Browse Topic: Conductivity

Items (3,233)
This SAE Aerospace Standard (AS) provides the minimum design and performance requirements for individual, inflatable life preservers, divided into six categories: “Adult,” “Adult-Child,” “Child,” “Infant-Small Child,” “Adult-Child-Infant-Small Child,” and “Demonstration
S-9A Safety Equipment and Survival Systems Committee
ABSTRACT Thermal management systems (TMS) of armored ground vehicle designs are often incapable of sustained heat rejection during high tractive effort conditions and ambient conditions. The use of a latent heat energy storage system that utilizes Phase Change Materials (PCMs) is an effective way of storing thermal energy and offers key advantages such as high-energy storage density, high heat of fusion values, and greater stability in temperature control. Military vehicles frequently undergo high-transient thermal loads and often do not provide adequate cooling for powertrain subsystems. This work outlines an approach to temporarily store excess heat generated by the transmission during high tractive effort situations through use of a passive PCM retrofit thereby extending the operating time, reducing temperature transients, and limiting overheating. A numerical heat transfer model has been developed based around a conceptual vehicle transmission TMS. The model predicts the
Putrus, Johnathon P.Jones, Stanley T.Jawad, Badih A.Schihl, Peter
ABSTRACT High performance fiber reinforced ceramic rotors have the potential to greatly improve metrics in heavy vehicles such as braking distance, acceleration time, maximum speed, fuel consumption, improved handling, and increased vehicle maximum loads. Three types of carbon ceramic composite brake rotor materials were created using polymer infiltration pyrolysis (PIP) for carbon fiber reinforced silicon oxicarbide, reactive melt infiltration (RMI) for carbon fiber reinforced silicon carbide, and electric field assisted sintering (EFAS) for carbon fiber reinforced silicon carbide-zirconium diboride to investigate the manufacturing of 396mm diameter heavy vehicle brake rotors. The microstructure of parts created by each manufacturing method were discussed and contrasted. The EFAS manufactured rotor created the highest quality part due to extremely fast processing times, uniform material microstructure, and fusing of adjacent fibers in the carbon fiber network. Thermal conductivity was
Rufner, JorgenLeonard, CliffordNutt, StevenNguyen, Kevin
The effectiveness of immersion cooling for the thermal management of Electric-Vehicle (EV) batteries is crucially influenced by the thermophysical and rheological properties of the heat-transfer liquid. This study emphasizes upon the design requirements for such a fluid in terms of bulk properties, i.e., high electrical resistivity and thermal conductivity, low viscosity, but also relevant to the rheological properties maximizing the heat transfer rate. Key concepts of the implemented research constitute: (i) the promotion of vortical motion in the laminar flow regime, which, in turn, enhances heat transfer by disrupting boundary layers; (ii) vortex stabilization through the addition of viscoelasticity-inducing agents in the base heat-transfer liquid. To improve cooling efficiency, the primary objective is to maximize the achievable heat transfer rate for minimal pumping losses. Hence, a multi-objective optimization process must be set in place where the optimal coolant rheology is
Weiss, LukasKarathanassis, IoannisRueppel, BastianSmith, TimothyWensing, Michael
Niobium (Nb) alloyed Grey cast iron in combination with Ferritic Nitrocarburize (FNC) case hardening heat treatment is proposed to improve wear resistance and reduce brake dust generation of brake rotors. Standard Eutectic and Hypereutectic Grey irons alloyed with Niobium were evaluated in comparison to baseline unalloyed compositions. Brake speed snub sensitivity tribological testing was performed on a matrix including Niobium alloyed, Unalloyed, FNC, Non FNC, Non-Asbestos Organic (NAO) friction and Low metallic (Low Met) friction materials. Full size brake rotors were evaluated by Block Wear and Corrosion Cleanability. Improved wear, corrosion resistance and reduced brake dust debris were demonstrated by the Niobium alloyed FNC brake rotor combinations. Corrosion is an important consideration when evaluating brake performance. Combining cyclic corrosion and brake rotor testing provides the best comparison with field exposure
Holly, Mike
To advance soft robotics, skin-integrated electronics, and biomedical devices, researchers have developed a 3D printed material that is soft and stretchable — traits needed for matching the properties of tissues and organs — and that self-assembles. Their approach employs a process that eliminates many drawbacks of previous fabrication methods, such as less conductivity or device failure
This SAE Aerospace Information Report (AIR) provides guidance on using environmental, electrochemical, and electrical resistance measurements to monitor environment spectra and corrosivity of service environments, focusing on parameters of interest, existing measurement platforms, deployment requirements, and data processing techniques. The sensors and monitoring systems provide discrete time-based records of (1) environmental parameters such as temperature, humidity, and contaminants; (2) measures of alloy corrosion of the sensor; and (3) protective coating performance of the sensor. These systems provide measurements of environmental parameters, sensor material corrosion rate, and sensor coating condition for use in assessing the risk of atmospheric corrosion of a structure. Time-based records of environment spectra and corrosivity can help determine the likelihood of corrosion to assess the risk of corrosion damage of the host structure for managed assets and aid in establishing
HM-1 Integrated Vehicle Health Management Committee
The use of aluminum to manufacture injection molds aims to maximize the productivity of plastic parts, as its alloys present higher heat conductivity than tool steel alloys. However, it is essential to accurately control the injection molding parameters to assure that the design tolerances are achieved in the final molded plastic part. The purpose of this research is to evaluate the use of aluminum alloys in high-volume production processes. It delves into the correlation between the type of material used for mold production (steel or aluminum) and the thickness of the injected part, and how these variables affect the efficiency of the process in terms of the quantity and quality of the produced parts. The findings suggest that replacing steel molds with aluminum alloys significantly reduces injection molding cycle time, the difference ranging from 57.1% to 72.5%. Additionally, the dimensional accuracy and less distortion provided by aluminum have improved product quality. In case of
Marconi, PedroAmarante, EvandroFerreira, CristianoBeal, ValterRibeiro Júnior, Armando
Lithium-ion (Li-ion) batteries employ binders that encounter challenges such as poor conductivity and expansion during charging. In a recent study, scientists have developed a high-performing binder using poly(vinylphosphonic acid) for silicon oxide-based anodes in Li-ion batteries. This binder offers enhanced performance as demonstrated by the superior durability, and discharging capacity of the anodes compared to conventional options. With patents filed internationally, this technology holds promise for broader applications in electric vehicles and beyond
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations. In this paper, we
Varma, AdityaGanesh, Kona VeeraRoy Mahapatra, Debiprosad
Advanced two-dimensional (2D) materials discovered in the last two decades are now being produced at scale and contribute to a wide range of performance enhancements in engineering applications. The most well known of these novel materials is graphene, a nearly transparent nanomaterial comprised of a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for automotive engineering. The goal of drastically reducing greenhouse gas emissions has prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. While this chapter reviews the current state of graphene
Barkan, TerranceCoyner, KelleyBittner, JasonKolodziejczyk, BartJiang, Yuxiang
Advanced two-dimensional materials discovered in the last two decades are now being produced at scale and are contributing to a wide range of performance enhancements in engineering applications. The most well known of these novel materials is graphene, a nearly transparent nanomaterial comprising a single layer of bonded carbon atoms. In relative terms, it has the highest level of heat and electrical conductivity, protects against ultraviolet rays, and is the strongest material ever measured. These properties have made graphene an attractive potential material for a variety of applications, particularly for transportation-related uses, and especially for aerospace engineering. The goals of reducing greenhouse gas emissions and creating a world that achieves net-zero emissions have prioritized the electrification of transportation, the decarbonization of industry, and the development of products that require less energy to make, last longer, and are fully recyclable. These aspects have
Barkan, TerranceWalthall, RhondaDixit, SunilDavid, AharonWebb, PhilipFletcher, Sarah
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling. DESS is a text-based
Steuteville, RobinBaker, Chad
A team of inventors from NASA Langley and NASA Ames have created a new type of carbon fiber polymer composite that has a high thermal conductivity. This was achieved by incorporating Pyrolytic Graphite Sheets (PGSs) and Carbon Nanotubes (CNTs), which enhance the material’s ability to transfer heat when compared to typical carbon fiber composites
Friction stir welding (FSW) is a method of welding that creates a weld trail by pressing a non-consumable rotating tool with a profiled pin on the adjacent surfaces while moving transversely along the welding direction. The method was initially used with metals and alloys, but more recently, thermoplastic polymers have also been included in its application. Investigations on FSW of thermoplastic polymers made of nylon and High-density polythene (HDPE) are presented here. Weld characteristics that are like those of the base materials are attempted to be achieved. Because of their unique nature and thermal conductivity, thermoplastics FSW differs from that of metals. The use of thermoplastic materials with conventional FSW procedures presents numerous difficulties and is currently ineffective. On the weld characteristics of nylon and HDPE, statistical methods were utilized to study the impact of temperature, rotational speed, and transverse speed. Temperature is found to be the most
Raju, GangaChinnakurli Suryanarayana, RameshSrivastava, Ashish
Corrosion control is always of concern to the designer of electronic enclosures. The use of EMI gaskets to provide shielding often creates requirements that are in conflict with ideal corrosion control. This SAE Aerospace Recommended Practice (ARP) presents a compatibility table (see Figure 1) which has as its objective a listing of metallic couples that are compatible from a corrosion aspect and which still maintain a low contact impedance
AE-4 Electromagnetic Compatibility (EMC) Committee
The latest developments in composite materials are anticipated by green engineering. Materials must be eco-friendly, recyclable, biodegradable, and easy to decompose. Researchers are interested in utilizing natural fibres, fillers, and synthetic active ingredients. Natural fiber-polymer composites can specify certain mechanical properties but are hydrophilic and weak, so they rarely meet the needed thermal properties. Composite material selection depends on the application and the superior properties of the fibre/filler: banana fibre (BF), ice husk (RH) and multi-walled carbon nanotubes (MWCNT). In this research article, a brief discussion of the heat transfer mechanism of composites and the development of energy conduction equation are performed for hybrid natural polymer composite. The maximum thermal conductivity observed for 10BF/10RH/1MWCNT wt.% composite is 0.2694 W/mK. From ANSYS numerical simulation, the temperature distribution along the composite wall temperatures T1 to T8
Senthilkumar, N.Ramu, S.Deepanraj, B.
The microstructure of the alloy and the manner in which it responds to heat treatment has been investigated. The alloy was aged at 550OC when it was initially spray-formed, or when its thickness was decreased by 38%. Before further aging of some specimens, a four-hour solution treatment at 1015OC was performed. The subsequent phase was a cold deformation that was barely 60% of the sample's initial thickness. The alloys' electrical conductivity and hardness may be evaluated based on how long they had been created. Following solution treatment and cold rolling, the alloy's peak hardness was around 380 kgf/mm2. In samples aged immediately under spray-produced conditions, the maximum peak hardness of 255 kgf/mm2 was attained. Conductivities in freshly cold-rolled samples could reach up to 75% of the standard for annealed copper internationally. It looks at the microstructural features of this alloy in this context, paying close attention to how various processing conditions affect them
Srinivasan, V.P.Anandan, R.Bharani Kumar, S.Sasidharan, R.Santhosh, S.
With the evolving demand in the automobile industry for lightweight and sustainable components, the study of natural fiber composites has gained significance. Such fibers are economically efficient and offer advantageous weight-specific properties. Additionally, they are non-abrasive and environmentally degradable, marking them as viable alternatives to conventional automobile materials. This research emphasizes the flax-based composite, developed using the hand lay-up method and augmented with three distinct graphene nanofillers. The graphene fillers are categorized as large nanorods (dimensions 3-5 nm, lengths 150-300 nm), small nano threads (dimensions 6-12 nm, lengths under 50 nm), and spherical particulates (dimensions 29-39 nm). Reinforcement was consistently maintained at 2%, 4%, and 6% by weight. The results indicate that a 4 wt.% inclusion of spherical graphene nanoparticles is particularly effective in enhancing the ultimate tensile strength and fracture elongation of the
Kaliappan, S.Natrayan, L.
The increased adoption of AA2014 Aluminum alloy within the manufacturing sector can be attributed to its lightweight properties and other attributes that position it as an appealing substitute for steel. Notably, AA2014 Aluminum alloy is employed in the production of components and frameworks for aircraft engines. However, conventional welding techniques do not always seamlessly apply to aluminum alloys due to aluminum's high thermal conductivity, pronounced susceptibility to oxidation, and comparatively low melting point. These characteristics can give rise to challenges such as burn-through and porosity during welding. To tackle these issues, the application of friction stir welding (FSW), a solid-state welding method, has been embraced. In the creation of lap joints, five distinct tools, each featuring a different ratio of tool shoulder diameter (D) to pin diameter (d), ranging from 2 to 4, were employed. An exhaustive evaluation of the mechanical and metallurgical properties of
Sandeep, ChVijaya Prakash, B.Amarnath, V.Balu Mahandiran, S.Shanthi, C.
Composites of polymers reinforced with synthetic/natural fibers are mainly used in engineering sectors such as automobiles, aerospace, and in household appliances due to their abrasion resistance, high toughness, strength, and high specific modulus. The purpose of this research is to provide an overview of fiber-matrix interfaces and interface mechanism that leads to enhanced properties. This article investigates how natural/synthetic fibers, mineral based-materials and additional allotropic materials work rapidly and effectively across interfaces. The objective of this work is to discuss different interfacial mechanisms (i.e., diffusion, chemical bonding, and mechanical crosslinking) of fiber reinforced polymers and to understand the mechanism of heat transfer in hybrid polymers by establishing the polymer morphology, chain structure, and interchain linkages to allow molecular interactions between the material phases and to determine the characteristics and thermal conductivity of
Senthilkumar, N.Ramu, S.Deepanraj, B.
A single strand of fiber has the flexibility of cotton and the electric conductivity of a polymer, called polyaniline. The newly developed material showed good potential for wearable e-textiles. Researchers tested the fibers with a system that powered an LED light and another that sensed ammonia gas
Vehicle electrification is game changer for automotive sector because of major energy and environmental implications driven by high vehicle efficiency. However, EVs are facing challenges on life cycle assessment (LCA), charging, and driving range compared to conventional fossil-fueled vehicles. One of the key features that impacts the efficiency of an EV is its battery charging system which is done using an On-Board Charger (OBC). OBCs, are primarily used to convert DC-power from high-voltage battery pack to AC-power. They contain different power-electronic devices such as MOSFETs, diodes, magnetics etc. These devices generate a lot of heat and require an efficient thermal management strategy. Through CAE Thermal analysis it was identified that amongst these components, transformers and diodes are major source of heat. Temperature observed at these component locations were in the range of 90-105 °C, compared to other components (45-75°C). This results into formation of hot spots on
Bali, ShirishBhatt, SrishtiBhavsar, VaibhavRao, Bhaskar
The automotive sector trend is moving towards vehicle electrification that provides great energy and environmental implications. However, Electrical Vehicles (EVs) are facing challenges in term of charging, driving range and life cycle with respect to existing vehicles. One of the key components in EV which is responsible for charging is On-Board Charger (OBC). OBCs are mainly used in converting DC power from battery pack to AC power and contains different power-electronic devices such as MOSFETs, diodes, magnetics etc. Heat-sinks are used to transfer the heat generated by these electronics and also as an enclosure to accommodate the electronics. Aluminum based alloy-ADC-12 generally used for manufacturing of OBC-enclosure due to its light weight, easy castability and good thermal conductivity. Although ADC-12 aluminum alloy has high corrosion resistance, specific environment condition or situation may accelerate corrosion with extended storage in rainy and salty environments. Normally
Bhatt, SrishtiBali, ShirishRao, Bhaskar
Innovators at the NASA Kennedy Space Center have developed a new optical sensor for measuring concentration in a liquid solution. The sensor was designed for measuring the pretreat solution concentration within the Universal Waste Management System (UWMS), a specialized toilet designed for the International Space Station (ISS) and other future missions. The sensor was developed to replace the current pretreat concentration sensor within the UWMS that uses electrical conductivity instead of light-based methods
This SAE Aerospace Standard (AS) defines the requirements for a threadless, flexible, high conductive, self-bonding coupling assembly which, when installed on defined ferrules, provides a flexible connection for joining ducting and components in pressurized fluid systems. The assembled coupling is designed to provide interchangeability of parts and components between qualified manufacturers for use from -65 to +265 °F at 130 psi nominal operating pressures and for the service life of the aircraft system. FAR 23.954, FAR 25.603, FAR 25.605, FAR 25.609, FAR 25.613, FAR 25.901, FAR 25.954, and FAR 25.981 certification requirements have identified the need for high-current capable flexible fluid assembled couplings. The coupling assembly does not require inspection or maintenance to remain current capable for the life of the aircraft. This specification provides two test philosophies necessary for low-pressure couplings: 1 Electromagnetic effects/lightning testing of assembled couplings to
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Nickel-based superalloys are most commonly engaged in a numerous engineering use, including the making of food processing equipment, aerospace components, and chemical processing equipment. These materials are often regarded as difficult-to-machine materials in conventional machining approach due to their higher strength and thermal conductivity. Various methods for more effective machining of hard materials such as nickel-based superalloys have been developed. Wire electrical discharge machining is one of them. In this paper, an effect has been taken to develop an adaptive neuro-fuzzy inference system for predicting WEDM performance in the future. To analyse the model’s variable input, the paper employs the Taguchi’s design and analysis techniques. The evolved ANFIS model aims to simulate the process’s various characteristics and predicted values. A comparison of the two was then made, and it was discovered that the predicted values are much closer to the actual outcomes. The
Pasupuleti, ThejasreeNatarajan, ManikandanShanmugam, LoganayaganKiruthika, JothiRamesh Naik, MudeKotapati, Gowthami
In addition to traditional methods, there are also non-traditional techniques that can be used to overcome the challenges of conventional metal working. One such technique is wire electrical discharge (WEDM). This type of advanced manufacturing process involves making complex shapes using materials. Utilizing intelligent tools can help a company meet its goals. Nickel is a hard metal to machine for various applications such as nuclear, automobile and aerospace. Due its high thermal conductivity and strength, traditional methods are not ideal when it comes to producing components using this material. This paper aims to provide a comprehensive analysis of the various steps in the development of a neural network model for the manufacturing of Inconel 625 alloy which is used for specific applications such as exhaust couplings in sports motor vehicle engines. The study was conducted using a combination of computational and experimental methods. It was then used to develop an index that
Natarajan, ManikandanPasupuleti, ThejasreeKatta, Lakshmi NarasimhamuKiruthika, JothiSilambarasan, RKotapati, Gowthami
Nickel-based superalloys are frequently adopted in various engineering applications, such as the production of food processing equipment, aerospace parts, and chemical processing equipment. Because of higher strength and thermal conductivity, they are often regarded as difficult-to-machine materials in certain processes. Various methods were evolved for machining the hard materials such as Nickel-based superalloys more effective. One of these is wire electrical discharge machining. In this paper, we will discuss the development of an artificial neural network model and an adaptive neuro-fuzzy inference system that can be used to predict the future performance of Wire Electrical Discharge Machining (WEDM). The paper uses the Taguchi and Analysis of Variance (ANOVA) design techniques to analyze the model’s variable input. It aims to simulate the various characteristics of the process and its predicted values. A comparison of the two was then performed, and it was revealed that the
Natarajan, ManikandanPasupuleti, ThejasreeSagaya Raj, GnanaKumar, VKatta, Lakshmi NarasimhamuKiruthika, Jothi
For 2D surface temperature monitoring applications, a variant of Electrical Impedance Tomography (EIT) was evaluated computationally in this study. Literature examples of poor sensor performance in the center of the 2D domains away from the side electrodes motivated these efforts which seek to overcome some of the previously noted shortcomings. In particular, the use of ‘sensing skins’ with novel tailored baseline conductivities was examined using the EIDORS package for EIT. It was found that the best approach for detecting a temperature hot spot depends on several factors such as the current injection (stimulation) patterns, the measurement patterns, and the reconstruction algorithms. For well-performing combinations of these factors, customized baseline conductivities were assessed and compared to the baseline uniform conductivity. It was discovered that for some EIT applications, a tailored distribution needs to be smooth and that sudden changes in the conductivity gradients should
Sjöberg, Magnus
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks
YAMASAKI, TakenoriIKEDA, KotaroSATO, Toshiki
The purpose of this study is to investigate how the kinematic viscosity of lubricating oil used in hybrid electric vehicle (HEV) and electric vehicles (EV) transaxles affects thermal conductivity and gear seizure resistance. This study investigated the relationship between viscosity, thermal conductivity and gear seizure resistance in detail and found that thermal conductivity tends to decrease with decreasing viscosity. It was also found that the thermal conductivity decreases significantly after a certain viscosity. The relationship between viscosity and gear seizure resistance was also investigated and it was found that too low a viscosity causes a significant deterioration in gear seizure resistance
Matsubara, KazushigeTatsumi, HiroyukiNakahara, YasuhitoTakekawa, DaisukeNarita, Keiichi
The paper shows how grease thickener polarity affects performance of the typical powertrain components: gears and rolling element bearings. Greases based on a non-polar polypropylene thickener reduce friction losses (more than 20%) in high-speed deep groove ball bearings and provide a longer service life (more than 2 times) in highly loaded bevel gears, compared to the greases based on polar lithium thickeners. The electrification and sustainability trends have led to additional requirements to be addresses during grease design process: tunable electric conductivity and reduced environment footprint. The grease design challenges caused by the novel requirements and potential solutions are discussed
Glavatskih, SergeiLeckner, Johan
Researchers at the National Institute of Standards and Technology (NIST) have fabricated a novel device that could dramatically boost the conversion of heat into electricity. If perfected, the technology could help recoup some of the recoverable heat energy that is wasted in the U.S. at a rate of about $100 billion each year
Drawing inspiration from how spiders spin silk to make webs, a team of researchers from the National University of Singapore, together with international collaborators, has developed an innovative method of producing soft fibers that possess three key properties (strong, stretchable, and electrically conductive), and at the same time can be easily reused to produce new fibers
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are undergoing a rapid development, due to the ever-growing interest towards their use to decarbonize power generation applications. In the transportation sector, a key technological challenge is their thermal management, i.e. the ability to preserve the membrane at the optimal thermal state to maximize the generated power. This corresponds to a narrow temperature range of 75-80°C, possibly uniformly distributed over the entire active surface. The achievement of such a requirement is complicated by the generation of thermal power, the limited exchange area for radiators, and the poor heat transfer performance of conventional coolants (e.g., ethylene glycol). The interconnection of thermal/fluid/electrochemical processes in PEMFCs renders heat rejection as a potential performance limiter, suggesting its maximization for power density increase. To this aim, suspensions of coolants and nanoparticles (nanofluids) have been proposed for
D'Adamo, AlessandroCorda, GiuseppeBerni, FabioDiana, MartinoFontanesi, Stefano
Rising concern towards environment and decarbonization has increased the demand of EVs. However, one of the major challenges for these vehicles is to achieve the same driving ranges as that of ICEs. This can be attained by increasing the power of cells without altering their sizes; conversely, this has important effects on the cell thermal behaviour. The focus of this paper is to analyse the impact of changing the characterizing materials thicknesses of collectors and electrodes of a cylindrical cell on its thermal response and to determine an optimal configuration. The CFD software considered to conduct this research uses the equivalent circuit model (ECM) to represent a cell and requires material physical properties to calculate the thermal response. In the calculations presented, resistance, capacitance, and Open Circuit Voltage (OCV) needed for the ECM are obtained from experimental measurements. The electric model provides the flow of current in the cell, that can only be elicited
Broatch, AlbertoOlmeda, PabloMargot, XandraKumar, Kundan
The current development of electric and hybrid electric vehicles has drawn more attention toward the development of electrical machines with high power densities. Though highly efficient, these machines heat up significantly during operation. By design, state-of-the-art water jacket cooling concepts remove the heat mainly through high internal thermal resistances of the electrical machine. The resulting maximum temperatures in the end winding region limit the achievable machine power output. In this study, alternative cooling concepts are presented, which efficiently use the existing heat conduction paths of an electric machine. For this purpose, two modeling methods for the stator windings were developed: a high-resolution approach that considers each individual wire and an abstract approach that uses zones of constant anisotropic thermal conductivity to specify the heat flow in the windings. Both models were used in conjugate heat transfer simulations of a long-term thermal test of
Brossardt, NicolasNguyen-Xuan, ThinhPfitzner, Michael
In 2017 the National Research Council of Canada developed an evaporation model for controlling engine icing tunnels in real time. The model included simplifications to allow it to update the control system once per second, including the assumption of sea level pressure in some calculations. Recently the engine icing system was required in an altitude facility requiring operation down to static temperatures of -40°C, and up to an altitude of 9.1 km (30 kft) or 30 kPa. To accommodate the larger temperature and pressure range the model was modified by removing the assumption of sea level operation and expanding the temperature range. In addition, due to the higher concentration of water vapor that can be held by the atmosphere at lower pressures, the significance of the effect of humidity on the air properties and the effect on the model was investigated. The effect of humidity on the density, specific heat, viscosity, thermal conductivity and Prandtl number of air compared to assuming
Davison, Craig
This specification covers an aluminum-beryllium alloy in the form of bars, rods, tubing, and shapes consolidated from powder by extrusion
AMS G Titanium and Refractory Metals Committee
Tyre rubber materials are viscoelastic in nature and generates heat during its operation due to hysteresis loss. Rubber being a poor thermal conductor, heat dissipation is a concern from product durability point of view. Further, during tyre manufacturing, curing is an essential process where heat conduction of rubber materials plays an important role to achieve desirable cure state. Therefore, thermal properties of rubber compounds are important inputs for tyre designing and manufacturing process. With this background, the present work focuses on characterising thermal properties (thermal conductivity, specific heat, thermal diffusivity, etc.) of rubber compounds using a Hot Disc Thermal Conductivity (TPS-2200, Sweden). In this work, new generation fillers, such as carbon nano tube were used in the rubber compounds to improve thermal conduction and thermal properties are compared with conventional carbon black based rubber compound. These new generation fillers are anisotropic in
Sen, AmitGuria, BiswanathChanda, JagannathGhosh, PrasenjitMukhopadhyay, Rabindra
A lightweight multi-material combination of steel and aluminium alloy (Al) is becoming a novel approach towards environmentally sustainable transport systems. Studies show that 10% reduction of vehicle weight results into 3-7% reduction in specific fuel consumption in IC engines and a 13.7% improvement in electric range for electric vehicles. However, dissimilar welding of Al/steel is a key challenge because of incompatible thermo-physical properties (melting point, thermal conductivity, and coefficient of thermal expansion) and low miscibility between Al and steel. The formation of brittle and hard Al-steel intermetallic compound (IMC) at the joint interface is the major concern for dissimilar welding of Al/steel. In this work, efforts are made to check the feasibility of Ni interlayer to control IMC formation at the interface of Al/steel dissimilar welded joint. Resistance spot welding is used to join low carbon steel CR01 and Al AA6061-T6 with pure Ni interlayer. Microstructure and
Chudasama, GautamKalyankar PhD, VivekChauhan, ShivShende, Deodatta
This specification covers inert, fluorochemical, liquid heat transfer agents
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers a titanium alloy in the forms of investment castings having four grades of permissible discontinuities
AMS G Titanium and Refractory Metals Committee
The purpose of this standard is to provide uniform methods for defining, quantifying, and classifying the residual stress in metallic structural alloy products and finished parts. These stresses may exist within a single element, or they may be the result of a joining process. Such quantification and classification may be required when residual stresses within mill stock or preforms can impact further in-process distortion during machining or other processes, and when residual stresses within finished components can impact final mechanical properties and performance (especially strength, durability, and fracture performance
null, null
This specification covers an aluminum alloy in the form of die forgings or hand forgings up to 5 inches (125 mm) in thickness, and forging stock of any size (see 8.7
AMS D Nonferrous Alloys Committee
Items per page:
1 – 50 of 3233