Browse Topic: Tensile strength

Items (11,498)
In response to the inefficiency, slow speed, and reliance on specialized software in traditional methods for evaluating seismic stability of loess highway slopes, a simplified rapid assessment method is proposed. Based on post-earthquake landslide investigations, geotechnical surveys, and vibration table model tests, and integrates the latest research on seismic damage mechanisms of loess slopes, the potential sliding surface of seismic damage loess slope is divided into three segments: tensile fracture, shear, and anti-sliding zones, the potential sliding mass is partitioned into three blocks, and calculate the sliding force and anti-slip force of each potential sliding block from top to bottom, when the sliding force the upper sliding body is greater than its anti-sliding force, the excess sliding force is transmitted to the lower potential sliding body, and the stability of the slope is determined based on the ratio of the anti-sliding force and the sliding force of the lowest
Pu, XiaowuZhang, LizhiPu, ShuyaChe, Gaofeng
Focusing on the deformation warning criteria for a new four-lane tunnel affected by an existing tunnel, this study employs numerical simulation to analyze the ultimate strain of the equivalent rock mass. The results reveal the ultimate shear strain and ultimate tensile strain of Class V surrounding rock, offering critical insights for deformation control and early warning systems. Relying on the Maaoling Tunnel Project, the tunnel planar analysis model is established based on the finite difference FLAC3D software to analyze the deformation and strain distribution pattern of the surrounding rock of the new tunnel under different distances and reduction factors between the new and the existing tunnel. Finally, the tunnel crown settlement as an indicator, the establishment of the Maaoling Tunnel V surrounding rock conditions of different distances construction safety warning standard for the construction of large-span tunnels and early warning provides the basis for the relevant
Zhang, YufanTian, WeiLiu, DongxingKang, XiaoyueChen, LimingZheng, Xiaoqing
Euterpe oleracea Mart.Cocos nucifera L.
Dias, Roberto Yuri CostaSantos Borges, LarissaBrandao, Leonardo William MacedoMendonca Maia, Pedro VictorSilva de Mendonça, Alian GomesFujiyama, Roberto Tetsuo
Musa sapientumSaccharum officinarum L
Santos Borges, LarissaDias, Roberto Yuri CostaBrandao, Leonardo William MacedoMendonca Maia, Pedro VictorSilva de Mendonça, Alian GomesFujiyama, Roberto Tetsuo
3
Horiuchi, Lucas NaoKerche, Eduardo FischerGonçalves, Everaldo CarlosPolkowski, Rodrigo
This specification covers a premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
Compared to steel, aluminum alloy has the advantages of light weight, high specific strength, corrosion resistance, and easy processing, and is widely used in structures such as aviation, construction, bridges, and offshore oil platforms. All along, Chinese construction aluminum profiles have been produced according to the GB/T5237-XXXX standard, which is determined based on the mechanical performance requirements of doors and windows and the actual processing of aluminum profiles. There are many problems. The author of this article has developed a new product 6063-T56, which has a tensile strength of 240-260Mpa and an elongation rate of not less than 8%, surpassing the latest technology level in Europe. It has been promoted and applied to the aluminum profile production industry in China, improving product performance, reducing production costs, improving production efficiency, and meeting the requirements of the "Aluminum Alloy Doors and Windows Standard" GB/T8478-2020, making
Qiao, Zhou
Innovators at NASA Johnson Space Center have developed a technology that can isolate a single direction of tensile strain in biaxially woven material. This is accomplished using traditional digital image correlation (DIC) techniques in combination with custom red-green-blue (RGB) color filtering software. DIC is a software-based method used to measure and characterize surface deformation and strain of an object. This technology was originally developed to enable the extraction of circumferential and longitudinal webbing strain information from material comprising the primary restraint layer that encompasses inflatable space structures.
Off-highway vehicles (OHVs) frequently operate in extreme environments—ranging from arid deserts and frozen tundras to dense forests and abrasive mining zones—where structural wear, impact damage, and environmental stress compromise their material integrity. Frequent repairs and component replacements increase operational costs, downtime, and environmental waste, making durability and sustainability key concerns for next-generation vehicle systems. This paper explores a novel class of self-healing biodegradable composites, inspired by biological systems, to address these challenges. The proposed materials combine bio-based resins, microencapsulated healing agents, and shape-memory polymers (SMPs) to autonomously repair microcracks and surface-level damage when triggered by thermal, UV, or mechanical stimuli. The design draws inspiration from natural self-healing systems such as tree bark and reptile skin, replicating their regenerative behavior to enhance structural resilience in OHVs
Vashisht, Shruti
The growing demand for lightweight, durable, and high-performance materials in industries such as aerospace, automotive, and energy has driven the development and evaluation of thermoset and thermoplastic composites. Within this framework the static and fatigue mechanical behavior of one thermoset material and two thermoplastic composites are investigated in the (-30° +120°C) temperature range, to simulate extreme environmental conditions. The results from the tensile tests show the different mechanical behavior of the investigated materials, while the cyclic test results highlight the significant impact of temperature on structural properties, offering useful insights for their application in temperature-sensitive environments. This research is partially funded by the Italian Ministry of Enterprises and Made in Italy (MIMIT) within the project ”New Generation of Modular Intelligent Oleo-dynamic Pumps with Axial Flux Electric Motors,” submitted under the ”Accordi per l’Innovazione
Chiocca, AndreaSgamma, MicheleFranceschini, AlessandroVestri, Alessiomancini, SimoneBucchi, FrancescoFrendo, FrancescoSquarcini, Raffaele
In this study, the optimization of robotic gas metal arc welding (GMAW) parameters for joining hot-rolled ferritic-bainitic FB590 steel sheets with a thickness of 2.5 mm was investigated. The main objective was to evaluate the effect of wire feed speed and welding speed on the penetration depth, throat thickness, and mechanical performance of the welded joint. A series of welding experiments were carried out with wire feed speeds ranging from 50 cm/min to 100 cm/min and welding speeds ranging from 5 cm/min to 15 cm/min. Tensile and microhardness tests were carried out to evaluate the structural integrity of the welded joints. The results show that increasing the wire feed speed significantly improves the weld penetration and throat thickness, especially at constant welding speeds. The most suitable combination was found to be 70 cm/min wire feed at 8 cm/min travel speed and 100 cm/min wire feed at 12 cm/min and 15 cm/min travel speeds. The microhardness in the heat-affected zone
Babir, NaimeÜzel, Uğur
This specification covers a fluorosilicone (FVMQ) rubber in the form of molded rings.
AMS CE Elastomers Committee
This specification covers an acrylonitrile-butadiene rubber in the form of molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
AMS CE Elastomers Committee
AS21608 shield terminating, crimp-style ferrule applications on shielded cables require various piece parts in multiple combinations to ground the shield of non-environmental cables. This ARP provides the recommended methods to ensure the shield ground wire is terminated correctly and the shield is protected. Refer to AS83519 for shield grounding when eviornmental resistance is required.
AE-8C2 Terminating Devices and Tooling Committee
This study aims at examining the effect of tool rotational speed on the microstructural and mechanical properties of friction stir welded joints of AA6061 aluminum alloy, both pre- and post-heat treatment. The quality of the joints was assessed initially through tensile, hardness, and charpy impact tests, as well as microscopic observations. During the second stage, solid solution heat treatments were conducted at 535°C, followed by aging on additional specimens welded at identical speeds. The latter underwent hardness tensile tests and microscopic examinations. A comprehensive assessment of the outcomes from various tests validated the influence of metallurgical phenomena, including recrystallization, precipitation, and structural defects on overall resistance. The results showed an improvement in strength, ductility, and impact energy was observed in the case of welding at high rotation speed (1400 rpm). At the same speed, ductility almost doubled after post-weld heat treatment
Bouchelouche, FatimaDebih, AliOuakdi, Elhadj
This specification covers flash welded rings made of corrosion and heat-resistant austenitic steels and austenitic-type iron, nickel, or cobalt alloys, or precipitation-hardenable alloys.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers flash welded rings made of ferritic and martensitic corrosion-resistant steels.
AMS F Corrosion and Heat Resistant Alloys Committee
This work investigates the influence of casting microstructure on the mechanical performance of ad hoc samples of recycled EN AC-43200 Al-Si alloy. Three batches are produced by modifying the casting process parameters (i.e., molten alloy temperature and in-mold cooling conditions) to obtain different casting microstructures. Room temperature tensile and high-cycle fatigue tests, coupled with metallography, X-ray tomography, and fatigue fracture surface analysis, are performed to elucidate the relationship between microstructural characteristics and mechanical properties of the investigated alloy. The findings indicate that casting pores and intermetallic precipitates play a pivotal role in influencing the mechanical behavior and performance of cast, recycled EN AC-43200 Al-Si alloy. Additionally, an inverse correlation between secondary dendrite arm spacing (SDAS) and both tensile properties and fatigue life is established.
Pavesi, AriannaBarella, SilviaD'Errico, FabrizioBonfanti, AndreaBertasi, Federico
This specification covers a carbon steel in the form of bars up through 3.000 inches (76.20 mm) and forgings and forging stock of any size.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aluminum alloy in the form of investment castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) from 0.375 to 1.300 inches (9.53 to 33.02 mm) in diameter or thickness, produced with cross-sectional area of 22.5 square inches (145 cm2), maximum, and a circumscribing circle diameter (circle size) of 17.4 inches (44.2 cm), maximum (see 2.4 and 8.8).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant iron alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate 0.002 inch (0.05 mm) and above in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers beryllium in the form of bar, rod, tubing, and shapes fabricated from beryllium powder consolidated by hot isostatic pressing (HIP) (see 8.5).
AMS G Titanium and Refractory Metals Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a high-strength, corrosion-resistant alloy in the form of bars up to 1.75 inches (44.4 mm) in diameter (see 8.2).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a high-strength, corrosion-resistant alloy in the form of bar up to 1.75 inches (44.4 mm) in diameter (see 8.2).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 6.000 inches (0.551 to 152.4 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and foil.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of plate 0.250 to 4.000 inches (6.35 to 101.60 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of plate 0.750 to 1.500 inches, incl (19.05 to 38.10 mm, incl) in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
CTTC C2, Electrical Components and Systems
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip 0.005 inch (0.13 mm) and over in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 11498