higher tensile strength (21.70 MPa), flexural strength (77.23 MPa), and shear strength (18.13MPa. Subsequently, Thermo gravimetric Analysis (TGA) was conducted on the 20:20
D R, RajkumarR, BaranitharanBasha, Mohamed HumayunS, Kamalesh
A team led by Emily Davidson has reported that they used a class of widely available polymers called thermoplastic elastomers to create soft 3D printed structures with tunable stiffness. Engineers can design the print path used by the 3D printer to program the plastic’s physical properties so that a device can stretch and flex repeatedly in one direction while remaining rigid in another. Davidson, an assistant professor of chemical and biological engineering, says this approach to engineering soft architected materials could have many uses, such as soft robots, medical devices and prosthetics, strong lightweight helmets, and custom high-performance shoe soles.
With the extensive production and widespread use of plastics, the issue of environmental pollution caused by plastic waste has become increasingly prominent. Consequently, researchers have been focusing on developing efficient methodologies for upcycling waste plastics and converting them into value-added materials. This hybrid review–conceptual article first provides an overview of strategies for upcycling waste plastic into carbon-capturing materials. It presents carbonization and activation as key steps in converting plastic waste into adsorbent materials and explores strategies for converting common waste plastics. Building upon this foundation, the article introduces and conceptualizes a novel upcycling approach with two manufacturing routes to convert plastic waste into carbon-capturing materials using supercritical fluid (ScF)-assisted injection molding process. It continues by investigating the potential of developing lightweight components made of such carbon-capturing
Pirani, MahdiMeiabadi, Mohammad SalehMoradi, MahmoudEnriquez, Lissette GarciaSreenivasan, Sreeprasad T.Farahani, Saeed
Sterilization plays a vital role in the use of medical devices. Prior to the 1980s, most medical products were reusable and required sterilization or disinfection between uses. The advance of contagious diseases has raised some concerns over the risks of reusable medical devices, spurring the medical device manufacturing industry to develop disposable, single-use versions of many medical instruments.
Polypropylene has been the plastic traditionally used in the manufacture of bumpers. Composite materials have been presented as an alternative due to lightness and sustainability. This article presents a composite of polyester resin and jute fiber fabric as an innovative alternative to be studied for the manufacture of automotive bumpers. Composite material was manufactured for characterization. It was used as matrix the terephthalic polyester resin, unsaturated and pre-accelerated, and the catalyst MEK V388 for curing the composite. The chosen reinforcement was the jute fiber fabric. Silicone molds with dimensions according to ASTM 3039 were used to manufacture specimens, and subsequent tensile strength test to determine properties and compare with literature data. The composite with jute fiber reinforcement with alignment 0°/0°/0° was evaluated as viable for the application in car bumpers, having its value of tensile strength surpassed that of the composite reinforced by jute fiber
Dias, Roberto Yuri CostaSoares, Rafael Vilhenade Mendonca Maia, Pedro Victordos Santos, Jose Emilio MedeirosMiranda, Igor Ramon SinimbúJunior, Waldomiro Gomes PaschoalFujiyama, Roberto Tetsuo
The market for battery-fitted electric cars continues to experience robust growth globally as well as in Indian market. During the charging process heat generation happen because of internal resistance of the battery cells and electrical connectors. Making an efficient battery cooling system is vital for all electric vehicles. One common cause of battery overheating is due to low cooling efficiency. So this research highlights the importance of scientifically designing coolant circuits and selecting appropriate coolant hose materials. Currently, EPDM (ethylene propylene diene monomer) material is widely used for battery cooling hoses due to its design Flexibility, Compatibility with a 50:50 glycol-water mixture and Resistance to thermal and ozone cracking [1]. This study benchmarks EPDM hose technical properties with leading EV battery cooling plastic hose materials, such as mono layer polyamide, mono layer TPVs (thermoplastic vulcanizates) and PA PP two layer hose. Comparative
Murugesan, Annarajan
Automotive electrical and electronics manufacturer MTA attended IAA Transportation for the first time, demonstrating its new range of wireless communication technologies for the truck industry. Earlier this year, the company acquired Calearo Antenne S.p.A, a company with a long history of producing antennas, amplifiers and cables. MTA global sales director Davide Bonelli explained to Truck & Off-Highway Engineering how that acquisition complements its business. “From a more strategic point of view, we see the world of antennas as complementary to what MTA does,” he said. “Often MTA products have an antenna as an interface, so this is one reason why we have done the deal. There are also a lot of synergies from an engineering standpoint. Historically, MTA is a company that uses many mechanical parts - plastics, metals - which we are very strong with so we can share them. And there are also some competences from Calearo Antenne that can be transferred to us.”
Kendall, John
Inspired by the paper-folding art of origami, North Carolina State University engineers have discovered a way to make a single plastic cubed structure transform into more than 1,000 configurations using only three active motors. The findings could pave the way for shape-shifting artificial systems that can take on multiple functions and even carry a load — like versatile robotic structures used in space, for example.
Inspired by the paper-folding art of origami, North Carolina State University engineers have discovered a way to make a single plastic cubed structure transform into more than 1,000 configurations using only three active motors. The findings could pave the way for shape-shifting artificial systems that can take on multiple functions and even carry a load – like versatile robotic structures used in space, for example.
Thermal management in electric vehicles plays a significant role, in keeping all the electronic components under the safe operating region for lower power dissipation, higher efficiency and this increases the component’s life. Based on the increase in range of e-vehicles, the power dissipation requirement had increased from OEMs. In addition, the compact size, weight, and limited cooling technique have increased the thermal management requirements in printed circuit boards (PCB). In a passive cooling technique, high thermally conductive metal with plastic overmould concept in PCB cover or housing will have a huge advantage in transferring the heat from e-components to keep within operating temperature conditions [1, 6]. The advantage of alumina or mica metal insert is that it has higher thermal conductivity and electrical resistivity, which helps to dissipate the heat at a higher level when it is locally in contact with hot spot regions of the PCB. This concept also helps to reduce the
Rajasekaran, Arun PrasadRajendran, RathinBadiger, Shashikanth
While 3D printing has exploded in popularity, many of the plastic materials these printers use to create objects cannot be easily recycled. While new sustainable materials are emerging for use in 3D printing, they remain difficult to adopt because 3D printer settings need to be adjusted for each material, a process generally done by hand.
Electric trucks and off-highway vehicles weigh about 30% more than their gasoline- and diesel-powered counterparts. That's a challenge for OEMs who want to reduce vehicle weight to increase range but are bound by the limits of current battery technology. To reduce vehicle weight, OEMs can make design changes in other areas, such as by replacing steel with thermoformed plastics, aluminum alloys and composite materials. What manufacturers may overlook, however, is the weight savings that can be achieved with industrial rubber products. Rubber is already lightweight, but there are heavier-than-necessary elastomeric components used throughout vehicle interiors and exteriors, typically with metal or plastic fasteners.
Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team, led by Professor Shoji Takeuchi of the University of Tokyo, included special perforations in a robot face, which helped a layer of skin take hold. Their research could be useful in the cosmetics industry and to help train plastic surgeons.
Unlike glass, which is infinitely recyclable, plastic recycling is challenging and expensive because of the material’s complex molecular structure designed for specific needs. New research from the lab of Giannis Mpourmpakis, Associate Professor of Chemical and Petroleum Engineering at the University of Pittsburgh, focuses on optimizing a promising technology called pyrolysis, which can chemically recycle waste plastics into more valuable chemicals.
Wysong USA has been manufacturing industrial press brakes, hydraulic shears, and mechanical shears for sheet metal and plastics for nearly 120 years. Like many companies, their motto was “if it ain’t broke, don’t fix it,” so their product had remained essentially the same. But during a customer visit that motto clashed with another company saying, “the customer is always right.” This customer had replaced the dry clutch brake for an oil shear clutch brake that was more accurate. “The customer is always right” won, so Wysong updated their product line and increased accuracy while reducing costs, making it a win all around.
The use of aluminum to manufacture injection molds aims to maximize the productivity of plastic parts, as its alloys present higher heat conductivity than tool steel alloys. However, it is essential to accurately control the injection molding parameters to assure that the design tolerances are achieved in the final molded plastic part. The purpose of this research is to evaluate the use of aluminum alloys in high-volume production processes. It delves into the correlation between the type of material used for mold production (steel or aluminum) and the thickness of the injected part, and how these variables affect the efficiency of the process in terms of the quantity and quality of the produced parts. The findings suggest that replacing steel molds with aluminum alloys significantly reduces injection molding cycle time, the difference ranging from 57.1% to 72.5%. Additionally, the dimensional accuracy and less distortion provided by aluminum have improved product quality. In case of
Marconi, PedroAmarante, EvandroFerreira, CristianoBeal, ValterRibeiro Júnior, Armando
A natural fiber based polymer composite has the advantage of being more environment-friendly from a life cycle standpoint when compared to composites reinforced with widely-used synthetic fibers. The former category of composites also poses reduced health risks during handling, formulation and usage. In the current study, jute polymer laminates are studied, with the polymeric resin being a general purpose polyester applied layer-by-layer on bi-directionally woven jute plies. Fabrication of flat laminates following the hand layup method combined with compression molding yields a jute polymer composite of higher initial stiffness and tensile strength, compared to commonly used plastics, coupled with consistency for engineering design applications. However, the weight-saving potential of a lightweight material such as the current jute-polyester composite can be further enhanced through improvement of its behavior under mechanical loading. A weakness of a natural fiber reinforced composite
Karthika, M RDeb, AnindyaArockiasamy, Madasamy
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed. Weibull aging model and
Youn, Jee YoungChung, Min GyunAhn, Hyo Sang
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective. Then, the model parameters of the J-C constitutive model are identified based on the experimental data, and the
Zheng, Wei-JunLiu, Xiao-AngShangguan, Wen-BinZhang, QuGu, Chen-guang
The tubing described in this document is for use in electrical interconnect systems for the protection and routing of wire bundle installations.
AE-8C1 Connectors Committee
The world is on a “take-make-waste,” linear-growth economic trajectory where products are bought, used, and then discarded in direct progression with little to no consideration for recycling or reuse. This unsustainable path now requires an urgent call to action for all sectors in the global society: circularity is a must to restore the health of the planet and people. However, carbon-rich textile waste could potentially become a next-generation feedstock, and the mobility sector has the capacity to mobilize ecologically minded designs, supply chains, financing mechanisms, consumer education, cross-sector activation, and more to capitalize on this “new source of carbon.” Activating textile circularity will be one of the biggest business opportunities to drive top- and bottom-line growth for the mobility industry. Textile Circularity and the Sustainability Model of New Mobility provides context and insights on why textiles—a term that not only includes plant-based and animal-based
Lee-Jeffs, AnnSafi, Joanna
Some people do not go the dentist for a fear of syringes, thereby risking a worsening of untreated tooth damage. However, some dental practices offer patients a gentle alternative — a device for computer-controlled, pain-free local anesthesia, which its developers fittingly call a magic wand: The Wand – STA System from Milestone Scientific. For the past 25 years, the U.S.-based company specializing in injection technology has been manufacturing the system’s single-use components from CYROLITE®- by Röhm — a high-quality, transparent, acrylic-based plastic especially for medical applications.
Researchers have been pursuing the development of robots so tiny that they can maneuver through blood vessels and deliver medications to certain points in the body. Now, scientists have succeeded in building such micromachines out of metal and plastic in which these two materials are interlocked as closely as links in a chain. This is possible thanks to a new manufacturing technique they have devised.
This procurement specification covers inserts made from A286 alloy of the type identified under the Unified Numbering System as UNS S66286, solid film lubricated with a piastic self locking device, integrated locking keys to positively secure the insert against rotation when properly installed in threaded holes.
E-25 General Standards for Aerospace and Propulsion Systems
Most motor mounts, even for EV applications, are made of metal alloys. It makes intuitive sense: It's a vibration-intensive mounting application that demands durability that matches the life of the vehicle itself. But there is another way. Now, a composite nylon-based motor mount on the Cadillac Lyriq has won the Society for Automotive Analysts' Innovation in Lightweighting Award. The mount is a collaboration between GM, anti-vibration parts maker DN Automotive and chemical company Celanese. It is made with Zytel PA NVH Gen 2, a new polyamide (PA 66). The results not only showed up in development data, but in the end product, which has reviewers raving about how quiet the Lyriq's cabin is - “crypt quiet,” according to Automotive News.
Clonts, Chris
As a car OEM, we continuously strive to set the bar for competitors with every product. Consumer travel experiences are enhanced by increasing passenger cabin silence. There is only one steering system opening in the firewall panel, which is used for allowing intermediate shaft's fitment on the pinion shaft of the steering gear. The steering grommet is the sole component that covers the firewall cut-out without disrupting steering operations, which has a substantial impact on the NVH performance of the vehicle. It is typically used in cars to eliminate engine noise and dust entering to passenger compartment. The part is assembled inside the vehicle where the steering intermediate shaft passing through BIW firewall panel. We use a bearing, plastic bush, or direct rubber interference design in the steering grommet to accommodate the rotational input the driver provides to turn the automobile. However, occasionally noise may be produced due to uneven bearing or plastic bush loading or a
J, SadhishVijayarangan, DeepakS, SenthilKole, Shantinath
This SAE Recommended Practice determines whether plastic and glass-plastic safety glazing materials will successfully withstand exposure to simulated weathering conditions.
Glazing Materials Standards Committee
AE-8C2 Terminating Devices and Tooling Committee
Items per page:
1 – 50 of 2101