Browse Topic: Conductivity
A glow plug is generally used to assist the starting of diesel engines in cold weather condition. Low ambient temperature makes the starting of diesel engine difficult because the engine block acts as a heat sink by absorbing the heat of compression. Hence, the air-fuel mixture at the combustion chamber is not capable of self-ignition based on air compression only. Diesel engines do not need any starting aid in general but in such scenarios, glow plug ensures reliable starting in all weather conditions. Glow plug is actually a heating device with high electrical resistance, which heats up rapidly when electrified. The high surface temperature of glow plug generates a heat flux and helps in igniting the fuel even when the engine is insufficiently hot for normal operation. Durability concerns have been observed in ceramic glow plugs during testing phases because of crack formation. Root cause analysis is performed in this study to understand the probable reasons behind cracking of the
Disc brakes play a vital role in automotive braking systems, offering a dependable and effective means of decelerating or halting a vehicle. The disc brake assembly functions by converting the vehicle's kinetic energy into thermal energy through friction. The performances of the brake assembly and user experience are significantly impacted by squeal noise and wear behaviour. This paper delves into the fundamental mechanisms behind squeal noise and assesses the wear performance of the disc brake assembly. Functionally graded materials (FGMs) are an innovative type of composite material, characterized by gradual variations in composition and structure throughout their volume, leading to changes in properties such as mechanical strength, thermal conductivity, and corrosion resistance. FGMs have emerged as a groundbreaking solution in the design and manufacturing of brake rotors, addressing significant challenges related to thermal stress, wear resistance, and overall performance. These
The inductance parameter is important for the flux regulation performance of the hybrid excitation motor, and the axial structure leads to the change in the inductance parameter of the axial-radial hybrid excitation motor (ARHEM). To clarify the inductance characteristic of the ARHEM with different winding construction and the mutual coupling effect between the axial excitation and permanent magnet excitation on the inductance. Firstly, the structure of the ARHEM is presented. Secondly, the self and mutual inductance characteristics of ARHEM are analyzed using the winding function method. Then, the influence of the axial excitation structure on the armature reaction field and saliency ratio of ARHEM. On this basis, the mechanism of the mutual coupling, between the axial excitation and permanent magnet field under different excitation currents on the main air gap magnetic field, and the inductance of ARHEM with fractional slot are revealed.
The solar-based hybrid automotive vehicle represents a trend marked by technological excellence, offering an efficient, cost-effective, and eco-friendly solution. Besides, the enhancement of solar absorption due to poor weather is influenced by poor solar power with reduced photocurrent density. This research focuses on enhancing the solar power and photocurrent density of conventional solar cells featuring aluminium-doped zinc oxide thin films (AZO) using the Mist Chemical Vapor Deposition (MIST CVD) process with a zinc acetate precursor solution processed at temperatures ranging from 200 to 400°C. To investigate the effect of AZO on the functional behaviour of solar cells, microstructural studies utilizing scanning electron microscopy and X-ray diffraction reveal the concentration of AZO and the alignment of Al/ZnO peaks as even. As a result, this research demonstrates a 21% increase in solar power output compared to conventional Cadmium Telluride (CdTe) cells, with an improvement in
This specification covers the requirements for a low-electrical-resistance chemical conversion coating on aluminum and aluminum alloy parts.
Wire Electrical Discharge Machining (WEDM) is an essential manufacturing process used to shape complex geometries in conductive materials such as cupronickel, which is valued for its corrosion resistance and electrical conductivity. The aim of this explorative study is to enhance the efficiency and precision of machining by creating a specialized predictive model using an Adaptive Neuro-Fuzzy Inference System (ANFIS) for cupronickel material. The study examines the intricate correlation between process variables of the WEDM (Wire Electrical Discharge Machining) technique, such as pulse-on time (Ton), pulse-off time (Toff), and discharge current, and crucial machining responses, including surface roughness, material removal rate. Data is collected through systematic experimentation in order to train and validate the ANFIS predictive model. The ANFIS model utilizes the collective learning capabilities of neural networks and fuzzy logic systems to precisely forecast machining responses by
To advance soft robotics, skin-integrated electronics, and biomedical devices, researchers have developed a 3D printed material that is soft and stretchable — traits needed for matching the properties of tissues and organs — and that self-assembles. Their approach employs a process that eliminates many drawbacks of previous fabrication methods, such as less conductivity or device failure.
Lithium-ion (Li-ion) batteries employ binders that encounter challenges such as poor conductivity and expansion during charging. In a recent study, scientists have developed a high-performing binder using poly(vinylphosphonic acid) for silicon oxide-based anodes in Li-ion batteries. This binder offers enhanced performance as demonstrated by the superior durability, and discharging capacity of the anodes compared to conventional options. With patents filed internationally, this technology holds promise for broader applications in electric vehicles and beyond.
Advanced two-dimensional materials discovered in the last two decades are now being produced at scale and are contributing to a wide range of performance enhancements in engineering applications. The most well known of these novel materials is graphene, a nearly transparent nanomaterial comprising a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for aerospace engineering. The goals of reducing greenhouse gas emissions and creating a world that achieves net-zero emissions have prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. These aspects have
Advanced two-dimensional (2D) materials discovered in the last two decades are now being produced at scale and contribute to a wide range of performance enhancements in engineering applications. The most well known of these novel materials is graphene, a nearly transparent nanomaterial comprised of a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for automotive engineering. The goal of drastically reducing greenhouse gas emissions has prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. While this chapter reviews the current state of graphene
A team of inventors from NASA Langley and NASA Ames have created a new type of carbon fiber polymer composite that has a high thermal conductivity. This was achieved by incorporating Pyrolytic Graphite Sheets (PGSs) and Carbon Nanotubes (CNTs), which enhance the material’s ability to transfer heat when compared to typical carbon fiber composites.
Corrosion control is always of concern to the designer of electronic enclosures. The use of EMI gaskets to provide shielding often creates requirements that are in conflict with ideal corrosion control. This SAE Aerospace Recommended Practice (ARP) presents a compatibility table (see Figure 1) which has as its objective a listing of metallic couples that are compatible from a corrosion aspect and which still maintain a low contact impedance.
Items per page:
50
1 – 50 of 3235