Browse Topic: Elastomers
Electric vehicles (EVs) are particularly susceptible to high-frequency noise, with rubber eigenmodes significantly influencing these noise characteristics. Unlike internal combustion engine (ICE) vehicles, EVs experience pronounced variations in dynamic preload during torque rise, which are substantially higher. This dynamic preload variation can markedly impact the high-frequency behaviour of preloaded rubber bushings in their installed state. This study investigates the effects of preload and amplitude on the high-frequency dynamic performance of rubber bushings specifically designed for EV applications. These bushings are crucial for vibration isolation and noise reduction, with their role in noise, vibration, and harshness (NVH) management being more critical in EVs due to the absence of traditional engine noise. The experimental investigation examines how preload and excitation amplitude variations influence the dynamic stiffness, damping properties, and overall performance of
Material solutions for thermal management, protection and assembly. Today's ADAS designers are adding more electronic components and redundant computing systems to printed circuit boards (PCBs). These heat-generating electronic assemblies are installed in enclosures that provide environmental protection, but the high heat generated by high-performance computing systems can degrade ADAS performance or cause device failure. Not all thermal management materials can withstand temperatures up to 200 C (392 F), and most do not retain their flexibility at elevated temperatures. This creates a problem when PCB components expand and contract at different rates due to mismatches in their coefficients of thermal expansion.
This material type has resistance to hot air, but generally has poor resistance to fuels and lubricants, but usage is not limited to such applications. Each application should be considered separately. This material type has a typical service temperature range of -85 to 500 °F (-65 to 260 °C). The operating temperature range of the material is a general temperature range, but the presence of particular fluids and design parameters may modify this range. Recommendations on the material selection are based on available technical data and are offered as suggestions only. Each user should make his own tests to determine the suitability for his own particular use.
A silicone membrane for wearable devices is more comfortable and breathable thanks to better-sized pores made with the help of citric acid crystals. The new preparation technique fabricates thin, silicone-based patches that rapidly wick water away from the skin. The technique could reduce the redness and itching caused by wearable biosensors that trap sweat beneath them. The technique was developed by bioengineer and professor Young-Ho Cho and his colleagues at KAIST and reported in the journal Scientific Reports.
This SAE Aerospace Information Report (AIR) summarizes data and background relative to age control of specific classes of those nitrile type synthetic elastomers used in sealing devices which are resistant to petroleum base hydraulic fluids, lubricating oils, and aircraft fuels. This includes, but is not limited to, those nitrile (NBR or BUNA-N) elastomers previously covered by Section I of MIL-STD-1523.
This specification covers a silicone (MQ/VMQ/PVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be designated for use in molded O-rings and molded O-ring cord, molded rings, compression seals, molded-in-place gaskets, and plate seals for aeronautical and aerospace applications.
Anne-Marie Vincent Dow Silicones Belgium SRL Seneffe, Belgium
Silicone elastomers have become a vital material in the medical device industry due to their unique properties, including biocompatibility, durability and chemical inertness. Silicone materials are categorized based on their unvulcanized consistency, which significantly affects their processability and their physical properties. This article compares high consistency silicone rubbers (HCRs), liquid silicone rubbers (LSRs), and low consistency elastomers (LCEs), analyzing their characteristics and the implications in selecting each during different phases in the development of silicone medical devices.
This specification covers a fluorocarbon (FKM) rubber in the form of O-rings, O-ring cord, compression seals, and molded-in-place gaskets for aeronautical and aerospace applications.
This document establishes age limit and guidance for acceptance of hose and hose assemblies containing elastomeric materials for use in aircraft, space vehicles, missiles and component assemblies thereof at time of delivery to the contractor, procuring activity, or contracting officer. This document does not establish limitations on storage times for military/civil activities nor operating life.
This specification covers a fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, molded O-rings, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
For engineers working on soft robotics or wearable devices, keeping things light is a constant challenge: heavier materials require more energy to move around, and — in the case of wearables or prostheses — cause discomfort. Elastomers are synthetic polymers that can be manufactured with a range of mechanical properties, from stiff to stretchy, making them a popular material for such applications. But manufacturing elastomers that can be shaped into complex 3D structures that go from rigid to rubbery has been unfeasible until now.
Innovators at NASA Johnson Space Center have developed a method using low-viscosity RTV silicone to form durable seals between polymer bladder and metal bulkhead interfaces to be used for inflatable space habitats.
This specification covers a fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, molded O-rings or molded O-ring cord, and molded in place gaskets for aeronautical and aerospace applications.
As aerospace engineers push the boundaries of new frontiers, the need for advanced materials that can withstand the rigorous demands of these advanced applications is relentless. These materials go beyond functionality; it is about ensuring reliability in the skies, where failure is not an option. Fluorosilicone can help do exactly that. In the 1960s, the U.S. Air Force noticed that conventional silicone-based sealants, coatings, and other components degraded rapidly when exposed to fuels, de-icing fluids, and other hydrocarbon-based solvents. Dimethyl-based silicones are non-polar and easily absorb hydrocarbon-based solvents, which may result in material swelling, mechanical weakening, and ultimately, failure.
Electric trucks and off-highway vehicles weigh about 30% more than their gasoline- and diesel-powered counterparts. That's a challenge for OEMs who want to reduce vehicle weight to increase range but are bound by the limits of current battery technology. To reduce vehicle weight, OEMs can make design changes in other areas, such as by replacing steel with thermoformed plastics, aluminum alloys and composite materials. What manufacturers may overlook, however, is the weight savings that can be achieved with industrial rubber products. Rubber is already lightweight, but there are heavier-than-necessary elastomeric components used throughout vehicle interiors and exteriors, typically with metal or plastic fasteners.
This specification covers polythioether rubber fuel-resistant sealing compounds supplied as a two-component system that cures at room temperature.
The global medical device market offers opportunities for innovation-driven growth. Demand for smart, new lifesaving and life-enhancing technologies is perhaps stronger than ever. Manufacturers around the world looking to capitalize on this eager global market face a long list of challenges — some big, some small. Supply-chain disruptions, labor shortages, rising materials costs, and other headwinds are leading to delays in both engineering and manufacturing processes. Despite these challenges, the world demands medical device manufacturers’ best. A surging geriatric population, implications of a global pandemic, and the mortality rates for heart disease, cancer, obesity, and other conditions are all contributing to strong and sustained market demand. One study predicts a compound annual growth (CAGR) of 5.4 percent will push global sales of medical devices to nearly $658 billion (USD) by 2028. Of course, the road to success will be littered with familiar roadblocks — and some that are
This specification covers an acrylonitrile-butadiene (NBR) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS-P-83461 specification or the MIL-PRF-25732 specification.
This specification covers a silicone (MQ/VMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
Items per page:
50
1 – 50 of 3310