Browse Topic: Tensile strength

Items (11,561)
This specification covers an aluminum alloy in the form of plate 0.750 to 1.500 inches, incl (19.05 to 38.10 mm, incl) in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
CTTC C2, Electrical Components and Systems
This specification covers a corrosion-resistant steel in the form of sheet and strip.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip 0.005 inch (0.13 mm) and over in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
Accurate prediction of the ultimate breakage pressure load for pyro-inflator housing is a critical aspect of inflator development. In this study, the tensile test of a specimen, from its initial shape to fracture, is simulated to verify the material properties of the inflator housing. The numerical results demonstrate high accuracy, with the tensile force–displacement curve, maximum tensile force, necking in the concentrated instability zone, fracture location, and inclined angle all closely matching the experimental data. Following material correlation, the ultimate breakage load of the inflator housing under hydrostatic burst test conditions is calculated using an explicit solver. A stress tensor state analysis method is proposed to define the ultimate load based on the onset of plastic instability in the thickness direction at the top center of the inflator. Compared to experimental results, the accuracy of the ultimate breakage pressure prediction using this method is 99.04%, while
Wang, Cheng
This specification covers an aircraft-quality, low-alloy steel in the form of round, non-welded tubing free from OD surface seams.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aluminum alloy in the form of plate 3.000 to 6.000 inches (76.20 to 152.40 mm), inclusive, in nominal thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a magnesium alloy in the form of sheet and plate 0.016 to 3.000 inches (0.41 to 76.20 mm) in nominal thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum bronze alloy in the form of centrifugal and chill castings (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a nickel-aluminum-bronze alloy in the form of sand, centrifugal, and continuous castings (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing up to 32 square inches (206 cm2) in area (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
In this work, the microstructure and mechanical behavior of AL7079 metal matrix composites (MMCs) mixed with zirconia and quarry dusts are analyzed. The high-strength Al7079 can be further improved by the addition of zirconia particulates and quarry dust particles, a cost-effective reinforcement. Composite samples with different weight fractions of zirconia (2%, 4%, and 6%) and quarry dust (2%) were produced via a stir-casting technique. Scanning electron microscope (SEM) was engaged to examine the microstructure of the composites, which showed that the reinforcements were well integrated and bonded perfectly to the matrix material. A simple mechanical test of hardness, tensile, and impact strength revealed enrichment in hardness and tensile strength in comparison to the Al7079 alone, whereas the impact strength decreased. Composite containing 6% zirconia and 2% quarry dust improved both the hardness (95 BHN) and tensile strength (186 MPa) by 7%, outperforming the remaining composition
Madan Kumar, K.N.Sathyanarayana, G.M.Kuldeep, B.Manu, S.S.Manjunath Yadav, S.Anand, H.R.
This study aims to develop a lightweight bus passenger seat frame by conducting structural nonlinear finite element analysis (FEA) on various thickness combinations of seat frame components to identify the optimal configuration. The thicknesses of critical structural members that primarily bear the load when force is applied to the seat frame were selected as independent variables, while stress on each component and compliance with ECE R14 seatbelt anchorage displacement regulations were set as dependent variables. A regression analysis was performed to calculate the importance of each component and analyze the influence of each design variable on the dependent variables. Strain gauges were attached to critical areas of the actual seat frame to conduct a seatbelt anchorage test, and simulations under identical conditions were performed using the nonlinear FEA software (LS-DYNA) to validate the reliability of the analysis results. The optimized seat frame exhibited a maximum stress of
Ko, Yeong GookCho, Kyu ChunLee, Ji SunKang, Ki Weon
This specification covers procedures for sampling and testing aircraft-quality, special aircraft-quality, and premium aircraft-quality steels requiring transverse tensile property testing.
AMS E Carbon and Low Alloy Steels Committee
The study aims to evaluate the transient failure behavior of welding joints that are exposed to sudden tensile loading. The Mohr–Coulomb criterion’s fundamental theories are examined and evaluated. The failure function of Mohr’s envelope is first expanded into a polynomial in terms of the stress components (σp , τxy ) on the failure region up to the third order. Using ANSYS software, the transient failure response of welding joints was simulated. The Runge–Kutta fourth-order computational technique was employed to perform numerical analysis on transient failure response. Python software is used to develop a computer code for the time-dependent failure response of welding joints. The welded joint specimen is tested with the help of a UTM machine. The analytical results are compared with experimental results. A fractography study was carried out on the welded joint of the failure surface. In this context, the main focus is on SEM and EDS methods to determine the exact type of failure
Chavan, ShivajiRaut, D. N.
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
The current ASTM A653 standard for determining the bake hardening index (BHI) of sheet metals can lead to premature fracture at the transition radius of the tensile specimen in high strength steel grades. In this study, a new test procedure to characterize the BHI was developed and applied to 980 and 1180 MPa third generation advanced high strength steels (3G-AHSS). The so-called KS-1B methodology involves pre-straining over-sized tensile specimens followed by the extraction of an ASTM E8 sample, paint baking and re-testing to determine the BHI. Various pre-strain levels in the range of 2 to 10% were considered to evaluate the KS-1B procedure with select comparisons with the ASTM A653 methodology for pre-strain levels of 2 and 8%. Finally, to characterize the influence of paint baking at large strain levels, sheared edge conical hole expansion tests were conducted. The tensile mechanical properties of the 3G steels after paint baking were observed to be sensitive to the pre-strain with
Northcote, RhysBerry, AvalonNarayanan, AdvaithTolton, CameronLee, HaeaSmith, JonathanMcCarty, EricButcher, Cliff
Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC showed that the SC AZ80 had a porosity of 0.52%, which was the 77% lower than that (2.21%) of the PSMC counterpart. The microstructure analyses and phase identification indicated that the cast AZ80 alloy consisted of a primary α-Mg phase, eutectic Mg-Al-Zn phases and Al-Mn intermetallic. The fine primary α-Mg dendrites and a high amount of the intermetallic phase were present in the SC AZ80 alloy. The yield strength (YS), ultimate yield strength (UTS), elongation (ef), elastic modulus (E) and strain hardening rate of the cast AZ80 specimens were evaluated by tensile testing. The measured engineering stress versus strain curves showed that the SC AZ80 alloy exhibited 84.68 MPa in YS, 168.23 MPa in UTS, 5.07% in ef, and 25.1GPa in modulus while the YS, UTS and ef of the PSMC specimen were only 71.61 MPa
Ying, PeilinHu, HenryHu, AnitaShen, Wutian
The advance of regulatory emission standards for light-duty vehicles, trucks and motorcycles, coupled with rising sustainability concerns, particularly United Nations' Sustainable Development Goal 12 (responsible consumption and production), has created an urgent need for lighter, stronger, and more ecological materials. Polylactic acid (PLA), a biodegradable polymer derived from plant sources, offers promising mechanical tensile strength and processability. Nanocomposites, a solution that combines a base matrix with a nanoreinforcing filler, provides a path toward developing sustainable materials with new properties. Cellulose nanofibrils (CNF) are a valuable nanofiller obtained through industrial waste or vegetal fibers, offer a promising avenue for strengthening PLA-based materials. Additive manufacturing (AM) has gained popularity due to its ability to create complex parts, prototyping designs, and to evaluate new nanocomposite materials such as PLA/CNF, showing significant
de Oliveira, ViníciusHoriuchi, Lucas NaoGoncalves, Ana PaulaDe Andrade, MarinaPolkowski, Rodrigo
The automotive industry leverages Fused Filament Fabrication (FFF) -based Additive Manufacturing (AM) to reduce lead time and costs for prototypes, rapid tooling, and low-volume customized designs. This paper examines the impact of print orientation and raster angle on the tensile properties of Polylactic Acid (PLA), selected for its ease of use and accessibility. Dog bone samples were designed to the ASTM D638 tensile testing standard and printed solid with a 0.2 mm layer height, two outer walls, and varying raster-fill angles, with layers alternating by 90°. Testing was conducted on the MTS Criterion Model 43, 50 kN system. Varying print orientation along the X and Y axes (double angle builds) produced a Young's modulus (YM) range of 0.7519, reflecting a 34.42% increase between the witnessed minimum and maximum values. These builds exhibited more brittle behavior than most single angle builds, except for X10 Y10 Z0 at a 45° raster (the lowest recorded YM) and X0 Y15 Z0 at a 30
Strelkova, DoraUrbanic, Ruth Jill
New highly ductile advanced high strength steel (AHSS) grades with tensile strength greater than 980 MPa have been developed with the aim of achieving a combination of high strength and excellent formability. The new jetQTM-Family [1, 2] offers high local and global ductility, which is expected to contribute to the improvement of vehicle crash performance. For the reliable design and management of vehicle crash performance, material modeling, including work hardening behavior and material failure strain, plays an important role in numerical simulation. Especially, the accuracy of material failure prediction is important for the development of crash performance. In this study, the fracture behaviors of 980jetQTM, 1180jetQTM, and conventional Dual-Phase (DP) steels are investigated through simple tensile and V-bending fracture tests incorporating experimental-numerical hybrid ductile fracture analysis. Based on the experimental results, the ductile fracture parameters in the Hosford
Sato, KentaroSakaidani, TomohiroOhnishi, YoichiroPaton, AdrianRoesen, Hartwig
Plastic waste, in the past few years, has risen to be one of the most concerning and endangering pollutants to environment and life, making its effective management and reduction a major domain of focus among researchers and industrialists. This comparative study is an attempt to utilize recycled Polyethylene Terephthalate (rPET) fibres combined with Epoxy Resin in various combinations, to provide effective and low-cost insulation in moderate to low requirements. The above-mentioned components serve as viable insulators. Moisture resistance of both materials and temperature resistance of Epoxy resins ranging from 120°C to 150°C (depending upon the grade of Epoxy used) indicate a good stability in harsh external operating environment. While Epoxy resins are not inherently flame retardants, additives are introduced for this purpose in order to render the composite safer to use. Owing to the excellent adhesive properties of the Epoxy resin, the rPET fibres are allowed to bond together
Purihella, Sri Sai KrishnaPali, Harveer SinghKumar, PiyushSharma, Ved Prakash
Mechanical analysis was performed of a non-pneumatic tire, specifically a Michelin Tweel size 18x8.5N10, that can be used up to a speed of 40 km/h. A Parylene-C coating was added to the rubber spoke specimens before performing both microscopic imaging and cyclic tensile testing. Initially, standard ASTM D412 specimens type C and A were cut from the wheel spokes, and then the specimens were subjected to deposition of a nanomaterial. The surfaces of the specimens were prepared in different ways to examine the influence on the material behavior including the stiffness and hysteresis. Microscopic imaging was performed to qualitatively compare the surfaces of the coated and uncoated specimens. Both coated and uncoated spoke specimens of each standard type were then subjected to low-rate cyclic tensile tests up to 500% strain. The results showed that the Parylene-C coating did not affect the maximum stress in the specimens, but did increase the residual strain. Type C specimens also had a
Collings, WilliamLi, ChengzhiSchwarz, JacksonLakhtakia, AkhleshBakis, CharlesEl-Sayegh, ZeinabEl-Gindy, Moustafa
Composite materials are created by combining two or more different materials, such as a filler or fibrous reinforcement dispersed in a polymer matrix. The primary goal of developing composites is to improve properties while reducing weight, making them ideal for the sustainable development of the automotive industry. Poly(lactic acid) (PLA) has emerged as a promising polymer matrix for composites due to its ecological and biodegradable nature, as well as its good mechanical properties (tensile strength and modulus of elasticity), though it remains limited when compared to engineering polymers such as acrylonitrile butadiene styrene (ABS) and acrylonitrile styrene acrylate (ASA). Cotton fibers have gained visibility in recent years as reinforcement in various matrices due to their low cost, renewable origin, and relative abundance. Incorporating cotton fibers into PLA can improve its mechanical properties, enhancing attributes such as tensile strength and stiffness, which makes the
De Andrade, MarinaPolkowski, RodrigoHoriuchi, Lucas NaoGoncalves, Ana PaulaDe Oliveira, Vinícius
In new energy vehicles, aluminum alloy has gained prominence for its ability to achieve superior lightweight properties. During the automotive design phase, accurately predicting and simulating structural performance can effectively reduce costs and enhance efficiency. Nevertheless, the acquisition of accurate material parameters for precise predictive simulations presents a substantial challenge. The Johnson-Cook model is widely utilized in the automotive industry for impact and molding applications due to its simplicity and effectiveness. However, variations in material composition, processing techniques, and manufacturing methods of aluminum alloy can lead to differences in material properties. Additionally, components are constantly subjected to complex stress states during actual service. Conventional parameter calibration methods primarily rely on quasi-static and dynamic tensile tests, offering limited scope in addressing compression scenarios. This paper proposes an inversion
Kong, DeyuGao, Yunkai
As the utilization of lithium-ion batteries in electric vehicles becomes increasingly prevalent, there has been a growing focus on the mechanical properties of lithium-ion battery cores. The current collector significantly impacts the tensile properties of the electrode and the internal fracture of the battery cell. The stripping process tends to cause additional damage to the current collector, so tensile testing is not able to obtain in-situ mechanical properties of the current collector. Therefore, nanoindentation tests are required to acquire the in situ mechanical properties of the current collector. Nanoindentation testing represents the primary methodology for the determination of the mechanical properties of thin films. The Oliver-Pharr method is the standard approach used by commercial indentation instruments for the evaluation of mechanical properties in materials. Nevertheless, this approach is constrained by the limitations imposed by the sample boundary conditions. To
Dai, RuiSun, ZhiweiPark, JeongjinXia, YongZhou, Qing
This study investigates the nonlinear correlation between laser welding parameters and weld quality, employing machine learning techniques to enhance the predictive accuracy of tensile lap shear strength (TLS) in automotive QP1180 high-strength steel joints. By incorporating three algorithms: random forest (RF), backpropagation neural network (BPNN), and K-nearest neighbors regression (KNN), with Bayesian optimization (BO), an efficient predictive model has been developed. The results demonstrated that the RF model optimized by the BO algorithm performed best in predicting the strength of high-strength steel plate-welded joints, with an R 2 of 0.961. Furthermore, the trained RF model was applied to identify the parameter combination for the maximum TLS value within the selected parameter range through grid search, and its effectiveness was experimentally verified. The model predictions were accurate, with errors controlled within 6.73%. The TLS obtained from the reverse-selected
Han, JinbangJi, YuxiangLiu, YongLiu, ZhaoWang, XianhuiHan, WeijianWu, Kun
The tensile and low-cycle fatigue (LCF) properties of Ti6Al4V specimens, manufactured using the selective laser melting (SLM) additive manufacturing (AM) process and subsequently heat-treated in argon, were investigated at elevated temperatures. Specifically, fully reversed strain-controlled tests were performed at 400°C to determine the strain-life response of the material over a range of strain amplitudes of industrial interest. Fatigue test results from this work are compared to those found in the literature for both AM and wrought Ti6Al4V. The LCF response of the material tested here is in-family with the AM data found in the literature. Scanning electron microscopy performed on the fracture surfaces indicate a marked increase in secondary cracking (crack branching) as a function of increased plastic deformation and demonstrating equivalent performance when compared to the wrought Ti6AL4V at RT (room temperature) at 1.4% strain amplitude and better performance when compared to the
Gadwal, Narendra KumarBarkey, Mark E.Hagan, ZachAmaro, RobertMcDuffie, Jason G.
This specification covers a titanium alloy in the form of forgings 4.00 inches (101.6 mm) and under in nominal cross-sectional thickness and of forging stock of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
The introduction of autonomous truck platoons is expected to result in drastic changes in operational characteristics of freight shipments, which may in turn have significant impacts on efficiency, energy consumption, and infrastructure durability. Since the lateral positions of autonomous trucks traveling consecutively within a lane are fixed and similar (channelized traffic), such platooning operations are likely to accelerate damage accumulation within pavement structures. To further advance the application of truck platooning technology in various pavement environments, this study develops a flexible evaluation method to evaluate the impact of lateral arrangement within autonomous truck platoons on asphalt pavement performance. This method simplifies the impact of intermittent axle load applications along the driving direction within a platoon, supporting platoon controllers in directly evaluating pavement damage for different platoon configurations. Specifically, a truck platoon
Wenlu, YuYe, QinChen, DaoxieMin, YitongChen, Leilei
Alloy steel possesses high strength, hardenability, fatigue strength, and good impact toughness. It is widely used for making various machine parts, automobile components, shafts, gears, connecting rods, and more. Hardening and tempering develop the optimum combination of hardness, strength, and toughness in engineering steel, thereby providing components with high mechanical properties. Hardening and tempering temperatures are crucial factors that affect the mechanical and metallurgical properties of 42Cr4Mo steel. In this research work, 42Cr4Mo alloy steel samples were subjected to hardening and tempering processes. The hardening temperatures were set at 830°C, 850°C, and 870°C, while the tempering temperatures were maintained at 590°C and 650°C. The test results show that hardening at 830°C and tempering at 590°C achieve high tensile strength, which decreases as the temperature increases. Different hardening temperatures and constant tempering temperatures will be optimized to
Murugesan, VenkatasudhaharGanesan, DharmalingamTarigonda, Hariprasad
The incorporation of natural available material into synthetic materials to form a fiber within a single polymer matrix has been ignited since environment concerns become crucial nowadays. Composite materials embedded with two or more types of fibers makes a composite as hybrid. The study of hybridization of natural and synthetic fibers brings out superior mechanical and tribological properties. In our present studies, fabrication of jute & glass fiber reinforced epoxy-based polymer hybrid composites were carried out using resin infusion technique. For comparing the various properties, the composite made of pure jute fiber i.e 100% jute, pure glass fiber i.e 100% glass, the hybrid composite containing 75% jute and 25% glass fiber, 50% jute and 50% glass fiber, and 25% jute and 75% glass fiber were made and its functional behaviors were studied. The results revealed the hybrid composite containing 25% jute and 75% glass fiber possessed maximum tensile strength of 292±5.8 MPa, flexural
J, ChandradassT, ThirugnanasambandhamM, Amutha SurabiP, Baskara SethupathiRajendran, RMurugadoss, Palanivendhan
Natural fiber composites (NFC’s) have considerable promise for a wide range of technological applications due to their exceptional features, which include notable weight reduction, high strength, and affordability. The aforementioned materials are also biodegradable and sustainable, which makes them appealing for use in sustainable engineering methods. This research focuses on evaluating the mechanical features of jute fiber and Al₂O₃ particle fortified polymer composites, exploring their potential for advanced engineering uses. The Taguchi technique is used with a L9 orthogonal array, integrating three-level, three-parameter approach, to systematically examine potential combinations of process variables in the manufacturing of these polymer composites. The primary goal is to optimize the mechanical attributes of the composites, which include tensile modulus, tensile stress, and weight percentage increase. Detailed investigations are conducted to interpret the effects of these process
Somsole, Lakshmi NarayanaNatarajan, ManikandanPasupuleti, ThejasreeKatta, Lakshmi NarasimhamuVivekananda, Soma
The research project focused on investigating the mechanical, thermal, and chemical properties of composite plates made from bamboo leaves and coconut leaves reinforced with epoxy resin that has received limited attention in previous studies. The bamboo and coconut leaves underwent alkaline treatment, were thoroughly washed with distilled water, and dried in sunlight for 24 hours. For the fabrication of three composite plates, Hand lay up method was employed according to the American Society for Testing and Materials (ASTM) standards. The compositions of the composite plates were varied as first Composition has 25 wt% bamboo leaves, 25 wt% coconut leaves and 50 wt% resin, the Second Composition has 30 wt% bamboo leaves, 30 wt% coconut leaves, and 40 wt% resin and the third composition has 35 wt% bamboo leaves, 35 wt% coconut leaves, and 30 wt% resin. Tensile test, shear and flexural tests helped determine the tensile strength, shear strength, and flexural strength of the composite
D R, RajkumarO, Vivin LeninR, SaktheevelS, Edwin Roshan
Before starting your paper, please read, “How to Write an SAE this study investigates the performance and highlights the mechanical, thermal, and vibrational characteristics of hybrid fibre composite plate composed of Kenaf Fibre (KF), Ridge Gourd Fibre (RGF), Waste Plastic Materials (WPM), and matrix materials. The raw materials under goanalkaline treatment involving 2hoursofagitation with 5% NaOH. Following treatment, KF, RGF, and WPM are combined with epoxyres in using compression moulding to form four different hybrid composite plates in the %wt of 10:20:5, 20:10:5, 10:10:5, and 20:20:5. Various tests are conducted to evaluate their properties, including the Tensile Test, Shear Test, and Flexural Test, adhering to ASTM standards D638, D7078, and D790, respectively. The results indicate that 20:20:5 plate showed higher tensile strength (21.70 MPa), flexural strength (77.23 MPa), and shear strength (18.13MPa. Subsequently, Thermo gravimetric Analysis (TGA) was conducted on the 20:20
D R, RajkumarR, BaranitharanBasha, Mohamed HumayunS, Kamalesh
The present study aims to assess the tensile properties of Caryota urens fibre reinforced polyester composites. Composites were fabricated with different fiber weight fractions starting from 5% to 35% with 5% increment. The mechanical testing of composite material was conducted using ASTM standards. The results indicated that the tensile, impact, and flexural properties of composite material were increased up to 25% fiber weight fraction; after that, they have been reduced due to some factors, like fiber distribution, which may not be uniform, and adhesion between fiber and matrix may be reduced. The optimal weight fraction of caryota urens fiber found from this study is 25%. The maximum tensile, impact, and flexural strength obtained for the composites were 36.22 MPa, 62.21 MPa, and 0.224 N/m, respectively. Water absorption characteristics show the increase of water intake behavior of composites due to their hydrophobic nature.
Santhanam, KRaja, K.Naveen, MSaranbala, MM, Naveenkumar
This study investigates the fabrication and characterization of overhanging structures using the Cold Metal Transfer (CMT) pulse based Wire Arc Additive Manufacturing (WAAM) technique, specifically targeting automotive applications on commercial aluminum components. Focusing on optimal welding strategies for overhanging structures, components are fabricated by providing offsets during consecutive deposition of layers, thus producing parts with angles of 45°, 60° and 90° inclinations from the substrate. Three specimens undergo around twenty-five layers of deposition, resulting in structurally sound joints within this specified angle range. AA 4043 electrode is utilized, and welding parameters are optimized through trials by verifying with bead on plate deposition. Successful outcomes are achieved within the specified angle range, though challenges arise beyond 60°, complicating the maintenance of desired weld quality. The study further evaluates the microstructure, microhardness, and
A, AravindS, JeromeA, Rahavendran
The advancement of wire-arc additive manufacturing (WAAM) presents a significant opportunity to revolutionize the production of automotive components through the fabrication of complex, high-performance structures. This study specifically investigates the metallurgical, mechanical, and corrosion properties of WAAM-fabricated ER 2209 duplex stainless steel structures, known for their superior mechanical properties, excellent corrosion resistance, and favorable tribological behavior. The research aims to optimize WAAM process parameters to achieve high-quality deposition of ER 2209, ensuring structural integrity and performance suitable for both marine and various automotive applications. Microstructural analysis of the produced samples revealed the alloy’s dual-phase nature, with roughly equal amounts of ferrite and austenite phases uniformly mixed across the layers of deposition. This balanced microstructure contributes to the alloy’s excellent mechanical properties. Yield strength
A, AravindS, JeromeKumar, Ravi
The article describes a two-step technique that involves making a masterbatch that is 3:1 [by weight] carboxylated nitrile rubber (XNBR) and nanoclay (NC), compounding on a two-roll mill, and moulding at 150°C and 20 MPa pressure. Tensile strength (TS), elongation at break (EB), and modulus (M100, M200 and M300) all rises with the amount of nanofiller present, peaked at 5 phr, then fell off. The NC demonstrated a tendency to aggregate at greater concentrations. The amount of reinforcement provided by the NC filler can be determined by comparing the modulus of filled compounds (M100f) to that of unfilled XNBR (M100u). This ratio rises with the amount of NC present, peaked at 5-7.5 phr, and subsequently fell. Using sorption isotherms, the swelling behaviour of the solvent through the nanocomposites was studied. With increasing NC concentration, the solvent absorption fell, reaching a minimum at 5 phr NC. When toluene sorption for diffusion via XNBR-NC composites was measured, the amount
Vishvanathperumal, S.Manimaran, K.Murali, M.Meera, C.Gopika, P.Arun, M.
The objective of this study is to optimize and characterize an Al6061/Al2O3/MWCNT nanocomposite produced through stir casting. The investigation focused on various concentrations of 2%, 3%, and 5% by weight of Al2O3/MWCNT nanoparticles, with an average Al2O3 particle size of 40 nm. The Al6061 matrix exhibited a uniform distribution of these nanoparticles. Microstructural analysis of the nanocomposite was conducted using scanning electron microscopy. The study examined the tribological properties, including wear and coefficient of friction, as well as the tensile strength and hardness of the Al6061/Al2O3/MWCNT nanocomposites. The results indicated a significant enhancement in mechanical properties, with the ultimate tensile strength (UTS) increasing from 122 MPa to 157 MPa, and the yield tensile strength (YTS) rising from 52 MPa to 76 MPa. At a 5% concentration of Al2O3/MWCNT, the hardness test showed an increase from 28 BHN to 55 BHN. The improvement ratios for 2%, 3%, and 5
Haridass, R.Subramani, N.Viknesh, S.Mathan Kumar, M.Mownitharan, M. S.
This paper presents thermal properties and mechanical strength of hybrid rocket fuels with the base material of paraffin wax. The mechanical strength includes breaking point strain, modulus of elasticity and tensile strength at ultimate point for three different variant of paraffin-based formulations were examined and results were compared with pure paraffin fuels. The results indicate that the tensile strength and elastic modulus of paraffin-Al fuel having Al 5 wt % were increased by 32.2%, and 14.1% respectively compared to those of pure paraffin. The average tensile strength and elastic modulus of paraffin-CB (0.5 to 1.5 wt%) fuel were increased by 29.5%, and 16.3% compared to pure paraffin, respectively. Thermal properties were derived from were carried out with Differential Scanning Calorimetry (DSC) to explore the endothermic and exothermic reactions of samples with paraffin-based fuels. The values of heat of fusion calculated from the area under endothermic reaction were found
Karthik, P.Kumaran, V.Srinivasan, P.Parthiban, N.
This study will explore the banana fibre-reinforced composites (BFRC) as a sustainable alternative to synthetic fibre composites using experimental testing and numerical models. Composites were made using compression moulding and hand lay-up techniques with varying the fibre’s orientations and contents. Mechanical testing was done in conformity with ASTM criteria, with a focus on tensile properties. Strong correlations were established between the prediction models developed by finite element analysis (FEA) using AUTODESK Fusion 360 and the experimental data were predicted by Using the Hirsch model, the tensile strength and modulus of the composites were computed the findings showed that adding more fibre improved the mechanical qualities, especially the tensile strength. The process of scanning electron microscopy (SEM), was used to find defects in the BFRC.
Omprakasam, S.Karthick, N.Althaf, Mohammed Kassim
The present research explores the potential of high-performance thermoplastics, Polymethyl Methacrylate and Polyurethane, to enhance the passive safety of automotive instrument panels. The purpose is to evaluate and compare the passive safety of these two materials through the conduct of the Charpy Impact Test, Tensile Strength Test, and Crush Test —. For this, five samples were prepared in the case of each material via injection moulding, which enabled reliability, and consistency of the findings. As a result, it was found that in the case of the Charpy Impact Test, the average impact resistance varies with PMMA exhibiting a level of 15.08 kJ/m2 as opposed to the value of 12.16 kJ/m2 for PU. The Tensile Strength Test produced the average tensile strength of 50.16 for PMMA and 48.2 for PU, which implied superior structural integrity under tension for the first type of thermoplastic. Finally, the Crush Test showed that PMMA is more resistant to crushes on average than PU with the
Natrayan, L.Kaliappan, SeeniappanMothilal, T.Balaji, N.Maranan, RamyaRavi, D.
Intermetallic Zn-Mo to steel induction brazing was performed in an induction furnace at 1260 degrees Celsius for 0.8 thousand seconds utilising Ni-Cr-Zn filler metal. Base metal atoms such as zinc, molybdenum, and nickel are stated to diffuse to the contact and aggressively react with the filler metal during brazing. This is backed by microstructural research. The reaction layer near Zn-Mo, which is composed of Ni-Cr-Zn compounds and Ni-based solid solutions; the interface's centre zone, which is composed of Ni-based solid solutions with distributed Ni-Cr eutectic phases; and the NiC reaction layer near the steel. The interface is made up of all of these components. The best values for the induction brazing parameters may be calculated by analysing the association between the brazing parameters and the tensile strength of the joints. The joint has a tensile strength of 348 MPa after being brazed at a temperature of 1260 degrees Celsius for 0.8 thousand seconds.
Babu Chellam, B Ashok KumarVimal Raja, M.Dhiyaneswaran, J.Selvaraj, MalathiSangeeth Kumar, M.
Items per page:
1 – 50 of 11561